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Executive Summary

The SafetyNet project is set up to build a European Road Safety Observatory.
The data assembled or gathered for the observatory consist of the Community
database on Accidents on the Roads in Europe (CARE); data on road safety
risk indicators; data on road safety performance indicators and in-depth
accident data. Potential users will link data from different data-sets, consider
different levels of aggregation jointly, and analyse the development over time.
Work package 7 (WP7) is set up to deal with statistical and conceptual issues
that come into play when analysing such complex data structures.

One of WP7’s main objectives is to develop a best practice advice for the
analysis of data structures that require more than the standard statistical tools.
This best practice consists of D7.4 “Multilevel modelling and time series
analysis in traffic research — A methodology” and D7.5 “Multilevel modelling and
time series analysis in traffic research — The manual”.

The main goal is to enable the reader to deal with complex data-structures that
show dependencies in space (nested data) or in time (time series data). At first
it is demonstrated how such dependencies can compromise the applicability of
standard methods of statistical inferences, because they can lead to an
underestimation of the standard error and consequently of the error in statistical
tests.

As a solution to this problem, two families of statistical techniques are presented
to deal with these dependencies. Multilevel Modelling is dedicated to the
analysis of data that are structured hierarchically. It offers the possibility to
include hierarchical structures into the model of analysis. In road-safety
research, multilevel analyses allow for the introduction of exposure data and of
safety performance indicators, even if those are not specified at the same level
of disaggregation as the accident data themselves. In this way, multilevel
analyses allow a global and detailed approach simultaneously. Time series
analyses are employed to overcome dependency issues in time-related data.
They allow describing the development over time, relating the accident-
occurrences to explanatory factors such as exposure measures or safety-
performance indicators (e.g., speeding, seatbelt-use, alcohol, etc), and
forecasting the development into the near future.

Deliverable D7.4 gives the theoretical background for these two families of
analyses. For each technique the objectives, detailed model formulation, and
assumptions are described and subsequently the technique is illustrated with an
empirical example relevant to traffic safety research.

Project co-financed by the European Commission, Directorate-General Transport and Energy

Page 9



Chapter 1 - Introduction

(Heike Martensen and Emmanuelle Dupont, IBSR) !

This deliverable has been produced in Workpackage 7 (WP7) of the SafetyNet
project, an Integrated Project that brings together the most experienced road
safety organisations within the EU to assemble a co-ordinated set of data
resources that together will meet the EC needs for policy support. The goal of
the project is to set up a Road Safety Observatory that will enable the European
Commission to monitor progress towards targets, identify best practises, and
ensure that new regulatory and other safety actions will result in the maximum
casualty reduction.

The data assembled or gathered within the SafetyNet project consist of the
Community database on Accidents on the Roads in Europe (CARE); road
safety risk exposure data; data on road safety performance indicators and in-
depth accident data. The data will be available to the entire road safety
community and will serve to answer a broad variety of questions.

Road traffic data is structured in space and in time. For example, accident
numbers can be disaggregated to countries, regions, and counties, as well as to
years, months, weeks and days. In many cases, data at different levels of
aggregation will be considered jointly, and the development over time will be
analysed. WP7 is set up to deal with statistical and conceptual issues that
come into play when analysing such complex data structures. One of its main
objectives is the development of a best practice for the analysis of data
structures that require more than the standard statistical tools.

In Section 1.1 of this introduction the linear regression model that forms the
basis for the majority of all analyses is introduced shortly. It will then be
explained why the basic model is not sufficient for many road-safety analyses
and demonstrated that additional requirements for the analysis of complex data
structures are mainly related to recognizing and dealing with dependencies in
space and time. In Subsection 1.2 two families of sophisticated analysis
techniques are introduced that allow road-safety researchers to deal with these
dependencies: multilevel modelling and time series analysis. Based on several
empirical traffic-safety examples it is illustrated that both are very valuable to
traffic safety research. The use of those techniques in the field of traffic safety is
advocated. At the end of this introductory Section (1.3) an overview of two WP7
deliverables (7.4 & 7.5) will be given that form together the best-practice advice
for the analysis of complex data structures.

' An earlier version of the introduction was written by Ward Vanlaar. Where relevant, quotes or
references to Vanlaar’s work have been inserted in the present version.”



1.1 The analysis of complex data structures

1.1 Best practice for the analysis of complex data-
structures

1.1.1 What is a statistical model

Many, if not all, road-safety questions require that different quantities or
categories are linked to one another and seek at establishing whether there is a
relation between them.

Examples are questions like the following: Is there a relation between the
number of speed controls and the number of people killed in a traffic accident?
Does the number of errors a driver makes depend on the number of years
he/she has been driving? Did the number of people killed in accidents decrease
after the introduction of the seat-belt law?

Statistically these questions are expressed as relations between variables. An
observed or dependent or endogenous variable® y; (e.g., the number of driving
errors person i makes) is predicted by one or more explanatory or independent
or exogenous variables x,, x,.. (e.g., the number of years of driving experience
person i has, his or her age, gender, etc.). Such a relation is modelled by
Equation 1.1.1, where e is the error term, also called the disturbance term and
i=1...n, with n the number of persons.

v, =b, +bx,, +b,x, +...+e (1.1.1)

In principle, the number of explanatory variables is not limited, but for simplicity
reasons the model here considered as an example includes only one
independent variable. The number of errors of driver i is predicted by his/her
number of years driving experiences. This relation is modelled in 1.1.2

driving _errors;, = b, + b, years _experience, +e, (1.1.2)

The parameters or coefficients (here b,, and b,) quantify the relation between
the independent and the dependent variable. The intercept b, indicates the

average value of the dependent variable when all independent variables are
zero. Here the intercept is the number of errors at 0 years experience, i.e.
during the year following receiving one’s driving licence. The coefficient b,

% Different research traditions (e.g., multilevel and time series modelling) have generated
different terms for the same concepts. They are listed next to each other here to enable the
reader to make the link.

® The relation between experience and the number of errors is not linear. In practice this could
be solved by transforming one of both variables or applying nonlinear models (see, e.g. section
3.2.3). For simplicity sake the nonlinearity will be ignored at this point.

Ewe s |
==
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Chapter 1 — Introduction

indicates how much the average number of errors decreases with each year of
driving experience.

A statistical model determines an expected value for each observation on the
basis of the independent variables. However, in practice the independent
variables can never perfectly predict the value of the dependent one; the
observations always depart from the values predicted. Every useful statistical
model therefore has a fixed or deterministic or structural part -- the variation in
the dependent variable that can be predicted by the independent variables --
and a random or stochastic part -- the variance that cannot be predicted, the
error or disturbance.

1.1.2 Assumptions of statistical models and their violations

Defining the relation between variables in equations is called “modelling”
because the equations do not describe the true relation between these
variables; they rather give a simplified model of it. The common linear
regression model described so far contains a number of restrictions, most
notably the following:

1. The dependent variable (y) has to follow the normal distribution.

2. The dependent variable (y) can be expressed as a linear combination of the
independent ones (bp+b1x1+b2Xo...)

3. The errors g; (the part in the dependent variable that cannot be explained by
this linear function) are independently distributed across all observations.

In reality, these assumptions seldom hold. Violations of the first two
assumptions can often be dealt with in the Generalized Linear Model (GLM)
described in sections 2.3.1 and 3.2.2 of this document. The GLM allows
modelling observations that do not follow the normal distribution (e.g. discrete
responses). In nonlinear models, described in section 3.2.3, relations between
dependent and independent variables are analyzed that do not need to have
the linear form (they can follow the exponential function, for example).

The focus of the present document, however, is on the third assumption, the
assumption of independence. A statistical model determines an expected value
for each observation. In this way the dependency of the observed data is
modelled in the structural part with exogenously measured factors (the
explanatory variables). Nevertheless, the observations spread around their
expected value. The “independence assumption” refers to this random part of
the model. By saying that the observations must be independent, we mean that
the deviation of any one observation from its expected value must not be linked
to the deviation of another. *

We will present two examples showing that this assumption of independence
can be unrealistic in road safety research. Generally, two types of commonly

* In practice this means that the prediction error e is uncorrelated with x and the error
associated with one value of y has no effect on the errors associated with other values, i.e. all
observed autocorrelations of the errors are 0.



1.1 The analysis of complex data structures

occurring dependencies in data can be distinguished: hierarchically dependent
data and time dependent data. We will describe why these dependent data are
problematic for the traditional statistical methods and present a variety of
techniques allowing to deal with these problems.

1.1.2.1. Hierarchically dependent data (nested data)

In a Belgian study on speeding, cameras were set up at a large number of
randomly selected road sites and the speed of all cars passing through was
registered. Speeds at the same road-site are usually more similar to each other
than data coming from different clusters. For example, if the first car recorded
drove 30 km/h, the probability of the next car passing through with 110 km/h is
much smaller than if the first car recorded had driven 120 km/h. As mentioned
above, this dependency can be modelled in the structural or fixed part of the
model, by including explanatory factors that predict the differences between
cars at different road-sites. In our example, the speed-limit would come to mind.
However, other characteristics of the location (e.g. quality of road, traffic count,
... and probably some characteristics the researcher is not aware of) affect the
driving speed as well. So it will never be possible to perfectly model the
differences between the road-sites in the structural part of the model, which
means that the errors will not be independent from each other, as required by
the assumptions for linear regression. The next section describes how this
problem can be more efficiently and elegantly dealt with by including the road-
sites into the random part of the model®.

1.1.2.2. Time dependent data (time-series)

For many questions in road-safety research, the annual or monthly numbers of
road traffic accidents are considered. Again the assumption for traditional
statistical methods would be that the numbers at each point in time show an
independent deviation from some expected value (e.g. the overall average).
Like in the example of road sites above (where local variations in conditions
should be considered), the possibility should be considered that temporal
variation in conditions stretching over multiple observations could increase or
decrease the expected number of accidents in addition to what would otherwise
be expected.

Identifying the fact that these variations exist in a particular series of data and
quantifying these variations over time allows the researcher to enhance
inference and prognosis.

®Another source of dependency are cohort effects. Cars that follow each other closely will be
more similar in speed than to other, more remote cars, because their speed is dictated by the
slowest car driving in front. Again this could partly be captured by taking up traffic concentration
in the fixed part of the model but it could be modelled more elegantly by including the cohort
structure into the random part of the model.

Page 9



Chapter 1 — Introduction

1.1.3 What to do with dependent observations?

In regression models the variance of a dependent variable vy, ... , y, is split up
in two parts: That part of the variance that can be predicted by a combination of
independent variables (the fixed or structural part) and the error, the part of the
variance that cannot be predicted (the random part). In traditional regression
models the random part consists of only one variable (e; in equations 1.1 and
1.2), reflecting the idea that there is only one source of random variation, the
individual unit of measurements.

With highly structured data, as we often deal with in road-safety research, this
assumption is not realistic. Each data point must in fact be considered to be
sampled from different populations at the same time. For nested data structures
these populations correspond to the levels of the data hierarchy. For example
the registered speed depends on which car had been randomly selected, but
also on the cohort the car arrives in and also on which road-site had been
randomly selected from the population of all road-sites in Belgium. This means
that the prediction for this particular car contains a random effect, which is
shared by all cars that arrived in the same cohort and another that is shared by
all cars at a particular site. These random effects allow those cars that share it
to deviate in similar way from the average car in the study.

For time series the resulting situation is similar in that a specific structure is
imposed on the random term, for instance by also introducing additional random
terms.

While the traditional regression models described above assume that there is
only one source of random variation, it is important to structure the random part
of a statistical model according to the nature of the statistical units. Multilevel
models therefore introduce random variation at each level of the data hierarchy
and time series models introduce random variation that is specific to the
transition from one point in time to another.

Ignoring the structure of the random variation and thus the dependence of
residuals generally causes standard errors to be either over- or underestimated
(see for example Rasbash et al., 2004, for a discussion focused on multilevel
models where usually underestimation is observed), which will in turn distort the
estimated probability of having observed a particular effect on a purely
coincidental basis. Both consequences, (1) accepting as significant a result that
is actually not so, and (2) rejecting a result as due to chance that is in fact not
due to ~chance, can occur in sometimes unpredictable ways.



1.2 The added value of Multilevel and Time Series
Analysis

For the development of a best practice for the analysis of complex data, it is
necessary to give an overview of methods to deal in one way or another with
dependencies in data. In the following the added value for road safety research
for two families of analysis will be described separately: Multilevel modelling
that is dedicated to data with hierarchical dependencies and time series
analyses that are dedicated to time-dependent data.

1.2.1 Multilevel models
Heike Martensen and Emmanuelle Dupont (IBSR)

1.2.1.1. Definition and conceptual issues

There are several introductory books on multilevel analysis are available (e.g.,
Goldstein, 2003; Heck and Thomas, 2000; Hox, 2002; Kreft and de Leeuw,
2002; Leyland and Goldstein, 2001; Snijders and Bosker, 1999) and each of
those defines them in a specific way. However, these definitions share one
concept, namely the concept of hierarchies or nested data structures. There are
individuals and variables describing these individuals, but there are also larger
units the individuals are grouped into and variables that describe these larger
units (Raudenbush and Bryk, 2002).

Multilevel models as they are presented here have mostly been developed in
educational and social research (e.g., Aitkin & Longford, 1986, Kreft, 1994, Kreft
et al.,1995), where many objects of investigation are hierarchically structured.
(e.g.: pupils in classes; classes in schools; employees in departments,
departments in firms; suspects in courts; offspring within families). However,
structurally identical methods are commonly used in other disciplines. In bio-
medical sciences these models are often referred to as mixed-effects or
random-effects models (Bates & Pinheiro, 1995) and are used for growth curve
analyses, (Lindsey, 1993), survival analyses (Sargent, 1998), and
epidemiological analyses (Diez-Roux, 2002, Carriere & Bouyer, 2002) among
others. In econometrics the same models are known as random-coefficient
regression models (e.g. Longford, 1993) and are, for instance, used for
analysing risk-return tradeoffs (Lee, et al., 2006) and panel data (Swamy, 1971;
Hsiao & Pesaran, 2004). Although the first multilevel models concerned linear
models, they have been extended for the use of binary and count data (Lee &
Nelder, 2001) and nonlinear analyses (Pinheiro & Bates, 1995).

Although multilevel models are widespread in many scientific disciplines, they
are relatively new to the field of road-safety research and applied only in a small
number of studies. This is all the more concerning, as nested data structures
are the rule rather than the exception in this field. In roadside surveys, like
speed measurements (section 2.2), seat-belt counts (1.2.1), or alcohol controls
(2.3.2 and 2.3.3), individual cars are nested within measurement locations.
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Accident and victim numbers are hierarchically structured according to spatial or
administrative units like counties and regions. The same is true for statistics
describing enforcement activities, like the number of speeding infringements or
alcohol controls. In section 2.3.4 and 2.4 it is described how multilevel modelling
can be applied in such a structure and it is demonstrated that not only the
number of accidents varies across regions in Greece, but also the relation
between accident number and number of enforcement actions.

Accidents show a hierarchical structure because drivers and passengers are
nested in vehicles, vehicles in accidents, accidents in regions (Jones and
Jorgensen, 2003). Moreover, multilevel models can be applied to repeated
measurements of, for instance driving performances, where the performance
scores are nested within the individuals that produced them (Burns et al. 1999,
see also section 2.4 in this document). Meta-analyses (e.g., Delhomme et al.,
1999; van Driel et al., 2004) also show a nested data structure, where data
points are nested within studies.

As an example we will show a how a traditional linear regression model on a
large sample of accidents can be extended to represent multiple levels of the
accident. For each accident the severity of injury for each passenger is
established. (For simplicity, we will assume that there is a quantitative measure
of injury severity that is approximately normal distributed). Simultaneously
possible explanatory variables, for example, age of the victim are also
measured. The severity of injuries will to some extent be explained by the age
of the victim. In model terms:

severity, = B, + B,age, +e, (1.2.1)

In the present example, we are dealing with a hierarchical data structure,
because each injury is not only determined by characteristics of the victim, but
also by the accident the victim was part of and the vehicle the victim was in.
Factors such as speed, type of collision, and type of vehicle are characteristics
of accidents that affect all victims inside a particular vehicle in the same way. As
a consequence the injury severities of victims that have been in the same
vehicle will be more similar to each other than to those of other victims.

The solution in multilevel modelling is to assume that random variation not only
occurs at the level of the basic measurement unit (i.e. occupant), but also at
higher-level measurement units (e.g. the vehicle).
A very simple multilevel extension of equation (1.2.1) would be to let the
intercept By, which indicates the general level of severity, vary across the
secondary measurement unit j (here the vehicles).

severity,, = p,. + Dx. +e.. 2.
tylj ﬁ()] ﬁll ij (122)

By, =ty +u; (1.2.3)



1.2.1 The added value of multilevel models

In this model there is random variation associated with each measurement at
the lowest level of the hierarchy (ej, e.g. random variation between victims) but
also at a second level (u; e.g., random variation between vehicles). Due to this
second level variation, there is a different intercept (B¢) for each level-two unit
(i.e. a different mean injury severity for each vehicle). In this way, multilevel
models explicitly include a hierarchical structure resembling the one present in
the data.

The consequences of ignoring a hierarchical structure form two broad
categories: statistical problems and conceptual problems. The first type of
problems has been mentioned before. Due to the dependence of the
observations in hierarchical data structures, there is a risk to underestimate the
standard errors and therefore to consider as significant a result significant that
is in fact due to chance (Rasbash et al., 2004). The conceptual problems result
from the existence of variables affecting different levels in the data hierarchy
and from their possible interactions. Variables related to higher-order levels are
also referred to as contextual information.

In the following paragraphs both types of problems (statistical and conceptual)
will be briefly discussed and illustrated with examples from road-safety studies.
First, consequences of ignoring dependence of nested observations are
investigated and data from an observational study on seatbelt use are used as
an illustration. Then, consequences of impoverished conceptualisation of
contextual information are discussed. Finally conclusions regarding multilevel
modelling in traffic safety are drawn.

1.2.1.2. Consequences of ignoring dependence of nested observations

In a Belgian study on seatbelt use (Verbeke, Vanlaar, & Silverans, 2005)
observers were situated at 150 different road-sites. For each car passing, they
determined the gender of the driver and the front passenger and whether they
were wearing a seat-belt or not. In total, this information could be determined for
21.785 cars.

Because of the sampling plan, the individual cars were not selected
independently from each other but in clusters. Due to randomly selecting a
number of road-sites (the clusters) first, not all Belgian cars (and their inmates)
had the same probability to be observed. The sampling strategy resulted in a
hierarchical data-structure. Many factors that possibly affect seat-belt use (e.g.
design speed of the road, weather, time of the day) are the same for all
participants observed at the same road site and as a consequence the
probability of car-inhabitants wearing seat belts will be more similar for cars
measured at the same road site than for cars recorded at different ones.®

® Another possible clustering effect in seatbelt observation studies could be that of occupants of
the same car. Indeed, it is reasonable to assume that the seatbelt wearing behaviour of one
person is more similar to occupants of the same car as it is to that of other cars’ occupants. The
dependence introduced by such a “car effect” does however not apply to the Belgian study
discussed here, because the road-side observers in this study registered either whether the

T |
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The problem of dependent observations in complex sampling designs is not a
new one and for the analysis of such designs elaborate correction procedures
are available to correct the standard errors (Cochran, 1963; Kish, 1965; Levy
and Lemeshow, 1999). Addressing this problem with multilevel modelling as
demonstrated below, has however the advantage that the population structure,
insofar as it is mirrored in the sampling design, is not only seen as a ‘nuisance
factor’ but can be used to collect and analyse data about the higher level units
in the population Goldstein (2003: p. 5).

Parameter Single-level logistic model Two-level logistic model
Logit s.e. P Logit s.e. p
coefficients coefficients

Fixed parameters

Intercept 0.883 0.169 0.000 0.776 0.184 0.000
Passenger -0.260 0.130 0.046 -0.205 0.132 0.120
Male -0.663 0.121 0.000 -0.670 0.114 0.000
Wallonia -0.454 0.158 0.004 -0.510 0.182 0.005
Brussels -0.583 0.137 0.000 -0.365 0.140 0.009
50km/h 0.648 0.137 0.000 0.649 0.171 0.000
70km/h 0.921 0.171 0.000 0.665 0.155 0.000
90km/h 0.461 0.159 0.004 0.433 0.191 0.023
120km/h 0.795 0.173 0.000 0.811 0.188 0.000
Weekday night -0.092 0.214 0.667 0.037 0.156 0.813
Weekend day -0.091 0.142 0.522 0.151 0.139 0.277
Weekend night  0.312 0.156 0.046 0.197 0.166 0.235

Random parameters

Level 2 n.a. n.a. 0.197 0.039
variance: Q,
Level 1 1.000 0.000 1.000 0.000
variance: Q,

Table 1.2.1: Results from Vanlaar 2005a: Comparison of logit coefficients and s.e. of a
single-level and a two-level model regarding seatbelt use

To demonstrate how the dependence of observations causes standard errors to
be underestimated, Vanlaar (2005a) compared results from a single-level model
that does not take the similarity into account to those from a two level model,
which explicitly includes road-sites as a source of variation. The results from
both models are presented in Table 1.2.1.

The coefficients estimated in both models by Vanlaar (2005a) concerned the
type of occupant (Passenger as opposed to driver), gender (Male as opposed to
female), the region (Wallonia and Brussels as opposed to Flanders), the speed-

driver wore a seatbelt or whether the front passenger wore a seatbelt but never both for the
same car.
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regime (50km/h, 70km/h, and 120km/h as opposed to 30 km/h) and the time of
testing (Weekday night, Weekend day, and Weekend night as opposed to
weekday at daytime). Even though the significance levels of most variables
were the same in both the single-level and the two-level model, Vanlaar pointed
out there were two variables for which this was not the case. Those two
variables were Passenger and Weekend night. Both were significant at the 5%-
level in the single-level model. However, these effects were no longer significant
according to the two-level model.

The proportion of level-two variance estimated in the two-level model was
significant, which indicated that the data did indeed have a hierarchical
structure. This example by Vanlaar (2005a) demonstrated that ignoring this
structure can lead to erroneous conclusions. As he warned, based on the
significant negative coefficient of front-seat passengers compared to drivers in
the single-level model (meaning that the odds of front-seat passengers to wear
a seatbelt are lower than those of drivers) it could for example be decided to
make front-seat passengers a special target group in a mass media campaign.
However, the two-level model suggested that the difference in seatbelt use
between those two groups does not exceed the chance-level. More generally,
single-level models applied to multilevel structures can lead to overconfident or
even plain incorrect conclusions.

1.2.1.3. Consequences of impoverished conceptualisation of contextual
information

Many problems in traffic research cannot be understood correctly if only one
level is regarded. As an example, consider the following question: Are pedal
cyclists safer on roads with cycle paths as compared to roads without? The
Netherlands have by far the highest percentage of roads with cycle paths in
Europe. They also have the highest rate of accidents involving cyclists. Should
we conclude that the presence of cycle paths puts cyclists in particular danger?
Probably not. This wrong conclusion would rise from trying to answer a question
concerning the individual level (here the roads that do or do not have cycle
paths) with data concerning the group level (here the countries), a tendency that
is known as the ecological fallacy (Robinson, 1950).

In order to avoid the ecological fallacy, one might focus exclusively on the
individual level. This strategy, however, might also lead to incorrect or at least
incomplete conclusions. For example, it is possible that in the Netherlands there
is no difference with respect to the number of cyclist accidents between roads
with and without cycle paths. The reason would be that the only roads without
cycle paths are those that are relatively safe for cyclists and that other road
users are used to watch out for them. This would however, not be true in
countries with fewer pedal cyclists and a smaller percentage of roads with cycle
paths. The difference between cycling on roads with and without cycle path is,
therefore, affected by country-level variables (overall number of pedal cyclists,
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extension of cycle path network) as well. To ignore these higher-level effects is
called the individualistic (or psychologistic) fallacy (Diez-Roux, 2002)

The interactions between variables measured at different levels in hierarchically
structured data are referred to as cross-level interactions (Kreft and de Leeuw,
2002). The examination of cross-level interactions is also called contextual
analysis which has been developed in the social sciences. There, the focus is
on the effects of the social context on individual behaviour, which gave rise to
the need to consider variables at different levels simultaneously. This has been
the motivation for the development multilevel models in the first place (Hox,
2002; Snijders and Bosker, 1999).

Likewise, many road-safety problems involve relationships between micro-level
(e.g. presence of cycle-paths) and macro-level variables (e.g. overall number of
pedal cyclists). These complex problems could not be solved with analyses on
either aggregated or data disaggregated. Multilevel modelling overcomes these
obstacles in an elegant and productive way.

1.2.1.4. Conclusion

Although multilevel models are common in many scientific areas, they are
relatively new to the field of traffic safety. The advantages of multilevel
modelling compared to statistical techniques that ignore hierarchies were
discussed and illustrated based on two traffic safety examples.

Two types of problems were demonstrated when ignoring a hierarchical
structure in the data: statistical and conceptual. Statistical problems result from
the underestimation of standard errors due to the dependence of nested
observations. Data from a road-side survey on seatbelt behaviour were
analysed according to a single-level model and a two-level model to illustrate
this. Two effects that were significant in the single-level model were found not to
be significant any longer when including the level of road-sites into the model.
The model that ignores the hierarchical data structure would therefore lead to
erroneous conclusions regarding variables that could have an impact on
seatbelt use and ultimately, on increasing the level of traffic safety (Vanlaar,
2005a).

The second consequence is a conceptually impoverished representation. For
traditional types of analyses a choice has to be made considering the level of
aggregation. Based on the example of bike-safety, it has been demonstrated
that analyses at the country level can lead to wrong conclusions but that
analyses that include the level of individual bikers only also leave out important
information. As a consequence, it was argued for the need of statistical
methods that allow the analysis of variables for different levels in the data
structure simultaneously.

Of course, multilevel modelling is no wonder-weapon. The assumptions that
have to hold in order to apply them are plenty and will be discussed in the
remainder of the document. However, when applied with caution, they can
prevent overoptimistic inferences and “allow researchers to translate a research
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problem into a design reproducing a lot of the nuances at stake and without
giving in too drastically towards simplifying the nature of the issue under
evaluation.”(Vanlaar, 2005a, p. 315)
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1.2.2 Time series models
Jacques Commandeur (SWOYV)

Many road traffic data consist of observations made sequentially through time.
Examples are the annual or monthly number of road traffic accidents in a
country, its annual or monthly number of road traffic fatalities, its annual or
monthly number of vehicle kilometres driven, its annual or monthly values on
safety performance indicators, etc.. Each example is a collection of
observations made sequentially through time.

Whenever one is interested in studying and analysing such developments of
one and the same phenomenon over time, special issues arise not encountered
in cross-sectional data analysis. In this section we will illustrate with a simple
example what these special issues are, and how they can be dealt with by using
a special family of analysis techniques collectively known as time series
models.

The example consists of the log of the annual number of road traffic fatalities as
observed in Norway for the period 1970-2003. It may be noted that the annual
number of road traffic fatalities are count data, which are non-negative. If count
data were analysed as they are, one could obtain predicted counts that are
negative. By analysing them in their logarithm, however, and then taking the
exponent of the predicted values, it is guaranteed that non-negative predicted
counts are obtained.

Since the period 1970-2003 spans 34 years, there are n = 34 observations.
Because the observations (i.e., the annual number of fatalities) are made
sequentially through time, they are collectively called a time series (see
Chatfield, 2004). We will first analyse this time series with traditional linear
regression.

Typically, in traditional linear regression a linear relationship is assumed

between a criterion or dependent or endogenous variable y, and an explanatory
or independent or exogenous variable x such that

yi=a+bx +¢, g; ~ NID(0,62) (1.2.4)
where i=1,..., n, and nis the number of observations. The expression
g; ~ NID(0,52)
in (1.2.4) is a shorthand notation for: the residuals € are assumed to be

Normally and Independently Distributed (NID) with mean equal to zero and
variance equal to 03.
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Figure 1.2.1: Scatter plot of log of fatalities in Norway against time (in years), including
regression line.

Now suppose that the dependent variable y in (1.2.4) is the just mentioned
series of the log of Norwegian road traffic fatalities. Also, suppose that the
independent variable x in (1.2.4) consists of the numbered consecutive time
points in the series (thus, x=i=1, 2, ..., 34). The usual scatter plot of these two
variables -including the best fitting line according to traditional linear regression-
is shown in Figure 1.2.1.

The equation of the regression line in Figure 1.2.1 is

A

y; =6.2794-0.019837x;,

with residual variance 052 =0.00985827 . Graphically, the intercept a = 6.2794

in model (1.2.4) is the point where the regression line intersects with the y-axis.
Therefore, the intercept determines the ‘height’ or level of the regression line on
the y-axis. The value of the regression coefficient or weight b = -0.019837
determines the slope of the regression line (i.e., the tangent of its angle with the
X-axis).

The standard ttest for establishing whether the regression coefficient b =
-0.019837 deviates from zero yields
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Since the value of this ttest is associated with a p-value of 1E'12, the linear
relationship between the criterion variable y and the predictor variable x is
extremely significant.

When the assumptions for traditional linear regression are valid, time is a highly
significant predictor of the log of the number of Norwegian road traffic fatalities,
and there is a negative relation between these two variables: as time proceeds
the log of the number of fatalities decreases.

However, one crucial issue has completely been overlooked in this analysis.
The just mentioned ttest was based on the fundamental assumption that the 34
observations in the time series are independent of one another. That the
observations are not independent becomes more obvious by connecting the
consecutive observations in Figure 1.2.1 with lines, as has been done in the top
graph of Figure 1.2.2. Inspection of the latter graph shows that the observations
in a certain year tend to be more similar to the observation of the previous year
than to any other earlier observation.

The dependencies between the observations are also reflected in the fact that
the residuals of traditional linear regression model (equation 1.2.4) shown at the
bottom of Figure 1.2.2 are not independent of one another. Positive values of
the residuals in Figure 1.2.2 tend to be followed by further positive values, while
negative values tend to be followed by further negative values.

A useful diagnostic tool for investigating whether the residuals are independent
is called the correlogram. As will be explained in more detail in Section 3.2.1.2,
the correlogram is a graph depicting the correlations between the residuals and
the same residuals shifted k time points into the future. These correlations are
therefore called autocorrelations.

The correlogram containing the first eight autocorrelations of the traditional
linear regression residuals in Figure 1.2.2 takes on the form shown in Figure
1.2.3. The two horizontal lines in the correlogram are the 95% confidence limits
+2/y/n = +2/y/34 = +0.343 . If residuals are independently distributed then all
autocorrelations in the correlogram are close to zero, and do not exceed the
confidence limits. The dependence in the traditional linear regression residuals
is therefore confirmed by the fact that three of the eight autocorrelations in the
correlogram in Figure 1.2.3 significantly deviate from zero.
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Figure 1.2.2: Log of fatalities in Norway plotted as a time series including regression
line (top), and residuals of traditional linear regression analysis (bottom).
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Figure 1.2.3: Correlogram of residuals of traditional linear regression of the log of the
Norwegian fatalities on time.
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Generally, when the first order residual autocorrelation is positive and
significantly deviates from zero, a positive residual tends to be followed by one
or more further positive residuals, and a negative residual tends to be followed
by one or more further negative residuals. As pointed out in the literature (e.g.,
Ostrom, 1990; van Belle, 2002), the error variance for standard statistical tests
is seriously underestimated in this case. This in turn leads to a large
overestimation of the F- or t-ratio, and therefore to overly optimistic conclusions
about the linear relation between the dependent variable and time.

Note that this is exactly what is found to be the case in the traditional linear
regression analysis of the log of the Norwegian fatalities series discussed
above: the first autocorrelation in the correlogram of the residuals is positive
and significantly deviates from zero (see Figure 1.2.3), and positive residuals
tend to be followed by one or more further positive residuals, while negative
residuals tend to be followed by one or more further negative residuals (see
Figure 1.2.2). All this implies that the value of -11.43 for the t-test is seriously
flawed, and probably much too large.

The problem of dependencies between the residuals in the traditional linear

regression analysis of time series data can be solved as follows:

1. additional predictor variables can be added to the regression of the
dependent variable on time such that the dependencies are removed from
the residuals;

2. the dependent variable can be analysed with (dedicated) time series
analysis techniques like ARMA-type, DRAG and state space models.

To give an example in this introductory chapter, we illustrate how the time
dependencies between the observations are dealt with in state space methods
(Harvey, 1989; Durbin and Koopman, 2001). In state space methods it is
assumed that the development over time of the system under study is
determined by an unobserved number of components which are collectively
called the state, and with which are associated a series of observations y, ...,
¥n. The relation between the state and the observations is specified by the state
space model. The purpose of time series analysis by state space methods is to
infer the relevant properties of the state given a series of observations ys, ..., V.
State space methods handle the dependencies between the observations
constituting a time series by absorbing them directly into the model. This again
is achieved by allowing the intercept and/or the regression coefficient -that are
constants in traditional linear regression- to vary over time.

The dependencies in the log of the Norwegian fatalities series, for example, can

be handled by allowing the intercept in model (1.2.4) to vary over time, as
follows:

Vi =a;+bx;+ey, & ~ NID(0,52) (1.2.5a)

a1 =2 +&;, & ~ NID(0,%) (1.2.5b)
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where t= 1, ..., n, and nis the number of observations. The second equation in
(1.2.5b) allows the intercept (i.e., the level) to change from time point to time
point. Moreover, in this equation dependencies in the observed time series are
dealt with by letting the intercept at time t+1 be a direct function of the intercept
at time t. Therefore, it takes into account that the observed value of the series at
time point t+1 is usually more similar to the observed value of the time series at
time point tthan to other previous values in the series.

Applying model (1.2.5) to the log of the Norwegian fatalities series, we find

A

Y+ =a; -0.019860 x;,

for t =1, ..., n, with variances o2 =0.00367357 and of =0.0035908 . The

values of y, are plotted at the top of Figure 1.2.4, while the values of the

residuals &; obtained with model (1.2.5) are graphed at the bottom of Figure
1.2.4.

The first eight autocorrelations of the residuals in Figure 1.2.4 are shown in the
correlogram in Figure 1.2.5 (see again Section 3.2.1.2 for the exact definition of
the correlogram). None of these autocorrelations exceed the 95% limits of
+0.343. In contrast with traditional linear regression, this indicates that the
residuals of the state space analysis are independent of one another, and that
the value of the t-test can now therefore be trusted.

In this case, the standard ttest for establishing whether the regression
coefficient b = -0.019860 deviates from zero yields

,_ -0.019860 _

=——————=-1.87.
0.0106358
Since the value of the latter t-test is associated with a p-value of 0.071, the
relation between the Norwegian fatalities and time is no longer significant at the
conventional 5% level. Moreover, since the values of the regression coefficient
obtained with traditional linear regression and with state space analysis are
virtually identical, the large difference between the values of the two t-tests can
be almost completely attributed to the large differences in their standard errors:
0.0017356 for traditional regression versus 0.0106358 for time series analysis.
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Figure 1.2.4: Correlogram of residuals of traditional linear regression of the log of the
Norwegian fatalities on time.
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Figure 1.2.5: Correlogram of the residuals of state space analysis of the log of the
Norwegian fatalities.

See Durbin and Koopman (2001, Section 6.2.4) for details on how to calculate
the denominator of the t-statistic.
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Generally, time series analysis can serve three purposes. First, time series
analysis can be used to obtain an adequate description of the time series at
hand, as we have illustrated for the log of the Norwegian fatalities series.
Second, explanatory variables other than time can be added to the model in
order to obtain explanations for the development in the time series at hand. In
SafetyNet, these explanatory variables are national exposure data (as collected
in WP2), national safety performance indicators (as collected in WP3), and
national road traffic safety measures. A third important application of time series
analysis is the ability to predict or forecast further developments of a series into
the (unknown) future. In traffic safety research, such forecasts can be used to
assess whether future national safety targets are likely to be met, for example.

Summarising, when dealing with observations made sequentially through time,
statistical tests based on standard techniques like traditional linear regression
easily result in overoptimistic or even plain incorrect conclusions, due to the fact
that the residuals obtained with these techniques usually do not satisfy the
model assumptions. This is true irrespective of whether the interest lies in
descriptive analysis, in explanatory analysis, or in forecasting.

Dedicated time series analysis techniques, on the other hand, explicitly take the
time dependencies between the observations into account, thus greatly
improving the chances of obtaining residuals that do satisfy the model
assumptions, and allowing to reliably test whether the estimated relationships
between dependent and independent variables in the analysis are statistically
meaningful or not. This is not only true for the state space methods illustrated in
the present section, but also applies to other dedicated time series techniques
like ARIMA (see Section 3.4) and DRAG models (Section 3.5).

Since many data collected in the SafetyNet project consist of observations
made sequentially through time, it is essential that the relations between
developments in accident data, exposure data, and safety performance
indicators in the EU are investigated with dedicated time series analysis
techniques.

In the report the following data sets are used to illustrate the results of their

analysis with time series models:

- the monthly number of Austrian fatal accidents from January 1987 through
December 2004 (Section 3.2.1);

- the monthly number of people killed and seriously injured in road traffic in
Greece from January 1998 through December 2003, excluding the cities of
Athens and Thessalonica, together with the monthly number of breath
alcohol controls and the monthly number of vehicles in circulation for the
same period of time (Section 3.2.2);

- the annual number of fatalities, vehicles and population from 1970 through
2002 for seventeen member states of the European Union (Section 3.2.3);

- the annual number of Norwegian road traffic fatalities for the years 1970
through 2003 (Sections 1.2.2, 3.4.3, 3.6.1, 3.6.6, and 3.7);
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- the monthly number of French road traffic fatalities from January 1975
through December 2001, together with gasoline and diesel sales, car fuel
price, a few weather variables, and three intervention variables: two for
presidential amnesties concerning fines, and one for the so-called Cellier
incident (a young woman killed by a drunk driver resulting in a lot of media
attention); the monthly number of injury accidents and fatalities on French A-
level roads and motorways in the same time period are also considered
(Section 3.4.5);

- the annual number of Finnish road traffic fatalities for the years 1970 through
2003 (Sections 3.6.2 and 3.6.6);

the monthly number of drivers killed and seriously injured in the UK from

January 1969 through December 1984, together with the monthly price of petrol

in the UK and the monthly number of vehicle kilometers driven by cars for the

same period of time, and an intervention variable for the introduction of the

seatbelt law in February 1983 in the UK (Sections 3.4.4, 3.6.3, 3.6.4, 3.6.5,

3.6.6 and 3.7).



1.3 Overview

In this introductory chapter, it has been demonstrated that in traffic-safety
research data often form hierarchies (nested data) or time series. It has been
demonstrated how the analysis of such complex designs with traditional
techniques can lead to erroneous conclusions and two families of analysis
technigues were presented that are able to properly represent the
dependencies in these complex data structures.

As mentioned above, the independence of the errors is not the only assumption
that traditional regression analyses are based on. It is often stated however,
that it is the most important one in terms of potential consequences of its
violation. Note that this can only be regarded as a very general rule of thumb.
Violations of the other assumptions (see above for a general introduction and
3.2.1.2 for details) may also lead to serious, sometimes even more serious
consequences. Nevertheless, examples of the dire consequences of ignoring
dependence are sufficiently frequent to make it a reasonable rule of thumb.

It is also important to note that the potential (combinations of) violations of the
assumptions are abundant, any combination of dependency and distribution
may occur. General classes of violations can be treated by available statistical
techniques (in the software packages). With respect to the Gaussian
assumption, the generalised linear models approach (McCullagh & Nelder,
1989), which is commonly available in statistical software, allows to treat a class
of Non-Gaussian distributions, that includes the Poisson and negative binomial
distribution among others, but it does not cover all potential distributions (see
2.3.1 and 3.2). Extensions to hierarchical models of the generalised linear
models are available and are discussed in section 2.3. Extensions to time series
models are currently under development. Although in practice, one might
sometimes have to develop a completely new approach, the most important
now implemented approaches are discussed in this best practice advice.

Next to variables that do not follow the Gaussian distribution one also often
encounters problems that involve multiple dependent variables. There are a
multitude of techniques dedicated to this type of data, which to describe is
clearly beyond the scope of the present document that is focused on the
treatment of dependency. Multivariate methods are addressed only to the extent
that they are straight forward extensions of the multilevel models presented
(2.4, 2.5, and 2.6).

To conclude, this best practice advice is focussed on the treatment of
dependency in complex data structures and therefore introduces multilevel
models for the analysis of nested data and time series analysis. These
guidelines encompass two deliverables. The present document, Deliverable 7.4,
gives theoretical back-ground and details for the two families of analyses
sketched in this introduction. Deliverable 7.5, the manual, is developed in
parallel with the present document. It contains practical guidelines for the
conduction of the analyses that are introduced in this deliverable. It gives an
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overview of the software available at the time of writing as well as examples of
their actual implementation in exemplary chosen software.

The present document is organized in two main chapters, focussing on
multilevel modelling and time series analysis respectively. This separation is
based on the general difference between the data structure for multilevel
modelling and time series analyses. Typically, multilevel analyses are applied to
data from many units of measurements (e.g. drivers, cars, counties, etc.) with
one or relatively few observations per unit. In contrast, time series data are
usually applied to data from one or relatively few units of measurement
(regions, countries, etc) with many observations per unit repeated through time.
Because of this general difference, the deliverable is structured in one chapter
treating multilevel modelling (Chapter 2) and one treating time series analysis
(Chapter 3). For researchers who want to analyse hierarchically structured data
it should be enough to read the parts concerning multilevel analyses, while
researchers interested in the analysis of time series data can restrict
themselves to reading the parts dedicated to time series analyses. Within the
chapters, however, information does build up across sections.

In Chapter 2, the general principles of multilevel modelling are at first described
in an intuitive way along the lines of a simplified example (Section 2.1).
Subsequently, detailed descriptions are given for multilevel versions of analyses
that are commonly used in traffic research. As presented in Figure 1.3.1, the
sections are structured according to the type of dependent variable. In Section
2.2 the multilevel version of linear regression models for normally distributed
data are presented. In Section 2.3, this special case is placed in the broader
framework of the generalised linear model approach, which allows to model
data resulting from different types of distributions (Section 2.3.1). Under this
framework models for discrete data will be presented. More specifically, in
Section 2.3.2 it will be described how binary responses can be modelled in
multilevel logistic regression analyses. In Section 2.3.3 the analysis two types of
models are presented for the analysis of multinomial responses: the ordered
proportional odds analysis and an unordered multinomial model. In Section
2.3.4 it is demonstrated how count data can be modelled in multilevel Poisson
regression analyses. Further it will be shown how multilevel modelling can be
applied to analyse datasets containing repeated measurements in Section 2.4
and multivariate responses in Section 2.5. Finally, the application of the
multilevel approach to structural equation models will be discussed in Section
2.6. In Section 2.7 modelling data structures that are not strictly hierarchical will
be addressed. In particular modelling cross-classifications and/or multiple
memberships will be addressed. In Section 2.8 recently developed estimation
based on Bayesian modelling will be addressed. The chapter on multilevel
modelling is closed with conclusions (Section 2.9) containing a summary of the
methods presented and some general recommendations for the analysis of
hierarchical data structures. The structure of Chapter 2 is presented in Figure
1.3.1
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Chapter 3 begins with a short introduction to a few core issues in time series
analysis (3.1). Section 3.2 describes traditional regression analyses models
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(linear: 3.2.1, generalised linear model: 3.2.2 and non-linear models in 3.2.3)
discussing possible violations of the assumption when dealing with time series
data and the possibility to solve these problems by adding predictors variables
such that the dependencies are removed. An introduction to dedicated time
series analysis techniques and their application in road-safety research is
presented in Section 3.3. In Sections 3.4 to 3.6 models dedicated to time series
analyses are presented. The ARMA-type and DRAG approaches are discussed
in Sections 3.4 and 3.5, while the state space methods are presented in Section
3.6. In Section 3.7, the equivalence of ARMA-type and state space models is
demonstrated on the basis of a few examples. The chapter on time series is
closed with conclusions (Section 3.8) containing a summary of the methods
presented and some general recommendations for the analysis time series. The
structure of Chapter 3 is presented in Figure 1.3.2.

Chapters 2 and 3 each present a number of analysis models for either nested
data or time series that are relevant to traffic safety research. A standardized
discussion format was adhered to when scrutinizing each model to maintain a
certain consistency throughout this deliverable. Furthermore, theoretical
considerations with respect to model building, testing and interpreting are
explained by applying them to a real dataset. Therefore, special attention is
given to each of the following aspects of a particular model:

Objectives of the technique
Model definition

Model assumptions
Research example + dataset
Model fit and diagnostics
Model interpretation

This standardized format should give the reader a good insight how a particular
model is applied, for what sort of data it is suitable and how the results can be
interpreted. For each chapter there will also be references for a more in-depth
treatment of the method presented.

Throughout the remainder of the document readers are expected to master
ordinary regression analysis. Given the different levels of complexity of the
models described in the various chapters, the readers’ need to depend on
earlier acquired information or on extra background material will vary. For the
later multilevel chapters it is good to be familiar with the corresponding single
level models (more specifically, binomial model, Poisson model, structural
equation modelling, etc.). Similarly, references for readers who are interested in
the background and different versions of the ARMA-type models, state space
models, or non-linear time series analysis will be supplied.



Chapter 2 - Multilevel Modelling

In the introductory chapter it has been shown that many research problems in
the area of road-safety contain hierarchical data structures and how this
challenges the use and interpretation of traditional analysis. In the following
sections it will be demonstrated in detail how the problems sketched in the
introduction can be solved by the application of multilevel models. To
understand the structure of Chapter 2 the reader has to keep in mind that
multilevel modelling is not one type of analysis. It does not even denote one
class of analyses; rather it is a technique that has to be applied to traditional
statistical analysis of different types. In the last decennium, the problem of
hierarchical data structures for traditional analyses’ has been widely recognised
and as a consequence the multi-level approach has now been implemented in a
wide range of techniques of analyses (Kreft and de Leeuw 2002). Structurally
identical models are also know as mixed effects or random effects models (e.g.,
Bates & Pinheiro, 1995) or as random coefficient regression models (e.g.,
Longford, 1993)

In Section 2.1, the general principles of multilevel modelling are at first
described in an intuitive way along the lines of a simplified example.
Subsequently, detailed descriptions will be given for multilevel versions of
analyses that are commonly used in traffic research. Sections 2.2 and 2.3 are
dedicated to describing multilevel regression models in more detail. In Section
2.2 the multilevel version of linear regression models for normally distributed
data are presented, while in Section 2.3, the analysis of discrete response data
will be described. The introduction to this section (2.3.1) places the special case
of linear models into the broader framework of the General Linear Model
approach, which allows to model data resulting from different types of
distributions. Under this framework models for discrete data will be presented.
Specifically, in Section 2.3.2 it will be described how binary and binomial data
can be modelled in multilevel logistic regression analyses, in Section 2.3.3 how
multilevel models can be used to model multinomial responses in either ordered
or unordered category models and in Section 2.3.4 it is demonstrated how
count data can be modelled in multilevel Poisson regression analyses.

Hierarchical data structures can also arise due to the structure of the variables
that are analysed. A dataset with multiple dependent variables has several
measurements that are nested under one person. These data structures can
therefore be modelled with multilevel models. We will show how multilevel
modelling can be applied to the analysis of datasets containing longitudinal data
and other types of repeated measurements in Section 2.4 and to the analysis of
multivariate responses in Section 2.5. In both cases, just like in the case of the
multinomial responses, multilevel modelling is used to represent the structure of
the responses themselves and not (at least not in the first place) that of a
hierarchical structure from which the data are collected. Finally, in Section 2.6 a
multilevel version of structural equation models will be presented. In Section 2.7
modelling data structures that are not strictly hierarchical because they contain

" Here and in the following, the term “traditional analyses” denotes analyses in which the
random part is not structured — neither hierarchically nor in time.
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cross-classifications and/or multiple memberships will be addressed and in
Section 2.8 recently developed estimation methods, in particular Bayesian
estimation methods are presented. This document on multilevel modelling will
be closed with conclusions (Section 2.9) containing a summary of the methods
presented and some general recommendations for the analysis of hierarchical
data structures.

In each section, a standardised discussion format was adhered to, to discuss
each model (objectives of the technique, model definition, model assumptions,
introduction of a research example and dataset, model fit and diagnostics,
model interpretation).



2.1 An intuitive introduction to multilevel modelling®
(Ward Vanlaar, IBSR)

To appreciate the basic concepts of the multilevel approach, we first work with a
two-level model with drivers at level 1 nested in road sites at level 2 and two
variables measured on a continuous scale. The example in this section is an
artificial example as an illustration for teaching purposes. Each driver’'s speed is
measured along with some other variables when passing by the road site. The
dependent variable in this artificial example is speed, measured in km/h and the
independent variable is length of the car, measured in metres and centred
about its mean. The underlying hypothesis is that longer vehicles will correlate
with higher speeds because a longer vehicle has a more powerful engine. Note
that this hypothesis is rather naively formulated for the sake of clarity in this
artificial example and that it does not necessarily bear real social relevance.

In a multilevel model distributional assumptions are made at each level of the
model, in this case at level 1 — drivers — and at level 2 — road sites. The
distributional assumptions at the lower level are assumptions about the variation
between drivers; this is comparable to the distributional assumptions in the
traditional regression model. The distributional assumptions at the higher level
are assumptions about the variation between road sites. Road sites too are now
allowed to vary and this variation is summarized in a distribution. For example,
road sites can have different intercepts and slopes and they are assumed to be
normally distributed around the overall intercept and slope. These distributions
at higher levels are called higher-level distributions. Figures 2.1.1a - f (after
Jones, 1993) give a range of possible models and the higher-level distributions
for the corresponding slope and intercept. These higher-level distributions are
the result of the existence of several intercepts and slopes at level 2,
corresponding to road sites. Put another way, instead of one regression line
with one intercept and slope, there are several regression lines, one per road
site, each with their corresponding intercept and slope. The slopes measure the
increase in speed associated with a unit increase in length for each road site.
Since the vertical axis in these graphs is centred at the mean of length, the
intercepts correspond to the speed of a car of average length per road site. In
figure 1a the speed/length relation is shown as a straight line with a positive
slope; longer cars drive faster. In this graph no account is taken of context;
place — i.e. road site — does not matter for the speed of drivers and the
relationship is conceived only in terms of individual characteristics. This is
remedied in 1b with each of the different road sites (seven in this figure) having
its own speed/length relation represented by a separate line. These parallel
lines imply that, while the speed/length relation on each road site is the same,
some road sites have uniformly higher speeds than others, which is easily
explained by the existence of different speed limits. The lowest line could for
example represent a road site with a speed limit of 30km/h, while the upper line
could represent a road site with a speed limit of 120km/h.

® In this section the same format appears as in Jones (1993). Dr. Kelvin Jones kindly gave his
permission to use this format.
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Figures 2.1.1a to f: Higher level distributions for road sites’ intercepts and slopes —
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variable length centred about its mean (centre); scatter plot of the joint intercepts and
slopes distributions, with the variable length centred about its mean (right hand side).
Adapted from Jones, 1993, p. 251




2.1 Intuitive introduction

The situation becomes more complicated in 2.1.1c to 2.1.1f as the steepness of
the lines varies from road site to road site, i.e. each line, representing a road
site, has a different slope, while in 2.1.1b only the intercepts of the lines
differed. In 2.1.1c the pattern is such that road site makes very little difference
for small cars, but road sites have very different speeds for longer cars. An
explanation could be that the maximum speed of small cars is so low that they
can only reach the lowest speed limit of 30km/h, e.g., if the car fleet of a town
would be composed exclusively of small electronic cars, while long powerful
cars can easily reach higher speeds leading to a more diverse speed pattern
depending on the different existing speed limits at road sites. In contrast, figure
2.1.1d shows relatively large road site-specific differentials for small cars. A
possible explanation could perhaps be found in the attitude of drivers of
powerful cars: those drivers tend to speed regardless of the speed limit and
therefore their speed distribution over different locations has a very small range,
while drivers of smaller cars are more conscientious and tend to respect the
speed limits resulting in a broad range of speeds. Note again that these
possible explanations are only given for didactical reasons; they don’t
necessarily reflect a relevant or true idea.

The next graph, 2.1.1e, with its criss-crossing, represents a complex interaction
between length and road site. Steep lines, indicating strong relationships
between the dependent and independent variable, can both be seen at road
sites with a high speed limit and with a low speed limit. At some road sites small
cars have relatively high speeds, in others long cars have. An explanation could
probably be found in other road site-specific characteristics besides the speed
limit. Finally, plot 2.1.1f shows that small cars drive with the same speed,
regardless of the road site, while the speed of powerful long cars differs
according to the road site. This pattern is similar to 2.1.1c, but this time this
difference is achieved by some road sites having a high speed for long cars,
while at other road sites long cars drive at a lower speed than small cars. An
explanation could be the architecture of the roads in combination with the
attitude of car owners. Car owners of long powerful — and thus exclusive and
expensive cars — will treat their car with a lot of care. Such drivers will take
speed bumps in a low speed regime very prudently and therefore perhaps even
drive slower than the maximum limit. Car owners of small cars could be less
considerate about their car and thus take speed bumps at a more appropriate
speed.

“The differing patterns of Figure [2.1.1] are achieved by varying the slopes and
intercepts of the lines. [...] The key feature of multilevel models is that they
specify the potentially different intercepts and slopes for each road site as
coming from a distribution at a high level” (Jones, 1993, p. 250). Figure 2.1.1
also shows the higher-level distributions for the slope and intercept that
correspond to the different graphs. A separate dot plot for the distributions of
the slopes and intercepts and a scatter plot of the joint distribution can be found
in the centre part and the part at the right hand side of Figure 2.1.1. These
distributions concern road sites, not individuals, and result from treating road
sites as a sample drawn from a population of road sites. “It can be seen that:
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Figure 1a is the result of a single non-zero intercept and slope; Figure 2.1.1b
has a set of intercepts, but a single slope; Figures 2.1.1c-2.1.1f have sets of
intercepts and slopes” (Jones, 1993, p. 251).

“The different forms of Figures [2.1.1]c to f are a result of how the intercepts and
slopes are associated” (Jones, 1993, p. 252). In Figure 2.1.1c the speed/length
relation is strongest at road sites where the average speed is high (as indicated
by a greater intercept); a steep slope is therefore associated with a high
intercept, meaning there is positive association between the intercepts and
slopes, as shown on the right hand side of the figure. In contrast, in Figure
2.1.1d road sites where the average speed is high have a weak speed/length
relationship: a high intercept is associated with a shallow slope. Consequently,
there is a negative association between the slopes and the intercepts. “The
complex criss-crossing of Figure 2.1.1e is the result of the lack of pattern
between the intercepts and slopes” (Jones, 1993, p. 252) shown in the graph at
the right hand side of Figure 2.1.1e. The average speed at a particular road site
contains no information about the marginal increase in speed with length of cars
at that road site. The distinctive feature of the final plot in Figure 2.1.1f, results
from the slopes varying about zero so that at the “typical” road site there is no
relation between speed and length; at some road sites the slope is positive and
at others it is negative.



2.2 Multilevel linear regression models

In this section, graphs will be turned into equations shifting from an intuitive
approach to a more formal, mathematical approach. For the ease of
understanding, multilevel models will be presented for linear models.

2.2.1 Basic two level random intercept and random slope
models®

Ward Vanlaar (IBSR)

The basic principles of 2-level models will be illustrated on the basis of the
assessment of the relationship between the length of cars and their speed
described in the introduction.

2.2.1.1. Objectives of the technique

The objectives of this technique correspond to the objectives of ordinary
regression analysis, but in addition to that, there is also the objective of taking
contextual information into account by letting the intercept and slope vary
across road sites. According to Tacq (1997), the four objectives of traditional
linear regression analysis are:

e To look for a function, which represents the linear association between the
independent variables and the dependent variable better than any other
function. This comes down to calculating a regression coefficient for each
independent variable.

e To examine the strength of the relationship and to know which share of the
variance of the dependent variable is explained by the variances of the
independent variables together. This comes down to the calculation of the
multiple correlation coefficient R and its square. While the concept of
explained variance is well-known in traditional regression analysis, it is
problematic in multilevel models according to Snijders and Bosker (1999).

e To investigate whether the associations found in the sample can be
generalized to the population. This corresponds to performing significance
tests.

e To examine which independent variable is most important in the explanation
of the dependent variable, corresponding to calculation of the beta weights.

2.2.1.2. Model definition

2.2.1.2.1. The random intercept model

According to Jones (1993, P. 252) all statistical equations have in essence the
same underlying structure, which can be expressed verbally as:

® In this section the same format appears as in Jones (1993). Dr. Kelvin Jones kindly gave his
permission to use this format.
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RESPONSE = SYSTEMATIC + FLUCTUATIONS
COMPONENT

Or

RESPONSE = FIXED + RANDOM PARAMETERS
PARAMETERS

In the case of a single-level bivariate model, i.e. the usual simple regression
model (cf. figure 1a), the general verbal equation becomes:

Yi = ﬁo + ﬂl'xil +e; (2.2.1)
where

e subscript i signifies an individual respondent;

e y and x measure the dependent and independent variables, namely the
speed and length of a car;

e j, and g, are fixed and unchanging parameters, namely the intercept and
the slope; the former, when x is centred about its mean, represents the
speed of a car of average length; the latter is the change in speed for an
increase in length with one metre;

e e signifies the random part which allows for fluctuations around the fixed
part, where the term random simply means “allowed to vary”.

This equation is specified only at the micro-level of the individual. To build a
multilevel model the micro-model has to be re-specified by distinguishing road
sites with the subscript j. For the random intercept model (cf. figure 2.1.1b) this
yields:

Vi =By, + Bixy; +e; (2.2.2a)
There is one macro-model at the road site level:

By; = By +uy, (2.2.2b)

This macro-model allows for the differential road site intercept ( 5, ;) to vary from

road site to road site around the overall intercept ( 5,) by adding the random
term u,;.

The micro model is seen as a within-road site equation, while the macro model
is a between-road site equation in which the parameter of the within model is
the response (Jones, 1993). Both equations are combined to form the random
two-level model:

Yy = By + ﬁlxu; + (”0_;' + e,;;) (2.2.2c)



2.2 Linear regression models

All the elaborations have come in the random part, because in addition to
allowing individual cars to vary, road sites have been allowed to vary in having a
differential speed for a car of average length. Such models in which the
intercept is the only term allowed to vary at level two are commonly referred to
as “variance components models” (Rasbash, Steele, Browne, & Prosser.,
2004).

2.2.1.2.2. The random intercept/random slope model

The formulas look as follows if the slope is also allowed to vary from road site to
road site in addition to a random intercept (cf. figures 2.1.1c-f). The micro
model:

Vi = Boj + Byxy ey (2.2.33)

and the two macro-models at the road site level:
By = By +uy, (2.2.3b)
B =P +uy; (2.2.3¢c)

These two macro-models allow respectively for the differential road site
intercept (5,,) to vary from road site to road site around the overall intercept

(B,) by adding the random component u,; and for the differential slope (5,;) to
vary around the overall slope ( 5,) by adding the random component u,; (Jones,
1993).

Again, the micro model is seen as a within-road site equation, while the macro
models are two between-road site equations in which the parameters of the
within model are the responses. Note that this is easy to see when using the
notation with e, as part of the micro model as opposed to the macro model

because then only the micro-model contains both subscripts i and j, referring to
a within situation, while the macro-models then only contain subscript j, referring
to a between situation. All three equations are combined to form the fully
random two-level model:

vy = By + Bixy; +(uljx1,.j +uy, +e,.j) (2.2.3d)

All the elaborations have come in the random part, because in addition to
allowing individual cars to vary, road sites are also allowed to vary in having a
differential speed for a car of average length, and a differential speed/length
relationship (Jones, 1993).

As with any other statistical distribution, and making the usual assumptions of
normality, homogeneity and independence, these higher-level distributions can
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be summarized by measures of the centre, the mean, and spread around the
centre, the variance. Relations between the slope and intercept distributions
can be summarized by a measure of covariance. “Thus, the higher-level
distributions can be summarized in terms of the fixed part (the means g, and

) and the random part (the variances o, and o, , and the covariance o, )’
(Jones, 1993, p. 253).

Table 2.2.1 (after Jones, 1993) summarizes Figure 2.1.1 in terms of these
parameters. Estimates of these terms effectively summarize the extent to which
places differ. The various combinations of substantial and close-to-zero
estimates for the variance/covariance tell us in a quantitative manner the way in
which context matters. The case of Figure 1f is interesting in this regard,
because it suggests that the usual single-level model would find that across the
sample there is no relation between speed and length, but the multilevel model
would reveal differing relationships at different road sites. If all the variance
terms of the higher-level distributions are effectively zero, there is no
contextuality and thus there is no need for macro models. These variations in
speed are adequately described in terms of a micro model based solely on
individual attributes (cf. Figure 2.1.1a).

Intercepts Slope Intercept/slope

Mean Variance Mean Variance Covariance

Graph By oo By o, Oy,
A + 0 + 0 /
B + + + 0 /
C + + + + +
D + + + + -
E + + + + 0
F + + 0 + +

Table 2.2.1: Figure 2.1.1 represented as parameters for two higher-level distributions
(where + is positive, different from zero and where — is negative, different from zero)

2.2.1.3. Heteroscedasticity

Multilevel models share with many traditional models the assumption that the
residuals at each level are homoscedastic, i.e., have constant variance and
covariances, and do not depend on the particular values of the explanatory
variable(s) included in the model. This assumption is partially relaxed, however,
once random slopes are specified in the model: Variances at one or both levels
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are assumed to depend linearly or quadratically on one or more of the
explanatory variable(s)'.

The following reasoning, borrowed from Snijders and Bosker (1999), and
applied to our speed example, illustrates this feature of multilevel models. In
case of a fanning-in pattern (see figure 2.1.1d) a random slope for the effect of
car length on speed would indicate that road sites affect the speed of small cars
to a larger extent than the speed of large cars. This can be seen in figure 2.1.1d
as the lines representing the different road sites are farther away from one
another at the lower values on the X-axis and closer to one another at the
higher values on the X-axis. So at lower values on the X-axis (i.e. for small cars)
there is much more variation in speed between road sites, compared to higher
values on the X-axis (i.e. for large cars). In other words, if you drive a small car,
which road site you are at will matter a lot and may influence your speed
considerably, while road site does not matter if you drive a large car. This
means that road sites add a large component of variance to the speed of small
cars, but little or nothing to the speed of large cars. Therefore, the intra-class
correlation for small cars (also known as the Variance Partition Coefficient
(VPC)), defined as the proportion of the total residual variation that is due to
differences between groups (Goldstein, 2003), will be higher than the intra-class
correlation for large cars. This implies that, once random slopes are specified in
a model, the intra-class correlation or VPC cannot be uniquely defined any
longer because this residual variation (due to differences between groups; road
sites in our case) will vary as a function of the explanatory variable’s values
(small or large cars in this example).

2.2.1.4. Model assumptions

“As all statistical models, the hierarchical linear model is based on a number of
assumptions. If these assumptions are not satisfied, the procedures for
estimating and testing coefficients can be invalid. [...] It is advisable, when
analysing multilevel data, to devote some energy to checks of the assumptions.
(Snijders & Bosker, 1999, p. 120)” Before investigating checks of the
assumptions in the next section, the assumptions themselves are listed below
(Snijders & Bosker, 1999; Rasbash et al., 2004):

eOij~N(0,a§O), the level-one residuals are assumed to be Normally distributed,

with mean zero and constant variance o, ;
Uy ~N(0, ofo) and u, ~N(0,ajl ) the level-two random coefficients are assumed

to follow a multivariate Normal distribution with mean zero and constant
variance respectively o; and o ;

"% The reader is referred to Section 2.5 for a similar discussion of heteroscedasticity linked to the
introduction of random slopes in the model, and for a mathematical description of the implication
of random slopes in the definition of the observations’ variance and covariances.
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Random coefficients at level 1 (¢;) and at level 2 (o, , 0, ) are assumed to be
uncorrelated;

yij:N(XB,Q), the response variable is assumed to be Normally distributed,

where XB is the fixed part of the model and Q represents the variances and
covariances of the random terms over all the levels of the data.

2.2.1.5. Research problem

As explained in the previous section the basic two level model will be explained
using an artificial example about the influence of length of a car on the speed of
that car. The underlying hypothesis, formulated for teaching purposes only, is
that longer vehicles will correlate with higher speed as a longer vehicle has a
more powerful engine.

2.2.1.6. Dataset

The dataset used consists of a sample of n=4994 drivers (of cars and
motorbikes) passing by m=131 road sites out of a real dataset, which was
collected in Belgium for epidemiological purposes. Each driver's speed is
measured as a continuous variable in km/h along with some other variables
when passing by the road site, the most important being the independent
continuous variable length of the car, measured in metres and centred about its
mean.

2.2.1.7. Model fit and diagnostics

2.2.1.7.1. The variance partition coefficient (VPC)

The VPC is the proportion of the total residual variation that is due to
differences between groups (Goldstein, 2003), more precisely between road
sites in our example. It is also referred to as the intra-class correlation (Snijders
& Bosker, 1999), which measures the extent to which the y-values of individuals
in the same group resemble each other as compared to those from individuals
in different groups''. However, the former interpretation is the more usual one
(Rasbash, 2004). The VPC is denoted by:

0“0
iy (2.2.4)

Uy €o

In our example the VPC for the random intercept model with length as
explanatory variable is 0.749, meaning that almost 75% of the variation is due
to differences between road sites. This is a strong indication that clustering

"' As it has been noted earlier, the VPC cannot be uniquely defined once random slopes are
included in the model. Snijders & Bosker (1999) propose alternative solutions to partition the
observations’ variance between the different level of analysis for models including random
slopes.
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effects are not to be disregarded in this dataset and that a multilevel approach
is preferable.

2.2.1.7.2. Deviance test

“The deviance test, or likelihood ratio test, is a quite general principle for
statistical testing. [...] The general principle is as follows. When parameters of a
statistical model are estimated by the maximum likelihood (ML) method the
estimation also provides the likelihood, which can be transformed into the
deviance defined as minus twice the natural logarithm of the likelihood. This
deviance can be regarded as a measure of lack of fit between model and data,
but (in most statistical models) one cannot interpret the values of deviance
directly, but only differences in deviance values for several models fitted to the
same data.” (Snijders & Bosker, p. 88).

The deviance can thus be used to make an overall comparison of a more
complex model with a less complex one, e.g., for the comparison of the model
containing only the constant term with the model with length as an explanatory
variable. The difference between minus twice the natural logarithm of the
likelihood (-2xloglikelihood, see Tables 2.2.2. to 2.2.4) of both models follows a
chi-square distribution with the number of degrees of freedom equal to the
difference in the number of parameters being estimated in both models. This
chi-square value can be tested against the null hypothesis that the extra
parameters have population values of zero (Rasbash et al., 2001).

First, the simplest model of all is fitted, i.e. the model in which the intercept is
specified as random at level 2, and in which no explanatory variables are
included. For obvious reasons, such a model is referred to as the “null” or
“‘empty” model. The value of the deviance for this null model is 45262.130 (cf.
Table 2.2.2). Then, this empty model is extended by adding a fixed slope,
representing the effect of car length on speed. The deviance obtained in this
case corresponds to 45192.320. Both models can now be compared by
performing the deviance test. Subtracting the deviance value of the variance
component model with a fixed slope for car length (the “more complex model”)
from the deviance value of the empty model (the “less complex model) yields a
value of 69.81. One extra parameter is estimated in the more complex model.
Therefore the associated degree of freedom is 1. Testing this value as a chi-
square value of 69.81 with 1 degree of freedom against the null hypothesis
shows that this decrease is highly significant (p=0.000), indicating that the more
complex model is the better model. Put another way, the deviance decreased
after having elaborated the model, meaning the model fit improved.

The same conclusion can be drawn when shifting from the random intercept
model to the full random model. The decrease corresponds now to 290.82
(45192.32 minus 44901.50) with 2 degrees of freedom (two additional

parameters have been estimated, namely, Jfl and 630) . This yields a p-value of
0.000 and is thus highly significant.
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2.2.1.7.3. Residuals

Estimated residuals at any level can be used to check model assumptions
(Rasbash et al., 2004). The residuals at each level are assumed to follow
Normal distributions (see Section 2.2.1.4). At level 2, these residuals are
interpreted as group effects, i.e. road site effects, while at level 1, residuals are
in general interpreted as the individual error terms.
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Figure 2.2.1: Normal probability plot of residuals for the random intercept model with
speed and length, centered about its mean, at level 1 (left side) and 2 (right side)
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Figure 2.2.2.: Normal probability plot of residuals for the random intercept model with
the natural logarithm of speed and length, centered about its mean, at level 1 (left
side) and 2 (right side)

Parameter Null model Random intercept Full random
model model
Estimate (s.e)  Estimate (s.e.)  Estimate (s.e.)
Fixed

Intercept 68.69 (3.27) 68.88 (3.24) 68.95 (3.24)
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Length / 2.30 (0.28) 1.69 (0.47)
Random
Level 2
o, (intercept) 1358.94 (173.03) 1333.18 (169.37) 1334.85 (169.70)
o / / -15.51 (17.42)
(covariance)
o, (length) / / 12.82 (3.16)
Level 1
ol 452.70 (9.18) 446.48 (9.05) 412.75 (8.46)
-2xloglikelihood 45262.13 45192.32 44901.50

Table 2.2.2 Estimates for the null, variance components, and full random models, with
car length as a continuous explanatory variable

Clearly, the residuals in Figure 2.2.1 do not follow a normal distribution as their
normal probability plot does not correspond to a straight diagonal, meaning
those assumptions are violated. Therefore, care is warranted when estimating
and testing the regression coefficients of the model. A solution could be to
transform the dependent or independent variables, for example by calculating
their natural logarithm. Figure 2.2.2. contains normal probability plots for the log
transformed data. The situation at level 2 has improved as the level 2 residuals
seem to follow the Normal distribution more closely after having transformed the
data. However, the residuals at level 1 are still problematic. Model fit issues will
be studied more extensively in the following chapters when elaborating on the
different models.

2.2.1.8. Model interpretation

2.2.1.8.1. Random intercept model'?

The coefficients of the random intercept model are interpreted as follows: (see
Table 2.2.2) On average, over all road sites, the speed of a car with an average
length is 68.88km/h. Obviously, there is a lot of variation over road sites, due to
the different speed limits at road sites. This was revealed by the VPC.

For each increase of one length unit of a car, the speed of that car increases
with 2.30km/h. Put another way, there is a positive relationship between length
of a car and speed of that car.

The question now is whether this positive coefficient is significantly different
from zero. The answer can be found by comparing the value of the coefficient
with its standard error. In our case the standard error is 0.28. Clearly the

"2 Because they allow the calculation of the Variance Partition Coefficient, and thus the
partitioning of the variance of the observations between the two levels, random intercepts model
are also sometimes referred to as to “Variance Components Models”.
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coefficient is significant as it is much greater than twice the value of its standard
error.

2.2.1.8.2. Random intercept/random slope model

The main difference between the random intercept model and the full random
model (i.e. the random intercept/random slope model) is the random slope,

indicated by 2 extra parameters (o, , , 0'“2]) in the random part at level 2. A
deviance test comparing the -2 loglikelihood value of the random intercept

model to the one of the full random model clearly indicates that the inclusion of
these two parameters  significantly improved the model's fit

(x3 =255.37, p<.001).

Different road sites can now have different slopes besides different intercepts.
The variation between the different slopes is summarized by o; . There is a

significant difference between the slopes of the different road sites since the
value of the parameter (12.82) is greater than twice the value of its s.e. (3.16).

The average slope over all road sites is 1.69 (s.e.=0.47), meaning that a one
unit increase of length of a car results in an average increase of speed with
1.69km/h.
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Figure 2.2.3: Regression lines of speed against car length (centred) for the various
road sites
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Figure 2.2.4: Small (<4.3m) and long cars’ (>=4.3m) speed as a function of road sites

Note that the model also contains a value of the covariance between the

random level 2 parameter for the intercept (o ) and length (o, ). Its value

equals -15.51 with a standard error of 17.42. Although this value clearly is not
significant, its negative sign indicates a fanning in pattern (see figure 2.1.1d and
Figure 2.2.3). In other words, a greater intercept corresponds to a smaller slope.
The pattern is more easily discerned on figure 1d than on the graph based on
our dataset. A possible explanation may be the attitude of drivers of powerful
cars differs: those drivers tend to speed regardless of the speed limit and
therefore their speed distribution over different locations has a very small range,
while drivers of smaller cars are more conscientious and tend to respect the
speed limits resulting in a broad range of speeds.

2.2.1.9. Extending the model

So far a bivariate two-level model with continuous variables on level 1 has been
considered. Two important extensions of this model will now be discussed. First
a model with a categorical explanatory variable will be studied. Second, higher
level explanatory variables and contextual effects will be considered

2.2.1.9.1. Categorical explanatory variables

According to Jones (1993), level 1 categorical explanatory variables present no
special problems and multilevel models can be specified in which some or all of
the explanatory variables consist of categories. A random intercept/random
slope model with an independent variable with two categories is achieved by
specifying a micro-model with two dummy variables (having a value 0 or 1). In
our example the continuous independent variable length could for example be
divided in two categories: small cars and long cars. The micro-model looks as
follows:

T |

-
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Parameter Null model Random intercept Full random

model model
Estimate (s.e.) Estimate (s.e.) Estimate (s.e.)
Fixed
Intercept 68.69 (3.27) 65.03 (3.28) 65.01 (3.48)
>4.3 meter / 4.97 (0.76) 5.11 (1.33)
Random
Level 2
oj“ (intercept) 1358.94 (173.03) 1333.86 (169.48) 1472.44 (195.63)
T g / /  -132.28 (55.11)
(covariance)
o, (length) / / 99.286 (24.49)
Level 1
o 452.70 (9.18) 448.92 (9.104) 418.31 (8.57)
-2xloglikelihood 45262.13 45218.96 44963.59

Table 2.2.3: Estimates for the null, variance components, and full random models, with
car length as a categorical explanatory variable

Yi =B+ Bixy tey (2.2.52)
and additionally two macro-models:

By =By tuy, (2.2.5b)

Iglj =4 +uy; (2.2.5¢)

If the reference category is small cars (<4.3 meters) and the dummy variable x
represents long cars (>4.3 meters), this model allows cars of different length at
different road sites to have different speeds (cf. Figure 2.2.4). The solid lines in
the figure represent the overall general relationship indicating that smaller cars,
on average, drive slower than longer cars. However, at road site 5 a pattern is
discerned that differs from the overall general relationship, more precisely, at
that site, on average, long cars drive slower than small cars.

Table 2.2.3 contains the estimates of the null model, the random intercept
model and the full random model. According to the random intercept model
drivers of long cars (>4.3 meters) drive on average 4.97 km per hour faster than
drivers of small cars (<4.3 meters). This variable is significant, which can be
derived from its standard error (the value of the coefficient is greater than twice
the value of the standard error). The variation of the intercept is also significant
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for the same reason (1333.86>2x169.48). Furthermore, there is a significant
decrease in -2loglikelihood when shifting from the null model to the random
intercept model (deviance: 45262.13-45218.96=43.17; degrees of freedom=1;
p=0.000).

The full random model allows for the difference in speed between small and
long cars to vary from road site to road site. On average, there is an increase in
speed of 5.11km/h for long cars compared to small cars. This value is
significant (s.e.=1.33). The variance of the intercept, of the slope and of the
covariance between intercept and slope are all three significant. The negative
sign of the covariance indicates again that greater intercepts correspond to
smaller slopes. A possible explanation of this pattern was given in a previous
section.

2.2.1.9.2. Contextual effects

Another type of extension is to include higher-level variables in the model.
Higher-level variables are also referred to as aggregate or ecological variables
(Snijders & Bosker, 1999). They describe the higher-level structures in the
dataset. This is achieved by including such variables in the relevant macro-
models (Jones, 1993). For example, if road site average speed is thought to be
affected by traffic count at that road site (C), the random intercept macro model
of equation (2.2.2b) can be re-specified to include an extra term, as in:

By =By +a,C; +uy, (2.2.6a)

This could for example mean that the average speed at a road site would
decrease with increasing traffic count at that road site.

Similarly, the slope terms can also be related to traffic count at a road site.

By =B +a.C; +u (2.2.6b)

This could for example be explained as follows. At road sites with a low traffic
count the real relationship between length and speed is revealed and consists
of a strong association between both variables in that a unit increase in length
corresponds to a high increase in speed. At road sites with a high traffic count
the real relationship is hidden because there is no free flow of traffic; cars are
obstructed by one another and therefore a unit increase in length only
corresponds to a small increase in speed.

This formulation results in the introduction of an interaction term (the product of
x and C) in the combined model. This was defined in the introduction as a
cross-level interaction term: interactions between variables measured at
different levels in hierarchically structured data (Kreft and de Leeuw, 2002):

y; = By + Bx; +a,C, +a,Cx,; + (ul/_xli/_ +uy; +e,.j) (2.2.6c)
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Context (level 2

Context (level 2
variable)

Parameter Null model variable)
Main effect Qross |eye|
interaction
Estimate (s.e.) Estimate (s.e.) Estimate (s.e.)
Fixed
Intercept 68.69 (3.27) 59.49 (3.50) 59.48 (3.51)
Length / 1.65 (0.47) 1.68 (0.60)
>100 / 33.17 (6.51) 33.22 (6.53)
>100xlength / / -0.08 (0.97)
Random
Level 2

2

o, (intercept) 1358.94 (173.03) 1107.59 (141.57) 1107.33 (141.56)

6””7‘ / -15.65 (15.87) -15.59 (15.86)
(covariance)
o, (length) / 12.85 (3.15) 12.87 (3.15)
Level 1
oo 452.70 (9.18) 412.75 (8.46) 412.75 (8.46)

-2xloglikelihood 45262.13 44877.82 44877.82

Table 2.2.4: Estimates for the null model and the models including contextual effects

Table 2.2.4 contains the results of the null model and of two additional models
with a level-2 variable. This level-2 variable is a dummy variable with the value
0 representing those road sites where less than 100 cars passed by during
observation, while the value 1 was given to those road sites where more than
100 cars passed by during observation. The former is the reference category.

The first model with the main effect of the dummy variable only calculates the
influence of traffic count on the average speed at a road site. The second model
includes an interaction term between traffic count and length of cars. It shows
how the relationship between length and speed changes according to the value
of traffic count.

The coefficient of the level-2 variable in the main effect model is 33.17, meaning
the average speed of cars at a road site with a traffic count of at least 100 cars
increases with 33.17km/h on average compared to road sites where traffic
count is below the threshold value of 100. This coefficient is significant
(s.e.=6.51). Traffic count somehow reflects the speed regime: higher traffic
count corresponds to higher speed regimes, which makes sense because roads
that have higher speed regimes are typically busier roads with a higher traffic
count. The random parameters show the same pattern as the previous models
discussed before: there is a fanning in pattern, although the covariance is not
significant. Finally there is significant reduction in the -2xloglikelihood-value: it
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drops from 45262.13 to 44877.82 with a difference of 4 degrees of freedom
yielding a p-value of 0.000.

Although the coefficient of the interaction term in the third model clearly is not
significant, it is interesting from a conceptual point of view to interpret it anyway.
It shows that the relationship between length and speed differs according to
different values of traffic count. More precisely, for road sites with a traffic count
of at least 100 cars, the slope is reduced with 0.08. Put another way, on road
sites with a low traffic count the speed increases with 1.68km/h for each unit
increase in length of cars, while the speed only increases with 1.60km/h per unit
increase in length of cars for road sites with high traffic count. This confirms the
previously formulated hypothesis that the real relationship between length and
speed may be hidden because of a high traffic count. This coefficient, however,
is not significant, hence this third model is not a better one than the main effect
model according to the deviance test.
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2.2.2 Three level models and more
(Emmanuelle Dupont and Heike Martensen, IBSR)

Section 2.2.1 introduced the “simplest” multilevel model, namely the 2-level
model. The present section will show that the same statistical principles apply
when the structure of the data at hand contains more than 2 levels. For the
ease of comparison with Section 2.2, the same research example and data set
will be used here. The relationship between the length of cars and their speed
will thus be further assessed, but this time taking account of a presence of a
third level in the data hierarchy, namely: the Belgian provinces from which the
level-2 units (the road sites) have been selected.

2.2.2.1. Objectives of the technique

The objectives underlying the modelling of data structures with three levels and
more are in all points similar to those of 2-level models. The reader is thus
referred to Section 2.2 for more information on this topic.

2.2.2.2. Model definition

2.2.2.2.1. The random intercept model:

A first step to take in examining how the 3-level structure affects the relationship
between car length and speed would consist of fitting a random intercept model,
defining the effect of car length as fixed. The dependent variable “speed” will
now be noted “Y, " to indicate the speed of car “i" within road site “j" within

province “K”:
Y = PBo +:B1x1,-jk tey (2.2.7a)
There are now two equations defining the intercept term “/4, . “ one at the

second - and the other at the third - level of the data structure. At level 2, the
intercept is defined as:

ﬁOjk = P Uy (2.2.7b)

“B,.” represents the average intercept in level-3 unit “k”, and is itself defined by
the following equation:

Bow = By +Vr (2.2.7c)

The complete model for Y,, is thus:

Y =B, +:31x1ijk T Vo Flhoj t ey (2.2.70)
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This model describes speed as being a function of an average speed value (the
fixed coefficient for the intercept, or 5,), of the fixed effect of car length (5,x,;, ),

and of 3 random deviations from the average intercept value: deviations that
occur at the province level (v, ), deviations at the road-site level (u,, ), and

deviations occurring within road-sites, between cars (e, ).

Section 2.2.1 already introduced the VPC, defining it as “the proportion of total
residual variation that is due to differences between groups” and related it to the
intra-class correlation coefficient — or “the extent to which the y-values of
individuals in the same group resemble each other as compared to those from
individuals in different groups”.

It is nevertheless important to note that this is only in the limited context of a 2-
level random intercept model that the two constructs can be so equated
(Goldstein, 2003). In the case of 3-level models the two concepts turn out to be
close but different, because they actually refer to “two different aspects of the
data, which happen to coincide when there are only 2 levels” (Hox, 2002, p. 32).

To illustrate this distinction, the meaning of the VPC and of the intra-class
correlation as applied to the 3-level speed dataset must be examined. As it is
defined, the VPC corresponds to the ratio of a single level’'s variation to the total
variation. By applying this principle to partition the total variance, the level-2
variance is clearly separated from the level-3 one. The formulas to be used to
calculate the variance at level 2 (2.2.8a) and level 3 (2.2.8b) are straightforward
extensions of the ones given in Section 2.2.1:

2

GH
P (2.2.8a)
fev2 0'30 +0’ +0°

ug e

2

O-v
plev3 = 2 ; 2 (228b)
o, +0, +0,

Matters are different, however, when the intra-class correlation coefficient must
be estimated. As a reminder, this coefficient corresponds to the expected
correlation between two elements randomly selected within the same higher-
level unit (2 or 3). When the model comprises 3 levels, account must be taken
of the fact that two level-1 units in the same level-2 one also are de facto
included in the same level-3 unit (2 speed values recorded at the same road
sites were also inevitably recorded in the same province!). Calculating the intra-
class correlation at level 2 thus requires that variance components at both level
2 and 3 variance components be included in the numerator:

Thus, while for level 3 the same formula (formula 2.2.4b) will be used for the
calculation of the VPC and of the intra-class correlation, the intra-class
correlation at level 2 will be estimated by 2.2.8c:
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2

e (2.2.8¢c)
o, to, +0,

Uy

o, +0
plevZ =

2.2.2.2.2. The random intercept and slope model:

The full random model - or a model in which the slope for the effect of car length
on speed is specified as being random at level 2 and 3 — would then be defined
in the following way:

Yijk :ﬁOjk +ﬂljkxijk +e,‘jk (2293)
ﬂljk =P+ Uy (2.2.9b)
ﬁoj'k = P +uy (2.2.9¢)

By =B +v, (2.2.9d)
Bow = By + v, (2.2.9e)
Yy = B, +ﬁ1xijk TVor TUeu VX T U X T €4 (2.2.9)

The 3-level model now defines the total variation in the speed of cars as the
result of 2 fixed factors (the average intercept and slope), and of 5 sources of
random variations. Both level-3 (provinces) and level-2 units (road sites) are
said to entail random departure in the cars’ speed from the “average speed
value” (the fixed intercept) and from the “average length-speed relationship”
(the fixed slope). The covariances between the random intercepts and slopes at
each level are also part of the model, which raises up to 7 the number of
random parameters to be estimated.

Of course, it is by no means compulsory that the effect of any level-1
explanatory variable added to the model were defined as random at both level 2
and 3. A given effect can be declared random at level 3 without being so at level
2, and the other way around. Explanatory variables at either level 2 or 3 can be
included in the model, and level-2 explanatory variables can themselves be
defined as random at level 3.

2.2.2.3. Model assumptions

The random coefficients at level 2, 3, or higher are all considered representative
of distributions of individual effects in the population. These parameter
distributions themselves are assumed to be normal, with means 0 and

variances o¢°,,,0%,,0%,,0%, for the intercepts and slopes, respectively. At
level 2, this implies:



2.2 Linear regression models

uoj 0 O-zu(, O-uou
~N|| |, ! (2.2.10a)
Ml . 0 (o2 1 qu .
0\(o o
1% Vo vov
( ""j ~ N ( j ! J (2.2.10b)
Vik 0 O, o,

The level-1 residuals (¢;), are in turn assumed to be normally distributed with

And, at level 3:

mean 0 and variance o’ (&; ~N(0,0%)), and to be independent from one
another.

Finally, the level-2 residuals are assumed to be independent over j (i.e.: across
the level-2 units, or road sites), the level-3 coefficients are assumed to be
independent over k (the level-3 units, or provinces). The residuals at all levels
(1, 2, and 3) are assumed to be independent from each other.

2.2.2.4. Research problem

The research problem and the dataset used in this section are identical to those
used in Section 2.2.1. Taking account of the full structure of this “length-speed
dataset”, attempt will be made at determining whether the different Belgian
provinces from which the road sites were sampled can be considered to: (1)
contribute to the variation of the speed of cars, (2) affect the relationship
between car length and speed. Again, it is important to stress that this empirical
question was chosen more on the basis of didactical than of theoretical
objectives.

2.2.2.5. Dataset

As a reminder, the speed data were collected in Belgium, and consist of a
sample of n = 4994 drivers passing by m = 131 road sites. These road sites
were themselves selected among 11 provinces.

2.2.2.6. Model fit and diagnostic

With the exception of the Variance Partition Coefficient (VPC), all tools available
for diagnostics and for assessing the fit of the model are identical to those
outlined with respect to the basic 2-level model. The reader is thus referred to
Section 2.2 for a description of deviance tests and tests of single parameters.

The two-level variance-components model that was fitted in Section 2.2.1.8.1
provided indications that a substantial part of the total variation of speed was
attributable to the second level of the data hierarchy (road sites). Having now
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included the third level — “province” — in the model, this level's contribution to
the variation of cars speed can also be assessed. One could, for example,
imagine that the average speed is generally lower in some provinces than in
others.

Random Length random at Length random at
Parameter intercept model level 2 only levels 2 and 3
Estimate (s.e.) Estimate (s.e.) Estimate (s.e.)
Fixed
Intercept 74.47 (5.33) 74.49 (5.30) 74.51 (5.34)
Length 2.28 (0.28) 1.68 (0.47) 1.64 (0.59)
Random
Level 3

o’ (intercept)

Vo

218.01 (132.89)

213.11 (131.59)

219.14 (133.93)

T, (covariance) / / -10.43 (14.37)
o2 (length) / / 1.31 (1.60)
Level 2

o, (intercept) 990.13 (132.62)

995.89 (133.41)  994.40 (133.26)

0, (covariance) / - 12 (15.43) - 11.55 (15.30)

o, (length) / 12.761(3.12) 11.64 (3.12)
Level 1

2

Te, 446.47 (9.051) 412.74 (8.46) 412.74 (8.46)

-2xloglikelihood 45167.92 44877.42 44876.820
2 _ . 2 _ . 2 _ . —
Deviance test Ve _24.4,p1<3 22= 3373, p < = 06; p = .74,
.000"® .000 n.s.

Table 2.2.5: Estimates for the 3-level models: variance components, random slope for
car length at level 2, and full random model

Table 2.2.5 summarises the results of the different steps of the 3-level model
specification. The deviance test comparing the log-likelihood values associated
with the 2-level variance component model (-2 loglikelihood = 4519232, see
Section 2.2.1.7.2) and the one associated with the 3-level model reveals a
significant improvement in the model’s fit (7} = 24.4; p < .000). Nevertheless,
the variance of the random intercept at level 3 is not in itself significant (see
Table 2.2.5). The results are thus rather ambiguous with respect to the
necessity of including the province level in the model.

Deciding whether the inclusion of an additional level in a model is empirically
justified is eased by the estimation of the amount of variation in the
observations at this level. Substituting the level 2 and level 3 variance estimates

'3 This deviance test compares the log-likelihood value of the current 3-level random intercept
model with the one of the 2-level random intercept model fitted in Section 2.2.
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presented in Table 2.2.5 into formulas 2.2.8a and 2.2.8b reveals that 60% of the
variation in the speed of vehicles is attributable to the second level (road sites),
while 13% only are accounted for by the third level (provinces). Clearly, the
amount of variation in cars’ speed that is “located” at the third level is far less
important than the observations’ variance at level 2. The calculation of the intra-
class correlation coefficient at each level (formulas 2.2.8c and 2.2.8b for level 2
and 3, respectively) indicates that, should 2 observations be randomly selected
from the same level-2 unit, a correlation of about 0.73 between them would be
expected. The expected correlation between 2 observations randomly selected
from the same level-3 unit is 0.13, a considerably lower value. Both the VPC
and the intra-class correlation thus converge to suggest that the dependency
among data is much stronger at level 2 than at level 3 (and that more variation
in Y is accounted for by level 2 than by level 3). However, the intra-class
coefficient value observed at level 3 is not negligible.™

The above results did not offer stronger indication of the necessity to take
account of the province level when modelling the effect of car length on speed.
Defining this effect as random at level 2 yielded highly similar conclusions in the
context of the present three level model than when the model comprised two
levels only. However, the third model, in which the effect of car length was
defined as random at both level 2 and 3 was not associated with any significant
fit improvement. The estimates for the random effects at level 3 are not
significant.

2.2.2.7. Model interpretation

Adding the province level to the model resulted in a significant improvement of
the model’'s fit, although not dramatic. Including this level also resulted in a
decrease of the random variation of the intercept at level 2 (o7, ). This is in line

with previous observations indicating that the random variation associated with
levels that are present in a given data hierarchy, yet omitted from a model is
“added” to the residual variation associated with the levels that are specified in
the model (Moerbeek, 2004). Imagining, for example, that the random variation
in speed records associated with the third level of the data hierarchy would
have been very important but that this level had not been explicitly included in
the model, then the failure to specify this third level would have resulted in the
associated variance “summing” up to the level 2 and level 1 residual variation.
These two would have looked more important than what they actually are,
simply as the result of a model misspecification.

Compared to level 2, however, our third level cannot be said to contribute much
to the variation of the criterion variable. This level does introduce some
dependency in the observations, although to a far lower extent than level 2

' As a reference : An intra-class correlation of about 0.01 is considered small, while 0.20 is
considered a large value (see Kreft & De Leeuw, 1999 for a more detailed discussion of this
topic and of the relation between the size of the intra-class coefficient and the standard errors of
the estimated parameters).
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does. Including the third level in our model of car speed entailed almost no
change in the estimation of the parameters as compared to when the 2 level
model was fitted. This suggests that “omitting” this level from the model does
not result in serious model misspecification.

The 3 level model fitted here can of course be extended, for example through
the inclusion of explanatory variables at level-3. In Section 2.2.1, the analysis of
the cross level interaction between “traffic count” (an explanatory variable at
level-2) and “car length” (at level 1) was described. Although this interactive
effect was not significant, the associated coefficient was interpreted there for
the purpose of illustration: This coefficient was negative, suggesting that the
speed-length relationship was lower at road-sites with less important traffic
flows (i.e.: with low traffic count). In the framework of the present 3-level model,
the length-traffic count interaction term could itself be defined as random at
level 3. The finding of a significant random slope would indicate that the
variation of the effect of length on speed depends on traffic count and besides
varies (randomly) between provinces. How should the level-3 covariance
between this random slope for the interaction effect and the random intercept
be interpreted? - A negative covariance would indicate that the traffic count-by-
car-length interactive effect is weaker for provinces that are characterised by
higher average speed values. In other words, the higher the province’s average
speed, the more homogeneous the effect of length — or the less affected it
would be by the different traffic count values associated with each road sites.

These hypothetical considerations make it clear that models with three levels
and more offer the same possibilities as their 2-level counterparts, but that
these possibilities are multiplied by the number of levels under analysis. One
should bear in mind, however, that this comes at the cost of parsimony, on the
one hand, and of ease of interpretation, on the other. The example of the cross
level (1 and 2) interaction made random at level 3 illustrates the fact that
multiple level models can quickly become “difficult to follow from a conceptual
point of view” (Hox, 2002, p. 30).

The number of parameters to be estimated increases in a multiplicative way
along with the number of levels included in the model: The simple definition of
an effect as being random at both level 2 and 3 implies the estimation of 7
parameters. Defining the effect of another explanatory variable at level-1 as
being random at level 2 will involve the estimation of 3 additional parameters
(the fixed effect, random slope, and random intercept and slope covariance);
raising the total number of parameters to ten. Further specifying this additional
parameters’ effect as being random at level 3 as well amounts to estimating 2
parameters more (the random slope and intercept-slope covariance at level 3),
and so on...

Independently of increasing the difficulty of interpretations, estimating important
number of parameters also augment the risk of encountering estimation
problems (algorithms failing to converge...). Caution is thus required when
fitting models with 3-levels and more. It is usually recommended that the
definition of effects at the various levels be grounded on sound theoretical
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reasons, or empirical evidence, rather than on mere exploratory attempts (Hox,
2002; Snijders & Boskers, 1999; Kreft & De Leeuw, 2002).

" Transport
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2.3.1 Introduction

(Emmanuelle Dupont and Heike Martensen, IBSR)

Sections 2.3.2, 2.3.3, and 2.3.4 of this deliverable respectively focus on the
multilevel analysis of three different types of discrete data, namely: dichotomous
responses, counts, and multinomial responses. The aim of this introductory
section is to provide the reader with useful preliminaries that will allow him/her
to apprehend the general framework of the multilevel analysis of discrete data
analysis, i.e., the Multilevel Generalised Linear Model (MGLM). This
introduction starts with a reminder of the structure underlying the familiar linear
model and describes the main properties of discrete response variables. On this
basis, the risks associated with the straightforward application of the linear
model to discrete response variables are illustrated, and the solution provided
by the Generalised Linear Model is outlined. The general principles underlying
the multilevel generalised linear model are then defined.

2.3.1.1. Reminder: The linear model

Response = Systematic component + Random component
yi= n; + &
“‘How does response vary with “What kind of distribution do
covariates /predictors/explanatory data follow?”
variables?”
k
2
The linear 1, =B, + B x, +...+ B.x;, =P, +Z yiNN(ni’o- )
model: J= £~ N(O,O'Z)
k L \
E(y) =2 B;x; =, Var(y,) = Var Z'Bjxij T
j=0 ,

j=0

Table 2.3.1: The linear model and related assumptions

As it is already mentioned in Section 2.2, any statistical model defines a
response variable (y,,i=1,...,n) as the result of a systematic and of a random
component. The systematic component of the model describes how the
response varies with explanatory variables or predictors (x,,h=1,...,r). This
component is the one that defines the expected value of the response variable.
The generic term used to refer to the systematic component and, by extension,
to the expected value isn,. The random component of the model defines the
variation of the observations that the model cannot explain. It defines the
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distribution that the observations and the residual follow (Mc. Cullogh & Searle,
2001).

When the particular model adopted is the linear one, two main assumptions are
associated with the definition of the observations that the systematic and the
random components respectively provide: (a) the expected value for each
observation corresponds to a linear combination of unknown parameters,
considered constants, and (b) the data come from a normal distribution with

mean 7, and variance o (McCulloch & Searle, 2001).

2.3.1.1.1. Properties of discrete variables

Discrete response variables often happen to be the focus of road safety
research. Attempts at modelling the probability of occurrence of given events -
such as the survival of vehicle occupants after a crash, or the infringements that
drivers commit - are common. Count data, such as the number of accidents
occurring within a given time frame, are also regularly encountered as response
variables. As can be seen by comparing the features of the normal distribution
to those of the discrete distributions listed in Table 2.3.2, there are two general
properties of discrete data that prevent a straightforward application of the linear
model. The first is these data’s restricted ranges, the second is that they have
related mean and variance.

Binary outcomes correspond to data that can take two values only: “1” (usually
defined as “success”, such as the survival of car drivers following a crash) or “0”
(usually defined as “failure”, such as the dead of car drivers following a crash).
The number of successes in m samples can be described by a stochastic
variable which is binomially distributed, with parameters ¢ and m. Now assume
that in several regions the number of crashes and the number of dead drivers
resulting from these crashes within a certain period are known. Then the
number of drivers that survived a crash in region i, denoted by y,, is binomially

distributed with parameters ¢, and m,, where ¢, is the probability that a driver
survives a crash in region i and m, is the number of crashes in region i. Then
E(y,)=m,¢,and Var(y,) =m,@,(1-¢,).

Count data are to be conceived of as the number of events occurring during an
interval of time having length m,, or within an area having size m,. They also

have restricted range in the sense that they can only take positive values. When
the counted occurrences are rare,'® such data can be considered to follow the
Poisson distribution. In several cases, the events being counted are actually the
outcomes of discrete trials, and would more precisely be modeled using the
binomial distribution. However, the binomial distribution with parameters »n and
A/n, i.e., the probability distribution of the number of successes in n trials, with

'%i.e., when there are less than 10 cases of the counted event within the time period or the area
considered (m, ), according to Langford & Day, 2001.
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probability A/nof success on each trial, approaches the Poisson distribution
with expected value A as n approaches infinity. When the occurrence
assessed is frequent, the binomial distribution is more appropriate. The Poisson
distribution is characterized by the “exposure” term, m, and by the event rate
A.. This distribution has a variance equal to the expected value, namely the

mean, so that the two parameters are related, as was also the case for binary
data.

Distribution of the response Sampling model
variable: (Raudenbusch & Bryk, 2001)
Normal: y, ~NID(,,0°)
E(y)=u
Var (y,) = o’
Bernouilli and Binomial y, ~B(m,,9,)
E(y)=mo,
Var(yl.) = mi¢i(1_¢i)
Poisson y, ~P(m,,A)
E(y,) = miﬂ’i
Var(y,) =mA,
Multinomial responses
P E(y,)=no,

Var(y,)=neg, (1-9,)
COV(ym7 y,;l) = _n¢m¢)h

Table 2.3.2: Sampling models for normal, binary/binomial, counts and multinomial
responses .

The term “multinomial responses” refers to categorical data, or to responses
that can take one of a few number of values. Assume that Y is a random
variable which can take its value in M categories and let ¢, be the probability
that Y is in category m. If there are n observations of the random variable Y
and y, is the number of observations in category m, then Y is multinomially

distributed with parameters M, ¢,,...,9,,.



2.3 Discrete response models

2.3.1.1.2. Applying linear models to discrete data

Given the particular properties of discrete observations, and the assumptions
made by the linear model, two main problems would result from a
straightforward application of a linear model to discrete data.

First, the response variable being defined as a linear function of some
explanatory variables or predictors, the fitted values generated on the basis of
the model's systematic component are likely to lie outside the actual range of
the observations. What would be modelled in this case would be something that
conceptually differs from the observations (values outside the 0-1 range cannot
be considered as probabilities). The distribution specified by the model would
neither correspond to the actual distribution of the observations, nor to the
residual distribution.

Second, the relation existing between the expected value and the variance of
discrete observations implies that, once predictors are included in the model,
the variance of the error term is not homoscedastic any more (i.e., is not
constant and depends on the particular values taken by the predictor(s))'®.

Similar problems are encountered if the response variable consists of non-
normal data (and not of well-defined discrete distributions such as the Poisson
or Binomial ones). One solution could be to apply an appropriate transformation
to these observations, then submit them to a “standard” linear analysis. Such an
approach has been — and still is — common practice in data analysis. Although it
remains useful and appropriate in particular circumstances (such as in the
exploration phase of data analysis), it offers no certainty that the application of
linear methods to the transformed data will allow safe inference. First,
transformation of data may not be an option at all: One can wonder, for
example, which transformation could ever make dichotomous data resemble a
normal distribution (Hox, 2002). Second, transforming the observed response
offers no guarantee that the error distribution will be normally distributed, an
essential condition to be met when applying linear models (Hox, ibid). As it will
be explained in the next section, the generalised linear model is a far more
advanced technique than transformation, in the sense that it includes “the
necessary transformation and the choice of the appropriate error distribution
(...) explicitly in the statistical model” (Hox, 2002, p. 104).

2.3.1.2. The generalised linear model (GLM)

The Generalised Linear Model is more than a particular statistical technique that
conveniently allows overcoming the problems posed by discrete and/or non-
normal data. It must be conceived as a broad class of statistical models, in
which the linear model itself is encompassed.

'® In a model fitting binary responses, for example, the residual can take only
two values : “1- (B, + B,x,)” and “ B, + B.x,,”
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The appropriateness of the GLM to analyse discrete data relates to the fact that
it “generalises” both the distributional assumptions made about the data, and
the systematic component defining the expectations.

With respect to the observed distribution, the GLM makes the general
assumption according to which the response variable has a probability
distribution that pertains to the “exponential family” (see Dobson, 1990 for a
formal definition). This family of distributions encompasses a large number of
probability distributions, both continuous and discrete. As a consequence, all
specific distributions pertaining to this broad class can be used in the GLM to
specify the distribution of the observations.

Distribution of the response Link function (Raudenbusch &
variable: Bryk, 2001)
Normal: - The identity link -
n,=H,
Bernouilli and Binomial - The logit link® -
77,‘ = log(LJ
1- %
Poisson - The log link -
7, =log(4,)
Multinomial responses - The logit link —

77]' =10g -
2

(with [ being the reference category)

Table 2.3.3: Examples of link functions used for normal, binary/binomial, counts and
multinomial responses.

The GLM also renders possible fitting “correct” predicted values. Indeed, the
usual linear component (the sum of predictors expected to affect the response)
is not directly equated to the expected values any more, but to some function of
them, called a link function. This transformed version of the original response
variable (probabilities, counts...) is not restricted in range (it can take values
outside 0 and 1, and positive and negative values). There exists some “inverse
function” on the basis of which these predicted values can be transformed back
into the “metric” of the units initially measured (i.e., probabilities, counts...).

The use of link functions to relate expected values to the predictors included in
the model thus prevents fitting “out-of-range” expected values. Various link
functions are available; the choice of the appropriate one depending on the
nature of the data that are to be modelled. Table 2.3.3 describes a number of
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link functions, which are used in Sections 2.3.2 to 2.3.4. As a point of reference,
Table 2.3.3 provides the link function corresponding to the normal distribution
(the “identity link”). Because the functions listed in this table equate the linear
component of the model to the natural parameter of the distribution at hand
(@, ,etc.), they are also termed canonical link functions. Other link functions are

available, however (see Dobson, 1990 for examples).

As many data in traffic safety are binary, the logit link for binomially distributed
data is the one that will mostly be used in next sections over discrete data
analysis. The logit link is defined as the logarithm of odds ratio. The odds ratio
themselves correspond to ratio of probabilities. As an example, the log of the
odds of survival following an accident amounts to the log of the ratio of the
probability to survive (¢, ) to the probability of dying (1-¢, ) as a consequence of

the i-th accident'”.

The link function included, the systematic component of the GLM for binomial or
binary data with two explanatory variables writes out:

n:= log(l—%J = By + Bixy+B,x,. (2.3.1)

This indicates that the predicted values fitted by means of the link function are
predicted log-odds. How should the coefficients for the different predictors

making up the linear component be interpreted? Predicted log-odds can be
converted to odds, by taking their exponential®.

exp(log(lf"(p D = L4 (the predicted odds-ratio) (2.3.2)

i

Since the exponential function is applied to the predicted values, it has to be
applied to the predictors making up the linear component of the model, in order
to obtain:

?
1- o,
The relation between the different predictors that was additive when the log-odd
function was applied is now multiplicative. Consequently, the coefficients for the

predictors must be interpreted as the multiplicative effect, associated with a
one-unit increase on x, (for coefficient B,), x, (for coefficient,) , etc, on the

odds-ratio.

:eﬂo Xeﬂlel Xeﬁzx[z (233)

The estimated values of the predictors can in turn be converted into predicted
probabilities using the formula:

" The binomial model is actually a special case of the multinomial model, for which the
numerator 1 — @, has to be replaced by the probability of a reference category ¢,.
'8 The exponential function is the inverse of the log function.
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~ 1 _ 1
= 1+CXp(— 77,) 1+CXp(— (ﬂo +ﬂl'xil +ﬂ2xi2 ))

(2.3.4)

2.3.1.3. The Multilevel Generalised Linear Model (MGLM)

The essential feature of a multilevel generalised linear model is the fact that the
individuals from which the data are received belong to groups and the groups
themselves are a random sample from a population of groups. In the linear

case, higher levels were accounted for by assigning the “j” subscript to the
systematic component - u, - allowing this parameter to vary randomly across

the higher-level units. The corresponding variance was then estimated. The
same principle applies in the framework of the multilevel generalised linear
model, to the difference that what will be declared to vary across higher-level
units are the transformed values of the parameters of the distribution at hand
(i.e., mp.; mA, and so on...) . For the sake of simplicity, the distribution

i

parameter will now be referred to as to “z”.

In a two-level generalized linear model, the expected value of the response y; -
provided by individual i in group j — is defined as being a probability, or a count,
or whatever the particular form taken by the observations. The model must
account for the particular type of distribution that these observations follow. In
the case of binomial responses, for example, the sampling model corresponding
to the observations would be;

y; = Bin(n,,7;) (2.3.5)

ij’

The expected value for the response y; is consequently defined as

E(y[j/ﬂ’-ij):nijﬂ.[j (2.3.6)

... and the variance as:

(-, 2.3.7
Var(y,j/ﬂ,j)z—ﬂ”( ) ( )

i

On this basis, the first level of the multilevel model is written as:

Yy =7%; + e[jzij (2.3.8a)
And,
w.(l—rm,
Z, = 7, A7) , 0le=1 (2.3.8b)
n

The two parameters in this model adequately reflect the distribution specified by
the sampling model (2.3.5). In this case, the data are assumed to follow the
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binomial distribution, hence the formula for Z;. For another distribution, Z;

would be defined in another way (variance functions for different types of
discrete responses are listed in Table 2.3.2). Note that o’e =1can be estimated
instead of being constrained to 1. This is a general device in GLMs that allows
testing whether the variance of the observations indeed follows the distribution
specified by the sampling model. This is achieved by estimating this parameter,
and examining whether the obtained value significantly differs from 1. In such a
case, it is recommended to keep on working with the estimated parameter to
perform the remainder of the analyses.

Depending on the type of observations, the mean response value - 7z, - is

ij
either a probability, a count, etc... With the adequate link function, it can be
expressed as a linear function of parameters:

T = f(By+ ﬁl'xlij) (2.3.9)

Higher-level effects can be incorporated in this linear combination of predictors
just as they were in the case of the linear models. Thus, the effect(s) of the
higher-level units is defined on the values of the level-1 units that are
transformed according to the link function used. So, in the case of the logit link
function:

Logit (7;) =y, +u,, (2.3.10)

It is important to note that although the variation of the residual variation at level
1 (2.3.8a) is defined as following a discrete distribution, the level 2 random

variation of transformed 7z, values (o’u,, for example) are expected to be
normally distributed..

2.3.1.3.1. The empty model

The empty model for the linear hierarchical model, defines a response variable
as a function of an average value, the intercept, which is specified to vary
randomly across the level-2 units. For the logit-link this gives:

Vi =%, +e;Z; (2.3.10a)
Logit (m;) =y, +u,, (2.3.10b)

where y, represents the average of logit (7z;) across groups and u,; the

deviation of the logit in group j from the population average logit (7,). These
deviations are assumed to be normally distributed, with mean 0 and variance
o, , just as this was the case with the linear multilevel model. The model does

not contain a parameter for the level-1 variance. This is because for discrete
responses the variance follows directly from the expected value as indicated in
Table 2.3.2.
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Using the inverse of the logit function, the logits can be reconverted into
probabilities.

Logit (7;) =y, +u,,
_ 1
I+exp(=(y, + uoj)

(2.3.10c)

i

The reader should however bear in mind that there is no direct relation between
population average of the logits (7,) and the population value of the discrete

variable itself (z,). The same is true for the level-2 variance (o, ) - which

concerns the variation of the logits and cannot directly be equated to the
variance of the discrete values z; themselves. Although in each case the

reconverted former value can be considered a proxy for the latter, they cannot
be considered equivalent, . This is so because the link between them (the logit
link) is a nonlinear one.

Another important difference between the linear and the GLM hierarchical
model concerns the level-1 residual. For discrete responses, the individual

w;(1-7;)
LA L)
i

Consequently, the residual variance in a MGLM model cannot be constant as it
is the case in linear models. In the MGLM, the groups will have different within-
group variances, because z; depends on u,. Given that 7, constrains the

value of Z,, this will lead to a different ¢,Z, value for each group.

residual variance e¢,Z; is a function of the mean z,(Z, =
n

2.3.1.3.2. The random intercept model

Generally speaking, the random intercept model differs from the empty model in
the sense that — besides specifying the intercept as being random — fixed
explanatory variables may also be included in the model.

Once explanatory variables enter the model, the expected value of the discrete
variable () cannot any more be considered as a sole function of the level-2

units. Indeed, if some of these predictors are characteristics of the lowest level
units (i.e. if they are level-1 predictors), the values fitted are likely to differ for all
individuals within the groups. Consequently, the expected discrete value must
now be denoted by the “ij” subscript, so that the model becomes:

Yy =7yt Ry (2.3.11a)

Logit () =¥y + D VyXyy +ty (2.3.11b)

h=1
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The log of the odds of 7, are now defined as being a function of a linear
combination of an average population value ( 7, ), of the effect of level-1 (and/or)

level-2 predictors (Z 7,%,;) and of a group-related random deviation u,, .
h=1

2.3.1.3.3. The random intercept-and-slope model:

The specification of a random intercept and slope MGLM poses no particular
additional difficulty, once the general multilevel structure in the GLM is made
clear. The model would then describe the expected value as being a nonlinear
function of predictors and random effects at higher level(s), and replace this
expected value in the framework of the sampling model that is appropriate for
the outcome variable. It can be written as:

Logit (70,) = Yo + D ¥y + 1y +1ty X, (2.3.12)

h=1

2.3.1.3.4. Over- or underdispersion

When fitting a (hierarchical) generalised linear model, the choice of the
distribution at level 1 is often dictated by the nature of the empirical data. For
example, Poisson regression analysis is commonly used to model count data,
while binary data are modelled under the binomial distribution. It is however
possible that the data do not exactly follow the assumed distribution. If the
observed level 1 variance is larger than the variance of the distribution
assumed, overdispersion has occurred. Conversely, underdispersion means
that there was less variation in the data than predicted.

Overdispersion often indicates heterogeneity in the sample. This can be due to
underspecification of the model in terms of predictor variables or in terms of
hierarchical levels (i.e., there is variation introduced in the observations by them
being clustered into higher levels, without this being specified in the model).
Although the parameter estimates are usually still correct, in the case of
overdispersion the variance is underestimated suggesting a higher confidence
in the estimates than is actually appropriate. The opposite is the case with
underdispersion. In both cases it is possible to generalise the model by
estimating a scalar variance component a. The variance originally specified by
the distribution has to be multiplied by this estimated factor in order to match the
observed variance (Raudenbush & Bryk, 2002). Estimating this scalar
component is actually a way to test for over- or underdispersion (see Sections
2.3.2and 2.3.4).

2.3.1.3.5. Estimation methods and tests of the parameters

Although the underlying general principle appears simple, fitting multilevel
GLMs can not yet be considered pure routine. This is related to the fact that
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“level-1 sampling for discrete models is not normal, while the higher-level model
involves multilevel normal assumptions poses a problem for conventional
estimation theory” (Raudenbush & Bryk, 2002, p. 352). Without entering details
of estimation methods, it is important for the reader to be aware that most
current software — at the time of writing - can be considered to use approximate
methods. Three main approaches can be distinguished on this basis: The first
involve the computation of Maximum Likelihood values. This is the most
computationally intensive method, performed by some software (such as SAS).
The second involves the approximation of Maximum Likelihood values. This is
the approach followed in the analyses described in the present document. The
main consequence of using approximate likelihood value is that the estimated
likelihood values are not reliable any more, and cannot be used to perform the
usual Likelihood-Ratio Test (Leyland & Goldstein, 2001; Rasbash et al., 2004).
The third approach relies on the use of Bayesian estimation, such as the use of
Markov Chain Monte Carlo methods (see Section 2.1.8.4).

2.3.1.4. Conclusion

For the statistical analyses of discrete responses, the generalised linear model
(GLM) and its multilevel extension, the hierarchical GLM was introduced. This
introduction provides the theoretical background required for proceeding to
fitting the multilevel GLMs that are presented in the following sections. The clear
advantage of GLMs is their flexibility to model response variables of very
different types. The cost this comes with is an increased complexity, less
straightforward interpretation of the parameters and less reliable estimation
procedures. As noted above, matters are still evolving with respect to the
implementation of these methods on software. The reader interested in the use
of the MGLM is strongly recommended to read the Section 2.8 aver Bayesian
estimation methods.

In road-safety research many of the important response variables are non-linear
and therefore require the GLM approach. This will be demonstrated in the
following sections. In Section 2.3.2 and 2.3.3 data from a road-site survey with
respect to drink driving will be presented. In Section 2.3.2, this data will be
analysed as binary responses (driver has drunk or not) and in 2.3.3 as
multinomial responses (not drunk, moderately drunk, drunk). In both cases the
effect of the particular road-site at which measurement has taken place is
included as a second level in a hierarchical GLM. In Section 2.3.4, counts of
fatal accidents are modelled with a hierarchical GLM in order to detect regional
variation in the number of accidents and in the effect of law-enforcement
measures. It can be concluded that hierarchical GLM forms a tool that cannot
be missed in the analysis of road-safety data.



2.3.2 Binary and general binomial responses
(Ward Vanlaar, IBSR”)

Many variables observed in traffic research are binary variables with only two
possible values, rather than continuous variables. As an example we will
consider the results of a Belgian roadside survey in which drivers were stopped
at randomly selected road-sites. In addition to a number of explanatory control
variables, the blood alcohol concentration (BAC) was measured as well. Results
of this continuous variable were stored and analyzed according to a binary
format; zero indicates a BAC below the legal limit while one corresponds to a
BAC at or above the legal limit. Such a binary dependent variable can be
modelled using logistic regression analysis.

2.3.2.1. Objectives of the technique

As for other regression techniques, the objective is to look for an appropriate
function to model the relationship between a set of explanatory variables (this
set can consist of continuous variables, categorical variables or a mixture of
both types of variables) and the dependent variable. Specific to the logistic
regression analyses presented here is that the dependent variable is binary so
the responses can only take the values of 0 or 1.

The multilevel version of logistic regression presented here allows assigning the
observed variance to different hierarchical levels and investigating whether the
model that was found fits the data well. A proper multilevel representation
allows for reliably testing whether the relationships found in the data can be
generalized to the population.

2.3.2.2. Model definition

Models for binary data concern the probability 7z, that the observed variable
y, from person iin cluster j takes the value 1 (as opposed to 0). In our example

with BAC as an underlying continuous variable, the logistic model can be
construed as a threshold model (Snijders and Bosker, 1999). The threshold is
the legal limit; if BAC is equal to or greater than this threshold then the
dependent variable is one, if BAC is smaller than the threshold, then it is zero.
The model can then be written in terms of the underlying continuous variable y
— note that the asterix is used as a symbol to denote the underlying continuous
or latent variable, rather than the observed variable.

vi =By + Bixy; +e (2.3.13)

Where

' This section is mainly based on Vanlaar, 2005b.
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¢, ~logistic(0,7%/3), with mean zero and variance #°/3=329 (in this case
z does not denote a parameter but the number 3.141).

The advantage of constructing the model on the basis of an underlying
continuous variable is that the level 1 errors can be assumed to follow the
logistic distribution and therefore the error variance is known. More generally,
binary data are assumed to follow the binomial distribution, whether they are
derived from an underlying continuous variable (e.g., above/below average,
severely injured/slightly injured, passed /failed, etc.) or not (e.g. male/female,
yes/no, dead/alive, etc.). The model for logistic regression is based on this
distribution.

In order to analyse the probability 7z, that the observed variable y, takes the

value 1 (as opposed to 0) in the generalised linear model, a link function has to
be chosen. For a discussion of possible link functions e.g., logit, probit, or log-
log functions) see Snijders and Bosker (1999). In this document the most
popular link-function, the logit function, will be used, meaning the analyses that
are conducted, are multilevel logistic regression analyses.

A 2 level logistic variance components model for binary responses as an
equation for the probability 7, is (Rasbash et al., 2004, p. 111):

..

logit(rr; ) = logit1 =+ Pixy (2.3.14a)
—_ ﬂ.ij

By, =By +uy, (2.3.14b)

To interpret the relationship between the binary response and an explanatory
variable, logit coefficients were transformed into odds ratios using the
exponential transformation (see Rasbash et al. 2000 and Rasbash et al. 2004
for a detailed explanation). These odds ratios compare the odds for drink driving
of a certain category of a variable (for example the odds for drink driving for the
category “female” of the variable “gender”) to the reference category of that
variable (in this example the reference category is “male”).

Taking the exponentials of each side of (2.3.14a), we obtain:

7T ;i
- ;[ = exp( B,;) xexp( B,x;) (2.3.15a)
;

If we increase x by one unit, we obtain:

lf;: = exp( B,y;)xexp( B, (x; +1)) =exp( B,;)xexp( fB,x,)xexp(B,) (2.3.15b)

This is the expression in (2.3.15a), multiplied by exp(5,) (i.e., e”). Therefore
exp(f,) can be interpreted as the multiplicative effect on the odds for a 1-unit
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increase in x. If x is binary (like gender), then exp(f,)is interpreted as the odds
ratio, comparing the odds for units with x =1 relative to the odds for units with
x=0, i.e., the reference category. More generally, if x is categorical, then
exp(f,) is interpreted as the odds ratio, comparing the odds for units with a

value for x, different from 0 (1, 2, 3, etc. depending on how many categories
the categorical variable consists of) with x =0, i.e., the reference category.

2.3.2.3. Model assumptions

The model assumptions for the binomial model are listed below.

Uy ~N(0, ojo), the road-site-specific component of the intercept is assumed to be

normally distributed with mean zero and variance o, .

yij~Bin(1,fzij), the observed binary responses are assumed to follow the binomial
distribution with denominator 1, expected value 7, and variance z,(1- 7).

2.3.2.4. Research problem and Data set

In 2003 the Belgian Road Safety Institute organised the third national roadside
survey to estimate the proportion of drink drivers and their profile (Vanlaar, 2005
b). The objective of this initiative was to gather epidemiological data as a basis
to formulate theory- and research-based recommendations to policymakers with
the intention of decreasing the number of alcohol related accidents and victims
on Belgian roads. This roadside survey is repeated every two years to study
trends in drink driving.

According to the official statistics on police enforcement 6% of all tested drivers
were at or above the legal limit (BIVV, 2002). This result corresponds to the
results from the SARTRE survey (2004): 6% of fully licensed, active Belgian car
drivers report they may have been driving during 1 or more days in the past
week while over the legal limit for drinking and driving. The first percentage,
however, is based on a non-representative sample as a result of a selective
way of sampling drivers. Therefore, it is impossible to generalise this result to
the Belgian population of car drivers as a whole. The second percentage most
probably suffers from a bias due to social desirability.

The data presented here were gathered during a drink driving roadside survey
in 2003 according to a stratified two stage cluster sample. The first stage of the
roadside survey consisted of randomly selecting road sites (m=413) in each
region using a Geographical Information System (Arcview). The road sites are
also called primary sampling units (PSU’s). Once the sampling of road sites was
completed, each site was randomly linked to one out of four possible time spans
(weekday; weekday nights; weekend days; weekend nights). Therefore, the

T |

-
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sampling design is not only stratified in space (per region) but also in time. The
second stage of the roadside survey consisted of randomly stopping drivers
(n=11,186). Once stopped, they were asked by the police to perform an alcohol
breath test.

The outcome variable is a binary variable based on the blood alcohol
concentration (BAC) of each driver. For the purpose of the multilevel analysis it
has been recoded with 0 representing those drivers with a BAC below the legal
limit and 1 representing those drivers with a BAC at or above the legal limit.
Drivers at or above the legal limit are referred to as drink drivers.

The individual explanatory variables (level 1 explanatory variables) are Gender,
Age (a categorical variable consisting of the following age groups: 16-25, 26-39,
40-54, 55+), Previously (a binary variable distinguishing between drivers who
previously have been stopped and tested at a road site at least once and
drivers who have never been stopped and tested at a road site before) and
Probability (a categorical variable representing the driver's perception of the
probability of being tested for drink driving; drivers could answer: very low, low,
medium, high, very high).

The aggregated explanatory variables (level 2 explanatory variables) are Traffic
count (a continuous variable indicating the total number of vehicles driving by
the road site during the police check) and Intensity (a continuous variable
calculated by dividing the number of policemen per road site by traffic count for
that road site).

2.3.2.5. Model fit and diagnostics

A two-level binomial model was fit with drivers at level 1 and road sites (the
PSU’s) at level 2. To model the relationship between the binary response and
the set of explanatory variables, the logit function was used as a link function,
meaning a multilevel logistic regression was performed (Rice, 2001).

The results for the final model, containing all explanatory variables described in
the previous section, are presented in Table 2.3.4. Two versions were
estimated, a binomial model, in which the variance is constrained to be 1 and
an extra binomial model, which does not impose such a constraint. The final
model fits the data well, which can be derived from the level 1 variance
0,=0.712 in the extra binomial model, which is close to the theoretical value of

1 (restriction imposed by the binomial distribution). This means there is little
evidence that our model exhibits extra binomial variance, more precisely
underdispersion®® — the binomial distribution holds. As can be seen in Table
2.3.4, the strength and the direction of all relationships remain unchanged
between both models.

With threshold models the Variance Partition Coefficient (VPC), as defined in
Section 2.2.1.7.1, can be applied to the latent variable. “Since the logistic

distribution for the level one residual implies a variance of z*/3=3.29", the VPC

20 Underdispersion refers to the situation in which the total variance is less than 1; conversely,
overdispersion corresponds to a total variance, greater than 1.
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formula simplifies to p =0, /(o, + 7%/3) —witho, being the level 2 variance and

7z being the number 7z (Snijders and Bosker, 1999, p. 224). In our case the
VPC, while controlling for the explanatory variables, is 0.231. This means
23.1% of the total variance is level 2 variance, which justifies modelling the data
according to a multilevel structure.

2.3.2.6. Model interpretation

The influence of the independent variables on the outcome variable is
interpreted based on the exponential coefficients (i.e., odds ratios) of the
binomial model in Table 2.3.4, using the definition explained in the section on
model definition.

There is a significant (joint chi square test=10.464, df=1, p=0.001) negative
relationship between Traffic count and the odds of drink driving when controlling
for intensity of stopping drivers and for the other independent variables. For
each additional car at a road site the odds of drink driving are multiplied by a
factor of 0.998. This means that the odds of drink driving decrease by 0.2%, or,
per 100 extra cars on a site, the odds are multiplied by a factor of 0.819 (exp(-
0.002x100)), meaning that the odds of drink driving decrease by 18.1%.

One could argue that this relationship is of a spurious nature caused by the fact
that drink driving takes place primarily on weekend nights with low traffic while
there are less drink drivers during the day when there is much more traffic.
Therefore another series of analyses per time span was performed to rule out
this explanation. The result confirmed our findings regarding the negative
relationship between traffic count and odds for drink driving. Note that a more
sophisticated way to investigate this relationship is by extending the two-level
model to a-three level model by including the variable time as an extra level.
Locations would then be at level 3, time at level 2 and drivers at level 1.

The odds of drink driving for women in comparison with men (Female) are
multiplied by a factor of 0.253, meaning that women’s odds for drink driving
decrease significantly (joint chi square test=44.123, df=1, p=0.000) by 74.7%
compared to men.

The reference category for the variable Age is the category of drivers in the age
group 16-25. The odds of drink driving for drivers with an age in the range 26-39
in comparison with the reference category are multiplied by 2.034. This means
that drivers with an age in the range 26-39 have 103.4% more chance to be a
drink driver than drivers with an age in the range of 16-25. The odds of drink
driving for drivers with an age in the interval 40-54 in comparison with the
reference category are multiplied by 3.721 and thus those odds increase by
272.1%. Finally, the odds of drivers aged 55 or older in comparison with the
reference category are multiplied by a factor of 2.370; those odds increase by
137.0%. This relationship between age and the dependent variable is also
significant (joint chi square test=38.666, df=3, p=0.000).
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The odds of drink driving for drivers who previously have been stopped and
tested at a road site at least once in comparison with drivers who have never
been stopped and tested (Previously) are multiplied by a factor of 1.505. This
means that the former drivers have a 50.5% higher risk for drink driving than the
latter drivers. This relationship was also found to be significant (joint chi square
test=8.476, df=1, p=0.004).

This result seems to be in contradiction with the SORC-model, explained in the
GADGET-project, stating that past experiences with law enforcement — as one
aspect of the objective risk of getting caught — lead to obedience (Christ et al.,
1999). It can, however, be explained by the selective way in which police
checks in general are carried out in Belgium. Normally police officers focus on
drivers who are more likely to be drink driving based on observable criteria like
gender. This eventually results in a population of drivers consisting of drink
drivers who, relatively speaking, have been tested for drink driving more often
than the non-drinking drivers. The evidence we found in this roadside survey is
based on a random sampling mechanism that allocates equal probabilities for
selection to drink drivers and non-drinking drivers, reflecting the result of the
selective way in which police checks are carried out in general. This rationale is
of course conditional on the assumption that drink drivers in general are
recidivists who will continue to drink drive even if they have been caught and
sentenced before. In other words, the explanation for the evidence we found
could simply be the nature of the group of drink drivers which might be
composed for the largest part by hard core drink drivers (Simpson et al., 2004)
for whom this SORC-model does not hold.

The reference category for the following variable (Probability) is the category of
drivers who answered that they perceive the probability of being tested to be
very low. The relationship as a whole is significant (joint chi square test=36.378,
df=4, p=0.000). The odds of drink driving for drivers who answered they
perceive the probability of being tested as low in comparison with the reference
category are multiplied by a factor of 1.711, meaning the odds of drink driving
increase by 71.1% compared to the reference category. The odds of those who
answered they perceive the probability of being tested medium in comparison
with the reference category are multiplied by a factor of 2.104, so the odds
increase by 110.4% compared to the reference category. The odds of those
drivers who answered they perceive the probability of being tested high in
comparison with the reference category are multiplied by a factor of 1.366 and
thus are 36.6% higher than the reference category’s odds (but this dummy
variable is not significant). Finally, the odds of drink driving of those drivers who
answered they perceive the probability of being tested as very high compared to
the reference category are multiplied by a factor of 4.187; in other words, those
odds increase by 318.7%.

Extra binomial model Binomial model
Logit ; Logit .
Parameter coefficients Expo_ngntlal coefficients Expo_n(_entlal
coefficients coefficients

(s.e.) (s.e.)

Fixed
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Intercept (64é%851) -4.757 (0.285)
Traffic count (606%%1) 0.999  -0.002 (0.000) 0.998
Intensity 0.746 (0.407) 2109  0.896 (0.383) 2.450
Female (61 '13797? 0.248 -1.375 (0.207) 0.253
Previously 0.467 (0.126) 1595  0.409 (0.141) 1.505
Probability low 0.565 (0.144) 1759 0.537 (0.167) 1.711
Probability medium  0.769 (0.146) 2158  0.744 (0.169) 2.104
Probability high 0.304 (0.239) 1355  0.312 (0.278) 1.366
Probability — very 4 445 (0 254) 4242 1.432 (0.290) 4.187
high
Age26-39 0.749 (0.206) 2115 0710 (0.242) 2.034
Age40-54 1.382 (0.200) 3.983  1.314 (0.234) 3.721
Age55+ 0.948 (0.233) 2581  0.863 (0.272) 2.370
Random

Level 2 variance:
o

u

Level 1 variance:
o

e

1.569 (0.229) 0.991 (0.197)

0.712 (0.010) 1.000 (0.000)

Table 2.3.4: Logit and Exponential coefficients for the fixed and random effects of the
extra binomial and the binomial 2 level multilevel logistic model (significant
coefficients are printed in italic)

Based on the SORC model (Christ et al., 1999), mentioned above, one would
expect the opposite. A possible explanation is that the perception of drivers who
are caught on the spot is influenced by this event. An alternative explanation
could be related to a selective memory bias for alcohol cues (Franken et al.,
2003).

To summarise, it was shown in the model fit section that the model fits the data
well and that the data called for a multilevel approach. The results of the
multilevel models revealed an interesting relationship between traffic count and
odds for drink driving indicating that drink drivers tend to avoid places with
higher traffic counts. In practice this means that police officers should not
restrict their enforcement activities to sites where the frequency of vehicle traffic
is high. The results for gender and age are in line with previous findings: women
are less at risk for drink driving, as are the youngest drivers aged 16-25
(Vanlaar, 2002). Finally it was demonstrated that, in contradiction with the
SORC model, drivers who have been controlled previously and/or perceive the
probability of being controlled for alcohol are particularly prone to drink driving.
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2.3.2.7. Conclusion

A multilevel version of logistic regression analysis was presented. Transforming
coefficients of the fixed effects of such a model into easy-to-interpret odds ratios
was demonstrated. Differences between the binomial and the extra-binomial
model were discussed and it was illustrated how to interpret these differences
appropriately.



2.3.3 Multinomial responses
Emmanuelle Dupont and Heike Martensen (IBSR)

The response variable to be modelled can be made of several categories (i.e.,
two or more). In this case, it is assumed that the response follows the
multinomial distribution. The analyses for these data can be considered as an
extension of binomial data analysis: What is being modelled is the probability of
the observations falling into each of the response category?'. Contrary to the
binomial analysis, however, more than 2 possible responses must be
considered altogether. It is important — in order to properly perform the analysis
— to distinguish between cases where these categories are related by some
meaningful order, and cases where they can not be ordered so. The first case
requires the application of “ordered” category analysis (also called ordered
proportional odds analysis), the other an unordered model, sometimes simply
termed a “multinomial analysis”. In order to highlight the statistical implications
of conceiving response categories as ordered or not, the models’ objectives,
definitions and assumptions will be developed in parallel for ordered and
unordered responses models.

The Belgian drink-driving study presented in Section 2.3.2 will also be used as a
research example in this section. In the present case, however, the drink-driving
response variable will be handled as it had been recorded, namely, as made up
of 3 categories (“safe”, “alarm”, and “positive”). Models will be fitted first
assuming that there is a meaningful order underlying category numbers 1 to 3,
then without making this assumption.

2.3.3.1. Objectives of the technique

The primary aim of the analysis of multinomial responses data is to model the
probability of y, - the observation for individual j belonging to group k - to fall

into one of the various categories (the i's) making up the response variable.
This probability itself is represented as a function of one or more explanatory
variables. In its multilevel version, such an analysis additionally allows
examining whether these probabilities - and the way they are influenced by the
predictors — vary as a function of higher-level units.

2.3.3.2. Model definition

Applying multilevel techniques to multinomial responses implies that the
model’s lowest level will serve essentially pragmatic purposes, namely the
specification of the structure of the response variable. Therefore, even a model
accounting for single-level data will take a 2-level form. Level 1 will be made of
several dummy variables (as many as the total number of categories minus
one, designated as the reference). Each of these variables will take on the
value “1” when a given observation corresponds to the category it figures in, “0”
otherwise. Level 2 will represent the individuals sampled in the study, or

21 Another option consists of modelling the frequencies or counts of the responses in each of
the response category as the response variable, therefore using the Poisson distribution as
sampling model at level 1 (see Dobson, 2001; or Goldstein, 2003 for details on this option).
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whatever units the observations are made on. To each level 2 unit will thus
corresponds a set of dummy values, among which only one “1”. In this
framework, level 1 does not in itself consist of observations, but rather defines
their structure. Therefore, this is at the second level that the lowest-level units
are to be found. This device is thus similar to the one applied in the case of
repeated measurements (see Section 2.4), or of multivariate multilevel analysis
(see Section 2.5): Level 1 in all these models establishes the “measurement
model” (Raudenbush & Bryk, 2002). Examining 2-level versions of these data,
therefore, requires 3 levels to be included in the model.

The general principles outlined when describing the Multilevel Generalised
Linear Model (see section 2.3.1) are applicable to the modelling of multinomial
responses data: The distributional features of the data to be modelled are
incorporated into the level 1 sampling model, allowing to define the response
variable at this level as the result of some particular expected values
(probabilities in this case, as in the case of binomial data). This expected value
is in turned modelled as being some function of a linear arrangement of
predictors, among which random variation at higher levels of the data hierarchy
(bearing in mind that level-2 in the present case actually corresponds to the
lowest level, the one of the observations).

As indicated earlier, although the models fitted for ordered or non-ordered
category data lie upon the same multilevel structure (level 1 defining the
structure of the response, level 2 corresponding to the observations), they also
substantially differ from each other. In both cases the logit link is used, the odds
of two probabilities. The two probabilities that are contrasted, however, differ.
The log odds in the unordered response categories contrast the simple
probabilities with those of a reference category. In contrast, in the case of
ordered categories, it is a cumulative probability that is contrasted with a
reference category. The link function for the ordered proportional odds model is
therefore called ‘cumulative logit. The use of the cumulative logit link, as
explained below is what allows the model to preserve the ordered nature of the
categories.

2.3.3.2.1. Ordered categories

The response variable y, represents the test result of the /" driver at the K"

road site as belonging to one of these three categories: 1 = “Safe”, 2 = “Alarm”,
3 = “Positive”. Considering that a meaningful order underlies these test results,
one could conceive of them as reflecting some unobservable dimension — say
“2”. In the present example, this dimension would be the blood alcohol
concentration (BAC) #: The higher an individual’s stand on this underlying
dimension, the higher the probability that this individual’s test result will fall into

the upper categories of the response variable.

The cumulative logit link that is used in ordered models is based on cumulative
probabilities. Because of the ordered nature of the categories, it makes sense to
calculate for each category the probability of an observation falling into that

%2 «3afe” corresponds to a blood alcohol concentration below 0.22 mg/l, “alarm”, to a BAC
between 0.22 mg/l and 0.35 mg/l, and “positive” to a BAC exceeding 0.35 mg/I.
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category or above. Throughout this section, the notation “y,, “ will be used to

refer to cumulative probabilities, while “r;, “ will be employed to designate
“ordinary” probabilities. Formally, cumulative probabilities are defined as:

1
’Yijk = PrOb(yijk 2 1) = Znijk b (23 16a)

where i is the rank of the response category in question. Thus, for a response
made up of three categories, we have:

Vik = e T o5 + Ty =1 (2.3.16b)
Yojk = Mo + Mg (2.3.16c)
Vax = Tk (2.3.16d)

Given that y, =1, only I—-1 (with I being the total number of categories)
cumulative probabilities will have to be estimated.

In the example of the alcohol-breathtest the reference category is the lowest
one (BAC<.05: safe). The cumulative probability y, denotes the probability to

have a BAC that defines category in question or more. Thus, the cumulative
probability for the category “alarm” is the sum of the proportion in “alarm” and in
“positive” because drivers in both categories have a BAC of .05 or more. The
cumulative probability for “positive” is simply the proportion of this category,
because there is no category defined by an even higher BAC. Finally, the
cumulative probability for the category “safe” is 1, because everybody has a
BAC <.05 or more. Figure 2.3.1 provides an illustration of the cumulative
probabilities in the case of a 3-categories response.

Cumulative logits are the ratio of the probability of one observation falling into
the reference category or above (Pr(y; 2i)) to the probability of the

observation falling in a lower category (Pr(y, <i)). This odds ratio is formally

defined as log — % |.
1- }/ijk

The model’s systematic component can now completely be defined as:

Yik Pr(y,, =1) p q
N = log(—’”kJ = log(m =B + hZ::Iththk +u,, + ;ulkxljk (2.3.17)
J 1 =

The first part of this component, namely, the link function, has already been
explained. The second part of the equation indicates that the predicted
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cumulative log-odds are expected to be a function of some fixed (population)
intercept value (,Boj(i)), of a random effect of the level-3 units on this intercept

value (u, ), of fixed effects of explanatory variables (élﬁhjxhjk), and of random

9
variation of these effects across level-3 units (Zulkxljk).
1=1

szk >
Y1k >
Ty ik ok T
0.5 mg/fl 0.8 mg/fl
BAC

Figure 2.3.1: Cumulative probabilities for the different BAC-levels

The notation used in Equation 2.3.17 indicates that each response category has
a different intercept value (g, is the only term of the model to which the i

subscript for categories is assigned). These intercepts, or “thresholds” for the
response categories must be understood as the average cumulative log-odds
for each category. They can thus be interpreted as the ratio of the probability of
an observation falling into category i or above to the probability of the

observation falling into a lower category®®, when all predictors are set to 0. Boim

corresponds to the log-odds of being in category one rather than in category 2,
or3, B ) corresponds to the log-odds of being in category 1 or 2 rather than in

category 3. This series of intercepts accounts for the order of proportional odds,
and is what confers the model its cumulative nature (Leyland & Goldstein,
2001). They correspond to predicted log-odds which, once transformed into
predicted probabilities, can be interpreted as the probability for a given
observation to appear in category m before appearing in category i (lbid).

oj(z

The model thus specifies different intercepts for the response categories, but
provides one and only one estimate for the random variation of these intercepts

% This interpretation holds because the category chosen as the reference is the first one. This
interpretation is to be “reversed”, however, when the last category is the reference.
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at level 3 (or higher). Indeed, allowing them to vary randomly at level 3, but all in
a different way would render the interpretation of the results quite difficult, and
the model rather costly to estimate (many parameters would have to be
estimated). Allthe components of the proportional model — except the intercepts
- are defined as being common to the different response categories. This is the
case not only for the level-3 random effects, but for any fixed effect specified in
the model. This feature - separate intercepts but common slopes to all
categories — reflects a fundamental assumption of the proportional model: All
the effects (both fixed and random) are assumed to be independent from the
particular category considered. In the same way that the fixed effects of
individual-level predictors are defined as being homogeneous across response
categories, it can be assumed that the random effects related to the
observations’ clustering into higher-level units is homogeneous across response
categories?*.

Consequently, an empty, single-level proportional model will appear as a series
of I—1 equations, but these would differ from each other only on the ground of
the fixed intercept values. The possible predictors do not vary across
categories, and do not take the category index i, indicating that they are
estimated for all categories jointly.

2.3.3.2.2. Unordered categories

Supposing that the categories making up “breathtest”, the response variable of
the drink-driving study are not ordered, one would model it as a function of the
probability of each category of result rather than on cumulative probabilities.
One of the appropriate link functions would in this case be the “usual” logit
function rather than the cumulative logit. The main difference between this
model - the “unordered” model — and the ordered one is that the former does
not assume homogeneous predictor effects across categories. The explanatory
variables entered in the model are seen as likely to have a different effect on
the different response categories.

As a reminder, the logit link function corresponds to the log of the odds of being
in one given category (/) rather than in another, designated as the reference
category (m). The odds themselves are defined as the ratio of the probability of
being into category i to the probability of being in category /. These probabilities
are defined as:

fori=1,..,1 (2.3.18a)

Ty = Prob(y,; =1) =my,

24 Fitting an unordered model to verify that the predictors’ effects indeed are homogeneous
across categories is useful. However, failure to meet the “proportional odds assumption” and
concluding that predictors do have different effects across the response categories does not
necessarily imply that the ordered nature of the categories has to be questioned, but simply that
the effects of predictors are not homogeneous across the different response categories
(Raudenbush & Bryk, 2002). In such a case, it is nevertheless necessary to treat the latter as
unordered, and to use the multinomial model.

T |
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And,
T = Ty (2.3.18b)
T = T (2.3.18¢c)
Tyy = =Ty — 7y (2.3.18d)

Given that 7, +7,, +7, =1, o0nly I -1 probabilities will have to be estimated.

The systematic component of the unordered model is:

Ty Pr(y,, =1) pi qi
Mije = log[aj - log(MJ =N =Py +h§1thk(i)thk Uk +§uljk(i)xijk (2.3.19)
The i category index is assigned to all components of this equation, implying
that there is one separate model for each response category. For this reason,
the unordered model can be described as “contrast-specific”: It is made of
several “sub-models” that compare each response category to the reference
one (Rasbah, Steele, Browne, & Posser, 2004). This allows for much flexibility
in the way the predictor-probability relationship is specified across the
categories: The effect of one given predictor may differ depending on the
particular categories contrasted, and so may the random effects at higher levels
of the data hierarchy. The unordered model also allows specifying different
predictors for different response categories (e.g.: the sub-model contrasting
category 1 with the reference would contain predictor x and the sub-model
contrasting category 2 with the reference would contain predictor z). To
summarize, in contrast to the ordered model, the unordered model conceives of
the effects of the predictors (both fixed and random) and of the category
probabilities as interactive effects. This is the major difference between this
model and the proportional odds one, which assumes them to be independent
and additive. For this reason, the proportional model is also far more
parsimonious than the unordered model (i.e.: the number of parameters to be
estimated is greatly reduced in the case of the ordered model).

2.3.3.3. Model assumptions

As already indicated, there is no variance associated with level 1 in a model for
multinomial responses. It is at the second level of the data hierarchy (the
“‘individual” level) that the variance specified by the sampling model describing
Y is to be found.

Level 2 thus describes the inter-individual variation in the data, and the error
structure of the response. In the case of the ordered model — working with
cumulative probabilities — the variance and covariances of the observations are
defined by the ordered multinomial sampling model:
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Var(y|vu) = 7 0= 73) (2.3.20)
Cony yi'jk|7/zjk o) =Y A=%i) (2.3.21)

In the case of the unordered multinomial model, the variance and covariances
of the observations should be:

Var(yijk‘”ijk):”ijk(l_”ijk) (2.3.22)

CoWyys Vijx |7Z.ijk T i) =Ty (1= 7)) (2.3.23)

The fact that the observed variance and covariances at level 2 follow the
specification of the multinomial sampling model of course depends on whether
or not the data indeed exactly follow the multinomial distribution, and do not
show over - or under — dispersion (see section 3.1.2).%

In the case of a 3-level random intercept model (conceptually a 2-level model,
thus), these are the variance and covariances of logit values that compose the
variance-covariance structure at level 3. Both the ordered and unordered
models assume the intercepts and slopes of the level-3 units to be normally
distributed, with mean 0 and variance o*. In other words, the (cumulative) logits
are assumed to be normally distributed around the level-3 units.

The variance-covariance structure at level 3 also depends on the (un)ordered
nature of the model. Indeed, the ordered model assumes random variation at
this level to be the same for all response categories, while the random effects
are expected to differ across response categories in the case of the unordered
model. In this latter case, given that the random effects are allowed to differ for
the various categories, the covariance between the categories’ random effects
also has to be estimated as part of the variance-covariances structure, in
addition to the usual covariance between intercepts and slopes.

2.3.3.4. Research problem

The response variable that is assessed here (“breathtest”) is conceptually the
same as the one examined in the section over binomial data (Section 2.3.2.). In
the binomial case, however, observations were indiscriminately treated as the
same indication that a driver had been drinking when his/her breathtest result
exceeded the “alarm” or “positive” thresholds. These two categories were
indeed merged in order to constitute a single “success result”, so that the
response could be considered dichotomous. In the present analysis the two
categories will be treated distinctly, and the response variable will thus be

% This assumption can be checked through estimating an additional parameter, known as the
“scale factor” that is associated to the “canonical” variance defined by the sampling model of the
discrete distribution concerned. This parameter should appear close to one if indeed the data
closely follow the discrete distribution described. Values lower than 1 reflect a situation termed
“underdispersion”, values greater than 1 indicate “overdispersion”.

T |
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analysed as a “3-categories” response. The effect of gender and age on the
drivers’ test results will be examined, first by means of the proportional logit
model, then by means of the unordered model. This last analysis will provide
useful indications about whether the predictors included in the model indeed
can be considered to have homogeneous effects across the different response
categories.

2.3.3.5. Dataset

The dataset used for the present illustration is the same as the one analysed in
Section 2.3.2. The reader is therefore referred to this section for a complete
description.

2.3.3.6. Model fit and diagnostic

2.3.3.6.1. A word of caution on estimation methods

As already mentioned in the introductory section over Multilevel Generalised
Linear Models, when the estimation method employed in this framework
consists of quasi-likelihood estimation (i.e., the approximation of maximum
likelihood estimation via linearization) rather than of maximum likelihood itself,
the deviance test cannot be trusted any more. Consequently, there is no
criterion available to gauge the improvement of the models successively
specified. Tests of single parameters remain one option, but should also be
used with caution, at least for random parameters.

2.3.3.6.2. Ordered models

The first type of model fitted - the proportional logit model - specifies the
following sampling model for the response variable at level 1 (“the test result i of
individual j”) :

y;; ~ Ordered multinomial (n, v;) (2.3.24a)

The expected value for the response variable is the cumulative probability, v;,

and is therefore the value that will have to be modelled on the joint basis of the
linear predictor and the cumulative logit link function. The predicted cumulative
probability 7, is defined the following way for each of the i response category:

Vi) =Wy Va =73, + 7,0, =1 (2.3.24b)

The first category (“Safe”) is designated as the reference, and thus has
cumulative probability y,, =1. The lowest category being the reference, the

other 2 cumulative probabilities must be understood as “the probability that an
observation falls into the next higher category or above” (namely, in the “alarm

or positive” categories for 7,, and in the “positive” category for ;) 2.

% Had the last category — « positive » - been designated as the reference, the cumulative
probabilities would have been defined the other way around, with y;; =1, and v, and v,
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As an initial step, the model is left empty. It does not include any predictor. Two
levels are specified (", and “j”), but one should bear in mind that such a model
conceptually is a single-level model. The systematic component is at this stage
composed of an intercept only, and fits the “baseline” predicted cumulative
logits of the response categories®’. Given that the response variable is made up
of three categories, only two cumulative logits will be estimated:

logit(y ;) = —3.49(0.06) (2.3.24c)
logit(y,)) = —3.91(0.07) (2.3.24d)

Once exponentiated, these values can be interpreted as the “baseline”
probability for an observation to correspond to an “alarm” or “positive” test result
(v,), or to a “positive” result (v, ):

1

= =0.03 (2.3.24¢e)
1+exp—(-3.49)

Yo

Yy = ! =0.02
' 1+exp—(-3.91)

(2.3.24f)

The results from the empty model indicate that the predicted probability for a
driver to have a test result of “alarm” or “positive” is 0.03, and does not differ
much from the probability for a driver to obtain a “positive” result to the test
rather than a “safe” or an “alarm” one. Both coefficients are negative and
significant, indicating that drivers are on average more likely to be tested as
“safe” rather than as “positive” or “alarm”. The ordered model assumes all
effects, save the fixed intercepts, to be homogeneous across the response
categories. In order to reflect this assumption, a single term “h, " is added to

each of the cumulative logit's equation, which will contain any effect that will be
further specified in the model and remain identical for all the response
categories.

The next model fitted is the random intercept model. This model will allow
assessing whether “road sites”, the 2" conceptual level in the data hierarchy
(but the 3" level in terms of the present model), introduces random variation in

being the cumulative probabilities of the observations falling in the next lower category or below
,and y; = m;, given that there exists no lower category in the response.

%7 As a reminder, the logit of a probability (whatever cumulative or not) has to be understood as
the log of the ratio of 2 probabilities (log-odds). In the present model, logit(y,;) corresponds to
the log of the odds of the probability of being into category 2 or above as compared to category
1, while logit y5; corresponds to the odds of the probability of being in category 3 as compared
to category 2 or below.
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the cumulative logit of the intercept probabilities for the response’s categories.
The random intercept model is the first one for which we use the h, which in

this case contains only the level-3 variance of each of the categories’ intercepts
(logit(y,, ) and logit(y, ) ): These are expected to vary across higher-level units

in the same way for the two response categories. :

logit(y,; ) = ~3.37(0.08) +h (2.3.252)
logit(yy, ) = -3.79(0.08) + h , (2.3.25b)
And, h, =v,cons.23, (2.3.25¢)

Multiplying the random variation of the intercepts by a constant is what allows it
being common to both cumulative logits. This random variation is also defined
so as not to have any fixed part. The fixed — or population — values that are
estimated for the intercepts of each category are to be considered as the fixed
counterpart of this random variation. The random variation of the intercept is
defined as:

[vy ]*N(0,Q,): Q, =[0.88(0.18)] (2.3.254d)

The results obtained at this step seem to indicate that there is significant
random variation in the probabilities to drink and drive across road sites. The
reader is reminded, however, that the estimates obtained for the random
parameters can in this case be severely biased.

The effect of gender is then added to the model. The gender predictor is defined
as a dummy variable, with the “0” (and thus, the reference) value corresponding
to “men” and “17, to “women”. Adding this effect to the model results in
somewhat lower values for the intercepts of the two cumulative probabilities:

logit(y,, ) = —3.07(0.08) +h , (2.3.26a)
logit(y,, ) = —3.49(0.08) +h , (2.3.26b)

The two intercept values now correspond to the predicted logits of being tested
as alarm or as positive among men: Overall, these are less likely to be tested as
“positive” or “alarm” than as “safe”. The predicted probabilities for men drivers to
be tested as either “alarm” or “positive”, and to be tested as “positive” are 0.04
and 0.03, respectively. The coefficient for women is now added to the h,

component, and expresses the change entailed in these predicted logits by
being a woman rather than a man: Clearly, the odds of being tested as “alarm”
or “positive” rather than as “safe” are even lower among women than among
men. And,

h, =-1.61(0.23)women.23;, + v, cons.23, (2.3.26¢c)
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The predicted probabilities for women can also be obtained using the
exponential function:

1
l+exp—(-3.07-1.61)

0.009 (2.3.260)

Yox =

Yj;jk = ! =0.006 (23269)

I+exp—(-3.49-1.61)

These are the predicted probabilities of a female driver to be tested as «
alarm » or «positive » or as “positive” rather than “safe”, respectively.
Obviously, they are both much lower than those obtained for males.

The estimate for the random variation of the intercepts at level 3 remains the
same as the one calculated on the basis of the empty model:

[v, ]~N(0,Q,): Q, =[0.89(0.18)] (2.3.26f)

An additional model is then fitted to add another categorical predictor — age — to
the model. The age variable is made up of 4 categories (16-25; 26-39; 40-54;

Male Female
Alarm or positive Positive Alarm or positive Positive
Age
- 16-25 0.02 0.01 0.004 0.003
- 26-39 0.04 0.03 0.008 0.005
- 40-54 0.07 0.05 0.01 0.01
- 55+ 0.04 0.03 0.008 0.005

Table 2.3.5: Cumulative predicted probabilities for the different age and gender
categories.

and 55+), with the first being designated as the reference. This predictor is
introduced in the model by means of three dummies, each comparing one of the
remaining age categories with the “youngest” one. The intercept values for the
cumulative logits are:

logit(y,, ) = =3.76(0.23) +h,, (2.3.27a)
logit(y,, ) = —4.19(0.23) +h (2.3.27b)

These logits values are now the ones estimated for male drivers aged 16 to 25.
The corresponding predicted probabilities are, 0.02 and 0.01 y,, and y,;,

respectively.
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The h; component now includes the coefficients associated with the three
dummies representing the age variable:

h, =-1.61(0.23)women.23,, +0.51(0.2)26—39.23, +1.16(0.24)40 - 54.23 ,
(2.3.27c)
+0.53(0.28)55".23 , + v, cons.23

Overall, the three older age categories seem to be more likely than the 16-25
ones to exceed the legal BAC limit. This is especially true, however, for the 40-
54 age range. Appropriately summing the coefficients and exponentiating them
provides the corresponding predicted probabilities for all categories of the
predictors in the model. For example, in the case of female drivers:

1
= —0.005 23.27d
Y T exp—(=3.76-1.61) ( )

...corresponds to the probability of a woman aged 16 to 25 to be tested as
“alarm” or “positive”.. Computing:

1
= =0.
I+exp—(-3.76-1.61+1.16)

Yy 01 (2.3.27¢)

... provides the predicted probability of a female driver aged 40 to 54 to be
tested as “alarm” or “positive”. All the predicted probabilities for the different
predictors categories are summarised in Table 2.3.6.

2.3.3.6.3. Unordered models:

Finally, an unordered version of the model including gender and age as
predictors should allow examining whether their effects can indeed be
considered homogeneous across the response categories. The sampling model
at level 1 in this case is:

y; ~ Multinomial (0, T ) (2.3.28a)

The logit model is one for “ordinary” probabilities, and will readily be expressed
as the log of the odds of each category to the reference category, which will in
this case remain the “safe” one. Given that there are three categories, 2 logit
models are estimated:

log(Z2X) (2.3.28b)

Tk

comparing the “alarm” and “safe” categories, and

log( 22 ) (2.3.28¢)
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comparing the “positive” and “safe” categories.

Contrary to the ordered model, no common term underlies the logit models for
the different categories:

T ,.
log(—%) =B, —1.05(0.25)Women. Alarm,,

T
+0.77(0.34)26 — 39.Alarm,, +1.02(0.34)40 — 54.Alarm,, (2.3.28d)
+0.71(0.38).55". Alarm,,
With
By = —4.93(0.31)+v,, (2.3.28e)
TC,.
log—%) =B, — 1.61(0.22)Women.Positive
Tk
+0.52(0.25)26 — 39.Positive,, +1.19(0.24)40 — 54.Positive,, (2.3.28f)
+0.59(0.27).55" Positive
With

B, =—4.16(0.23) +v,, (2.3.289)

The intercepts for the log-odds of “alarm” to “safe”, and of “positive” to “safe” are
each defined as being made of different fixed values (f,,5,) and of different

random components (v, ,v, ). As a consequence, the covariance between

these two random intercepts is also part of the parameters estimated by the
model:

Yok ~N(0 0 )'Q - o — 0.66(0.24) (2.3.28h)
. ST 52 [T ]1.05(0.16)0.96(0.18) -

The fixed intercept values are both significant, and highly similar for the “alarm”
and “positive” categories. Overall, the estimated effects are similar for the two
categories. The effect of gender is in each case significant and negative:
Women are less likely to be tested as “alarm” or “positive” than men are. The 40
to 54 age category is the one that differ most from the 16 to 25 one, the positive
coefficient associated with this age category revealing that people of this age
are more likely to exceed both legal limits (i.e.: “alarm” and “safe”). The

estimates for the random variation of the intercepts at level 3 for the two

categories (o0),,0:) also do not differ much from each other. All in all, the

results suggests that the two probabilities tend to be homogeneously affected
by the fixed and random effects specified in the model, and consequently that
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the unordered model is not worth the cost it entails in terms of the number of
coefficients to be estimated. The covariance observed between the random
variations of the two intercepts at level 3 is quite elevated, further sustaining this
conclusion. This positive covariance suggests that, at those road sites at which
the probability of being tested as “alarm” rather than as “safe” is higher, the
probability of being tested as “positive” also tends to be higher.

2.3.3.7. Model interpretation

The results of the models fitted in the previous section converge to suggest that
gender and age are important predictors of the likelihood of the drink-driving
behaviour. The pattern of effects observed for these fixed predictors on the
basis of the ordered and unordered models proved similar for the probability of
exceeding the “alarm” legal limit and for the probability of exceeding the
“positive” one. In such a case, the ordered model is certainly the one to be
preferred, first because the assumption of ordered response categories appears
highly sensible, but also because of this model’s parsimonious value. It can
also be noted that the results agree with those found in the previous section
(2.3.2), based upon a logistic regression analysis. The two categories “alarm”
and “positive” analysed in the present section had been joined into one in the
previous section. The unordered model analyses showed that the predictor
effects for those two categories do not differ. Consequently, it is to be expected
that dichotomising the response variable and analysing it in a logistic regression
leads to comparable results, which is indeed what was found.

Several indications were obtained that the baseline or intercept probabilities for
the “alarm” and “positive” responses vary randomly as a function of the road
sites at which the tests were made. As it has already been stressed however,
the present analysis allows few conclusions with respect to random effects.

2.3.3.8. Conclusion

Clearly, the present data call for a more complete multilevel analysis, one that
would for example integrate level-3 effects such as the intensity of the traffic
characterising the different road sites, or the time span during which tests have
been performed at the different road sites. Cross-level interactions between
these level-3 predictors and predictors at the individual level (e.g.: gender, age)
are also potentially important aspects to address. Techniques permitting the
exploitation of the multilevel structure of complex data are still under
development, and the multilevel analysis of discrete data is certainly no
exception. The available software keeps on evolving, and does so quickly.
Before plainly satisfactory solutions can be offered, some alternatives can be
used: Complementary information can be gained by relying on software directly
using maximum likelihood estimation, although not specifically designed for
multilevel analysis (such as “SAS”). Advanced estimation methods, such as
MCMC (see Section 2.8) are also likely to provide valuable complementary
information.



2.3.4 Counts

George Yannis, Eleonora Papadimitriou and Constantinos Antoniou (NTUA)
2.3.4.1. Objective of the technique

In this section, multilevel models that fit data with discrete response variables
are further analysed. Following the analysis concerning binary or multinomial
data shown in the previous sections, count data - or data that can take any
positive integer value - are discussed. This count may be the number of times
an event occurs out of a fixed number of "trials", in which case the resulting
proportion is usually dealt with as response: an example is the proportion of
fatalities in a population. It is common practise to use the Binomial distribution
to fit models to proportional data, as shown in Section 2.3.2, and the Poisson -
family distributions to fit models to count data.

The present analysis has the following objectives:

= Present the Poisson distributional assumptions and discuss the related
properties and particularities

= Describe the related multilevel structure

= Use the above techniques to explore the regional effect of police
enforcement on the number of road accidents in Greece.

2.3.4.2. Model definitions and assumptions

Count data have restrictions on the values they take; they must take positive
integer values (or zero) and so if count responses were to be fitted as normal
responses, one could obtain predicted counts that were negative.
Consequently, the Poisson distribution is used instead (Langford et al., 1999).
In this section, the basic Poisson assumptions for count data are presented.

The Poisson distribution has a parameter A that represents the rate at which
events occur in the underlying population, according to the following
characteristic function:

)\Xe—)\

P(x ;A)= .

(2.3.29)

The Poisson distribution is based on four assumptions. The term "interval"
refers to either a time interval or an area, depending on the context of the
problem.

= The probability of observing a single event over a small interval At is
approximately proportional to the size of that interval.

P(1;Ar)=ANAT for small At
= The probability of two events occurring in the same narrow interval is
negligible.

P(0;AT)+P(1;AT)=1 for small At
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= The probability of an event within a certain interval does not change over
different intervals.

= The probability of an event in one interval is independent of the probability of
an event in any other non-overlapping interval.

These assumptions should be examined carefully, especially the last two. If
either of these last two assumptions is violated, they can lead to extra variation,
generally referred to as overdispersion, as discussed below (see also section
2.3.1).

Generally, modelling count data is known as Poisson regression and is not in
itself a multilevel technique. To translate Poisson regression to multilevel
Poisson regression is analogous to moving from linear modelling to normal
response multilevel modelling (Langford et al, 1998, see also sections 2.1 and
2.2). In case of Poisson multilevel regression, there is a higher level
classification of the data across which the response is considered to vary. The
multilevel model fitted to the data is based on iterative generalized least
squares estimation. Assuming multivariate normality, calculations alternate
between estimation of fixed and random parameter vectors until convergence is
reached. However, in this case, a Poisson distributed response vector (O) of
observed cases is assumed, and hence it is necessary to include an offset of
expected numbers of cases in the model, so that:

O; ~ Poisson (m; Ej)
log (1) = Boj + B1j X (2.3.30)

Boj = Bo + U
B1j = B1 + Uy

where Ejrepresents the expected numbers of cases for each level 1 unit. When
using such fixed offsets, it is recommended to centre them around their mean in
order to avoid numerical instabilities (Rasbash et al., 2000).

The Poisson distribution is used to model the level 1 variance, by using a
logarithmic link function, and normal distribution is assumed for the random
variances at higher levels. An efficient estimation procedure for this nonlinear
model is predictive quasi-likelihood, where estimation of random parameters
and associated residuals, is made using a Taylor series expansion around the
current values of the fixed and random parts of the model.

It should be underlined though that no random structure can be specified at the
lowest level of a Poisson multilevel model. In particular, there is nothing random
to estimate as in the Poisson model the relationship between mean and
variance is known, so that there is no need to separately estimate the latter.
However, the opposite is true in the classical linear regression model, where the
mean of the error term is assumed equal to zero but the variance is unknown
and must therefore be estimated. Consequently, one would be interested in
making the intercept term vary randomly at the 1% level of a normal model but
not at the 1% level of a Poisson model.
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A basic additive model will have explanatory variables consisting of an
intercept, and one or more dummy variables. One would normally also wish to
include interactions between variables.

To determine whether the Poisson-assumption of equal means and variance
holds, a dispersion parameter at level 1 is estimated, so that

var(O;/1my) = o m; Ej (2.3.31)

If 042=1, then variation is assumed to be Poisson, if 0;>>1 then there is extra-
Poisson variation present (overdispersion), and if 0:> <1 the model is
underdispersed as can happen when many of the counts are zero. However,
quite often there are theoretical reasons to assume that extra-Poisson variation
may be present in the data (Dean, 1992, Hauer, 2001). For instance, if the
counts examined come from significantly heterogeneous populations, the
expected values may vary significantly more than the mean of the distribution
would allow.

In order to handle the overdispersion, one option is to include an additional
parameter a, resulting in an extra - Poisson or quasi - Poisson distribution, so
that:

var(O; /my) = a o m; Ej (2.3.32)
This situation may be further described by stating that the counts in each level 1
unit are being modelled as Poisson conditional on the distribution of rates
between units. These rates may be assumed to follow a gamma distribution,
and hence the mixture of these two distributions can be expressed as a
negative binomial distribution of counts, so that:
Oy ~ Negative Binomial (1 Ej, v)

log (1) = Boj + B1j X (2.3.33)

Boj = Bo + U
B1j = B1 + Uy

where the variance is a quadratic function of Trj:
var(O; /)= 1; Ej +(m; Ej /v = o m; Ej + 0°(m; Ej )P (2.3.34)
It should be noted that, ignoring extra-Poisson variation would not significantly

affect parameter estimates; however the related significances may be slightly
affected (Dean, 1992).
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2.3.4.3. Research problem and dataset

In 1998, the Greek Traffic Police started the intensification of road safety
enforcement, having set as target the gradual increase of road controls for the
two most important infringements: speeding and drinking-and-driving. Since
then, all controls and related infringements recorded have systematically been
monitored and the related enforcement and casualty results at local and
national level are regularly published, as shown in Table 2.3.6 with basic road
safety related trends in Greece.

1998 1999 2000 2001 2002 5-year
change

injury road accidents 24819 24231 23.127 19.710 16.852 -32%
persons killed 2.182 2.116 2.088 1.895 1.654 -24%
vehicles (x1000) 4.323 4.690 5.061 5.390 5.741 33%
speed infringements 92.122 97.947 175.075 316.451 418.421 354%
drink & drive infringements 13.996  17.665 30.507 49.464  48.947 250%
drink & drive controls 202.161 246.611 365.388 710.998 1.034.502 412%

Table 2.3.6: Basic road safety trends in Greece 1998-2002

It is important, however, to further quantify the effect of this intensification of
enforcement on road accidents. Additionally, the examination of regional effects
might be particularly interesting. For that purpose, a multilevel model is
developed, as a different amount and type of police activity in regions with
different characteristics is likely to result in different effects of enforcement. It
should be noted that the administrative structure of the Greek police also
follows the geographical (e.g. geopolitical) structure of Greece. As the number
of accident represents a random count of events occurring within a population,
a Poisson distribution is assumed.

The dataset that is used in the framework of this analysis concerns regional
data from 50 counties of Greece (245 observations in total), nested within 12
regions in the period 1998-2002. The response variable is the number of road
accidents with casualties and the explanatory variables are the number of
alcohol controls, the number of speed infringements, as well as socioeconomic
parameters such as vehicle ownership and road network type. The population
of each county is used as offset term, to express the expected number of
accidents. It should be noted that explanatory variables are centred around their
mean, to avoid numerical problems in the estimation. The dataset variables are
summarized in the following Table 2.3.7.

It should be noted that the Athens and Thessalonica metropolitan areas, where
a disproportionably high number of accidents and police controls are observed,
were not included in the dataset.
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Region 1-12 regions of Greece
County 1-50 counties of Greece
Accs The number of accidents of each county

alcontrol (1000) The number of alcohol controls of each county
speedinf (1000) The number of speed infringements of each county
logepop (offset) The natural logarithm of the population of each county
Cons The constant term

Table 2.3.7: Variables and values considered in the analysis

2.3.4.4. Model fit, diagnostics and interpretation of results

In the following sections, an application of multilevel Poisson models is
presented. The analysis aims at examining the regional effect of speed and
alcohol enforcement on the number of road accidents. It should be noted that
the demonstration follows a stepwise procedure, both in terms of multilevel
model building and variables selection. As far as model building is concerned,
the analysis starts from the simplest (single level) model to the most complex
(multilevel models). Accordingly, variables are initially examined separately
(single-effects models), and then jointly (multiple-effects models).

The initial stage of the analysis concerns a single level model (level 1: i-county),
ignoring the geographical hierarchy in the data. This approach gives the
following results (Table 2.3.8):

Parameters Single-level model
Constant -6.450 (0.005)
Alcontrols -0.015 (0.001)
Speedinf -0.010 (0.001)

Table 2.3.8: Poisson single-level model for the effect of enforcement on road accidents

The coefficients of this initial model, all highly significant, as indicated by the
respective standard errors in parentheses, indicate a reduction of road
accidents when speeding and drinking-and-driving controls increase. This result
is reasonable. However, in the following sections it will be demonstrated how
this effect may vary significantly among regions.

The next stage is adding the hierarchical structure to the data, by including a
second level (level 2: j-region). We first consider a two-level model with a
random intercept term only, in order to examine the variation due to the regional
effects. The results presented in Table 2.3.9 below indicate a significant random
variance among regions (Model 1):
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Model 1 Model 2 Model 3 Model 4
(constant term) (Effect of alcohol (Effect of speed (Effect of
controls) controls) speed and
alcohol
controls)
Fixed effects
Constant -6.488 (0.076) -6.672 (0.108) -6.691 (0.115) -6.654
(0.101)
Alcontrols -0.059 (0.014) -0.036
(0.010)
Speedinf -0.131 (0.043) -0.058
(0.023)
Random effects
Level 2
0w’ (constant) 0.070 (0.029) 0.140 (0.057) 0.157 (0.065) 0.119
(0.050)
0w’ (alcontrols) 0.002 (0.001) 0.001
(0.000)
0w (speedinf) 0.022 (0.009) 0.006
(0.002)
Ouoi? (covariance) 0.013 (0.006) 0.008
(0.004)
Ouw2” (covariance) 0.051 (0.023) 0.013
(0.009)
Our2° (covariance) 0.000
(0.000)
Variance/mean 1.000 1.000 1.000 1.000

Table 2.3.9: Poisson multilevel models for the regional effect of enforcement on road accidents

The significant regional variation of the intercept is presented in Figure 2.3.2
The top graph in Figure 2.3.2 concerns the average (fixed) intercept for all
regions, whereas the bottom graph concerns the intercepts corresponding to
each one of the 12 regions of Greece. It is noted that the x-axis concerns the
number of alcohol controls (in thousands), centred around the mean. A
significant regional variation of the number of accidents is illustrated.

The next step in model fitting with this dataset is to add explanatory (predictor)
variables into the multilevel model. Firstly, the effect of alcohol controls on the
number of accidents is examined, allowing it to randomly vary between regions.
A multilevel model with a random intercept and a random slope is therefore
fitted (Model 2) and the results are presented in Table 2.3.9.

It is noticed that all fixed and random effects are significant. However, the
variance of the effect of alcohol controls is less significant than the variance of
the intercept, suggesting that the regional effect itself (in geographical terms) is
a stronger determinant of the number of accidents than the effect of
enforcement. It is also interesting to note that there is a significant covariance
among intercept and slope, indicating that, the higher the number of accidents
of a region, the stronger the effect of alcohol enforcement (reduction of
accidents).
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It should be noted that, as mentioned previously, quasi-likelihood estimation is
used for discrete response models. Consequently, likelihood statistics for these
models are very approximate and are not examined for the assessment of

models fit (Rasbash et al., 2000).
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Figure 2.3.2: Average intercept (top graph) and random intercepts (bottom graph) for Model 1

The significant regional variation of the slope of alcohol controls is presented in
Figure 2.3.3. The top graph in Figure 2.3.3 concerns the average (fixed) slope
for all regions, whereas the bottom graph concerns the slopes corresponding to
each one of the 12 regions of Greece. A significant effect of alcohol controls on
the number of accidents at regional level is illustrated.
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Figure 2.3.3: Average (top graph) and random (bottom graph) intercepts and slopes

for Model 2 (effect of alcohol controls)

In Figure 2.3.4, the Level 1 and 2 residuals are examined for Model 2. In
particular, the top graphs in Figure 2.3.4a concern Level 1 residuals and the
four bottom graphs in Figure 2.3.4b concern Level 2 residuals. Moreover, the
left-side graphs concern standardized residuals against normal scores and the
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right-side graphs concern standardized residuals against fixed part predicted
values.

It is observed that Level 1 residuals are normally distributed and independent.
However, Level 2 residuals are less in keeping with the Normal distribution and
present more dependence to the predicted values.
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Figure 2.3.4a. Level 1 residuals and normal scores (left graph), Level 1 residuals and
predicted values (right graph) for Model 2
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Figure 2.3.4b Level 2 residuals and normal scores (left graphs), Level 1 residuals
and predicted values (right graphs) for Model 2

As a next step, the effect of speed enforcement on the number of accidents is
examined separately. In parallel to the model including alcohol controls, the
effect of the number of speed infringements is also allowed to randomly vary
between regions. Another multilevel model with a random intercept and a
random slope is therefore fitted (Model 3 in Table 2.3.9).

All fixed and random effects are again significant. Contrary to the effect of
alcohol controls, the variance of the effect of speed infringements is, however,
highly significant. There is also a significant covariance among intercept and
slope, indicating that, the higher the number of accidents of a region, the higher
the effect of speed enforcement. Although the variables 'alcontrols' and
'speedinf' are measured on the same scale, their parameter estimates are not
directly comparable because the first one concerns number of controls and the
second one concerns number of violations. In that sense, the fact that the
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parameter for speed is higher can be explained by the fact that a given increase
of violations results from a more important increase of related controls.
Therefore, an equal increase of alcohol controls and speed violations
corresponds to a higher increase of speed controls, making the effect of speed
enforcement to appear more important, when expressed in number of
violations.

The last stage of the analysis concerns the incorporation of both speed and
alcohol enforcement effects in the model, in order to examine the related
combined effect. A two-level model is therefore fitted (Model 4 in Table 2.3.9),
allowing both explanatory variables to vary among regions. In this case, all fixed
effects are highly significant, as well as the random variances. However, the
covariances related to the number of speed infringements are non significant.
This is quite surprising, when considering that both effects were significant
when examined separately.

In Figure 2.3.5 the predicted intercepts and slopes of alcohol controls and
speed infringements are plotted. It is noticed that the various regional effects
differ significantly from the ones obtained previously, when effects were
examined separately. Additionally, several slopes present an inversed effect,
not directly attributable to regional characteristics.
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Figure 2.3.5. Random intercepts and slopes the effect of alcohol controls (top graph) and the effect
of speed infringements (bottom graph) of Model 4.

This is probably due to the fact that both variables may be seen practically as
measurements of one parameter (i.e. police enforcement). The correlation
between speed infringements and alcohol controls was examined, resulting to a
positive correlation of 0.729. In this case (multicollinearity), a redundancy of
variables is exposed, causing both logical and statistical problems and
weakening the analysis through reduction of degrees of freedom error
(Washington et al. 2003). As far as multilevel models are concerned, the results
of a recent study show that, with multicollinearity present at Level 1 of a two-
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level multiple-effects linear model, the fixed-effect parameter estimates produce
relatively unbiased values; however, the variance and covariance estimates
produce downwardly biased values (Shieh, Fouladi, 2003).

Another issue that should be examined in case of Poisson multilevel models is
overdispersion (Dean, Lawless, 1989). Overdispersion generally reflects
missing parameters, not included in the model, which would account for the
extra-variation.

A procedure to investigate and account for overdispersion can be used, by not
restricting the variance-mean relationship to be equal to one as in equation
2.3.31. It should be noted that this assumption would not significantly affect
parameter estimates; however the related significances may be slightly affected
(Dean, 1992). In the framework of the present demonstration, the regional effect
of alcohol controls on the number of accidents was examined assuming extra-
Poisson variation, as in equation 2.3.32.

In particular, in Table 2.3.10, parameter estimates are presented for an
intercept only model (Model 5) and a model examining the effect of alcohol
(Model 6). It is noticed that parameter estimates and their standard errors are
not significantly different from the ones obtained with Poisson assumptions.
However, a significant estimate of the variance/mean ratio is obtained,
indicating that the variance-mean equality assumed in the previous examples
was not adequate and that overdispersion was present and is sufficiently
handled in this model.

Model 5 Model 6

(Constant term) (effect of alcohol)
Fixed effects
Constant -6.486 (0.073) -6.587 (0.092)
Alcontrols -0.047 (0.010)
Random effects
Level 2
0w (constant) 0.064 (0.029) 0.094 (0.042)
ou1? (alcontrols) 0.001 (0.000)
Ouwot? (covariance) 0.006 (0.004)
Variance/mean 22.622 (2.096) 12.892 (1.226)

Table 2.3.10: Extra - Poisson multilevel models for the regional effect of
enforcement on road accidents

In Figure 2.3.6, level 1 and 2 residuals are examined for Model 6. Examining
the level 1 residuals of the model (Figure 2.3.6a), it is observed that these are
normally distributed and independent. When examining level 2 residuals (Figure
2.3.6Db), it can be noticed that their distribution is improved in relation to Model 2
above, both in terms of normality and independence from predicted values.
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Figure 2.3.6a. Level 1 residuals and normal scores (left graph), Level 1 residuals and

predicted values (right graph) for Model 6
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Figure 2.3.6b. Level 2 residuals and normal scores (left graphs), Level 2 residuals
and predicted values (right graphs) for Model 6

As explained previously, another option for overdispersed counts data is to
assume a Negative Binomial distribution, allowing for a more flexible variance
structure, as in equation 2.3.34. The results for the examined dataset are
presented in Table 2.3.11. It is interesting to note that the Negative Binomial
models are very similar to the Extra-Poisson models, in terms of both fixed and
random parameter estimates. It is therefore shown that both Extra-Poisson and
Negative Binomial distributional assumptions can efficiently overcome
overdispersion in count data. The results of the above analysis models indicate
that Models 6 and 8 are the best Models for the purposes of the present
analysis.

Summarizing, a Poisson multilevel modelling process was demonstrated by
means of an example concerning road accidents and speed-and-alcohol
enforcement in Greece. The dataset used includes the number of road
accidents and the related speeding and drinking-and-driving violations for 50
counties nested within 12 regions of Greece. The analysis aimed at examining

T |
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the effect of police enforcement intensification on the road safety level.
Moreover, the regional variation of this effect was quantified.

Model 7 Model 8

(Constant term) (effect of alcohol)
Fixed effects
Constant -6.477 (0.075) -6.599 (0.098)
Alcontrols -0.052 (0.013)
Random effects
Level 2
Ouo® (constant) 0.064 (0.029) 0.105 (0.046)
ou1® (alcontrols) 0.002 (0.001)
Ouot® (covariance) 0.009 (0.005)

Table 2.3.11: Negative Binomial multilevel models for the regional effect of
enforcement on road accidents

The multilevel modelling revealed a marginally significant different decrease of
road accidents in different regions within the examined period. Moreover, a
significant regional variation of the effect of enforcement was obtained. It is
interesting to note that no other variables were found to add explanatory effect
in the reduction of road accidents in Greece. This was not surprising, as no
other parameter (e.g. vehicle ownership, road network length etc.) presented a
significant overall variation, comparable to the increase of enforcement, in the
examined period. Consequently, the intensification of enforcement is
considered to be the main cause of the improvement of road safety in Greece.
However, the models developed above are not considered to fully describe this
trend. Additional explanatory variables might be required, but not among those
for which data were available. However, the models are considered to
adequately describe the regional variation of this trend and the relative regional
effect of the main causal factor and they are efficient as such.

As far as the regional effect is concerned, the results confirmed the initial
suspicion of a significant regional variation of the effect of enforcement. It would
be reasonable to assume that the regional variation of the effect is mainly the
result of different practices in the implementation of enforcement, as the Greek
police is organized according to an administrative structure in full accordance
with the examined geographical hierarchy.

2.3.4.5. Conclusions over techniques

In this chapter, several aspects of multilevel models, in which the response
variable is a count, were presented and discussed. |t was shown that these
models are an extension of the classical multilevel models for Normal
responses, with a log link function used, in order to satisfy the restriction of
positive integer values of the response variable. Within this framework, the
Poisson-family distributions (i.e. Poisson, extra-Poisson and Negative Binomial)
and their properties were presented.
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Multilevel analysis was used to test different Poisson model structures, starting
from the basic single-level model and adding fixed and random intercepts and
slopes. It was underlined, though, that in Poisson models, random effects are
only considered at higher levels, as the level 1 variance is assumed to be
known.

During the modelling process, several issues concerning particularities and
limitations of data and techniques were discussed. In particular, the effects of
multicollinearity  (i.e. inclusion of two or more highly correlated
covariates/predictors in a model) in multilevel models were discussed, although
this problem does not exclusively concern Poisson models

Moreover, the issue of overdispersion in count data was presented. It was
shown that extra-Poisson and Negative Binomial distributional assumptions can
efficiently handle overdispersion detected in the count data. Modelling results
were presented to demonstrate these procedures.

2.3.4.6. Ecological and spatial analysis in road safety research

Spatial analysis refers to a vast group of formal techniques used in various
fields of research which study entities using their topological, geometric, or
geographic properties. Spatial analytic techniques have been developed in
geography, biology, epidemiology, statistics, mathematics, and scientific
modelling. A fundamental concept in spatial analysis is that nearby entities often
share more similarities than entities which are far apart (Tobler, 1970). Different
types of spatial analysis exist, including spatial autocorrelation statistics (which
measure the degree of dependency among observations in space), spatial
interpolation techniques (which estimate the variables at unobserved locations
in geo-space based on the values at observed locations), spatial interaction or
"gravity" models (which estimate the flow of people, material or information
between locations in geo-space and spatial regression models (which aim at
describing spatial relationships among the variables examined) (Miller, 2004).
Performing a spatial analysis implies determining an appropriate spatial unit,
which may range from a point in space to a large area or zone.

The example presented in this chapter is an example "aggregate spatial
modelling", in which the information on spatial variability is available in
aggregate form, such as spatial zones. It can also be referred to as "ecological
analysis", which uses aggregate group level data to estimate individual level
relationships. A concern that often arises in such aggregate analyses is whether
the results derived depend more on the type of zones being studied, than on the
variables examined (Anselin, 1994).

In this section, a review of spatial and ecological analyses applications in road
safety research is presented, also in the light of the fundamental issues
mentioned above. A lot of research during the last few years is devoted on
spatial analysis of road safety phenomena, mainly focusing on the issue of
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spatial dependence of road safety outcomes (road accidents, casualties etc).
These studies are particularly relevant in the context of this chapter, not only
because they often use hierarchical models, but also because they always
assume Poisson-family distributions.

LaScala et al. (2000) explore geographic correlates of pedestrian injury
collisions through a spatial autocorrelation corrected regression model. Another
study examines ecological and contextual determinants of motor vehicle
accident injury in relation to socio-economic indicators, residential environment
indicators, medical services availability and utilization, population health,
proportion of recent immigrants, crime rates, rates of speeding charge and rates
of seatbelt violation (MacNab,.2004). Meliker et al. (2004) evaluated geographic
patterns of alcohol-related motor vehicle crashes in a cross-sectional analysis of
individual-level blood alcohol content, traffic report information, census block
group data, and alcohol distribution outlets, and found that areas of low
population density had more alcohol-related motor vehicle crashes than
expected. Aguero-Valverde and Jovanis (2006) developed Bayesian®® negative
binomial hierarchical models (with spatial and temporal effects and space—time
interactions) to investigate the annual county-level crash frequency in
Pennsylvania for 1996-2000, in relation to socio-demographics, weather
conditions, transport infrastructure and amount of travel. McMillan et al. (2007)
investigate county-level variability in changes in alcohol-related crash rates
while adjusting for county socio-demographic characteristics, spatial patterns in
crash rates and temporal trends in alcohol-related crash rates through a
Bayesian hierarchical binomial regression model.

In these studies, it is often outlined that the level of spatial aggregation may play
an important role in the selection of analysis method and the analysis outcome.
It is suggested that generalizations made at one level of spatial aggregation
may not necessarily hold at another level. Conclusions derived at one scale
may be invalid at another. Preliminary examination of the data is important, as
one best or unique level of aggregation is not available: it depends upon the
objective of the study (Thomas, 1996).

For instance, in a study on child pedestrian casualty data from Devon County
UK, the data have been aggregated by two methods: a simple ecological model
relating casualty with a child’s home location and a more complex spatial model
with data aggregated in terms of the collision location. In the first case, it was
proved that spatial independence could not be assumed for the data; on the
contrary the more complex spatial model resulted in spatially independent
counts of accidents (Hewson, 2005).

A relevant issue is also known as the "Modifiable Areal Unit Problem (MAUP)",
which may occur when aggregation zones are arbitrary in nature and different
spatial units (e.g. counties or census zones) could be just as meaningful in
displaying the same base level data (e.g. road accidents counts) (Openshaw,
1984). Although most spatial studies tend towards aggregating units which have

%8 For more information on Bayesian modeling and its applications please see Chapter 2.8
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adjacent geographical boundaries, it is possible (and may also be more
meaningful) to aggregate spatial units which are spatially distinct.

In Yannis et al., (2007), the example on the effect of alcohol enforcement on
road accidents, presented in this section, is also modelled under a different
regional classification; counties are grouped on the basis of qualitative
similarities, rather than geographical adjacency. The results show that this type
of aggregation may be more meaningful for the interpretation of the results,
especially as regards the regional variation of the effect.

{7 Tran sport
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The relevance of multilevel models to data that are characterised by complex
hierarchical structure (e.g.: speed observations nested within road sites
themselves nested within regions...) is easy to conceive of. The fact that
multilevel models are very useful when one is to deal with longitudinal data or
repeated measurements® is in comparison far less obvious: What's hierarchical
about repeated measurements? The answer is: The various measurements are
to be considered as the lowest level units that are nested within higher level
units — the individuals on which these measurements were made. Because they
allow such a conception of data, multilevel models offer a handful way to deal
with repeated observations. In this section, we will focus on longitudinal data
only, but the reader has to bear in mind that ML models similarly allow handling
other kinds of repeated measurements (see Section 2.5 about the multilevel
analysis of multivariate data). The research example that will be used in this
section is the one of a fictitious study in which the driving skills of newly
licensed drivers are measured at several successive time points. In this case,
the repeated observations of the participants’ driving skills constitute the lowest
level units (level 1, or “the i's”), and are nested within higher-level units, the
individuals who each provided a set of observations. The impact of various
predictors (the participants’ age, their experience with driving before each
measurement...) on the evolution of driving skills is assessed. The data
examined here are thus characterised by two main dimensions: Time, on the
one hand, and the various individuals on which the measurements were made,
on the other. This two-dimensional structure is typical of panel data research
(Little, Schnabel, and Baumert, 2000), and is what differentiates them from both
time-series (see Chapter 3) and cross-sectional data®, who are characterised
by only one dimension (time and “individuals”, respectively).

2.4.1 Objectives of the technique

The main objectives of the multilevel analysis of longitudinal observations are
identical to those of most techniques allowing their analysis. However,
conceptualising longitudinal observations as being hierarchically structured
allows for several “extra” objectives to be attained.

Firstly, although one of the basic aims of longitudinal data analysis is the
obtainment of an adequate model of the evolution of the criterion variable over
time (e.g.: an individual’s driving skills), these analyses also render possible the
examination of whether the “time — criterion variable” relationship varies among
individuals. In most “traditional” tools for the analysis of repeated measurements
(e.g.: standard linear regression, analysis of variance or multivariate analysis of

*Both terms are here understood as the recurrent observation of a dependent variable(s) over
time.

% The term « cross-sectional data » refers to data that are collected at one point of time as
opposed to data collected at several points in time.
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variance®'), however, the question of knowing how the “time — criterion variable”
relationship varies among individuals is disregarded: It is assumed to be the
same for all individuals, because the slope of the time effect is bound to be
fixed.

Second, just as other, more traditional techniques do, the multilevel analysis of
longitudinal measurements allows assessing the influence of explanatory
variables on the dependent one. Yet, when longitudinal data are at hand,
predictors which change with time may also appear to be of particular interest.
In the example used in this section, the number of km driven by each participant
during the year preceding each measurement of their driving skills was included
as a predictor. This latter value, however, is likely to be different for each
individual at each occasion measurement, i.e.: It is changing over time. The
ability to handle such varying predictors, also called time-varying covariates
(Hedeker, 2000; Snijders & Bosker,1999) is another specific feature of the
application of multilevel modelling to longitudinal data. What is actually
estimated in this case is a relationship that occurs “within individuals” (one
participant’s skills are likely to be affected by the number of km driven by this
very individual, not by another); but this is also likely to differ from one individual
to the other (the relation between driving skills and the number of km driven
may be stronger for some individuals than for others). Generally speaking,
multilevel analyses allow modelling such complex phenomena, which are typical
of longitudinal designs.

Longitudinal observations have proved difficult to handle by techniques initially
developed for the analysis of cross-sectional data because they are nested
within individuals (they consist of “sets” of observations, each one being
generated by one and the same individual). Indeed, longitudinal data are
usually dependent, and their variances and covariances are also unlikely to
remain constant over time. These two features violate common assumptions
upon which depends the validity of many “traditional techniques”. Moreover,
because longitudinal designs are more demanding in terms of observations,
they most frequently result in unbalanced data sets. Up to two decades ago, no
statistical technique appeared to adequately handle these peculiarities
altogether®. Multilevel analyses offer a way to overcome these problems,
precisely because their general aim is to take account of hierarchical structures,
and hence of dependence among data. So, not only is ML modelling useful to
take account of the two-dimensional nature of the data, it is also the adequate
means to deal with the occurrence of missing values in panel data sets (see

1 Applied to longitudinal measurements, analysis of variance (ANOVA) would test the null
hypothesis that the means of the observations are equivalent for all occasions, and would take
no account of the possible random effects introduced by the individuals from which the
observations originate. The same would be true of the multivariate analysis of variance
(MANOVA), to the difference that the repeated measurements would in this case be specified
on a multivariate response vector and would be transformed in order to test contrasts among
the repeated measures (see Hedeker, 2000 for more detailed information on that topic).

% MANOVA, for example, can adequately handle heterogeneous variances, but imposes the
deletion of all incomplete data sets (Hedeker, 2000).
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Section 2.4.3.3 for an extended discussion of this topic). In this respect, the ML
analysis may prove particularly useful for road safety research. Indeed, it is
recurrently necessary in this research field to have to deal altogether with the
need to observe the same phenomenon repeatedly over time while taking
account of it being nested into larger units, and while additionally having handle
the occurrence of missing values.

2.4.2 Model definition

The multilevel analysis of longitudinal data is a straightforward extension of the
multilevel modelling of cross-sectional data. The main difference between both
methods is more of a conceptual than of a statistical nature. When longitudinal
data are considered, the repeated observations make up the lowest level (level-
1) of the data hierarchy. The individuals providing the data at the different
occasions thus constitute the level-2 units. By analogy with earlier
developments on multilevel cross-sectional analysis (sections 2.2.1 and 2.2.2),
one could say that individuals here constitute the “context” in which the
repeated data arise. Just as with cross-sectional data, level-1 and level-2
predictors can be included in the model. A predictor is qualified as “level 1”
when its value is likely to vary as a function of the measurement occasions.
They are, indeed, explanatory variables “at the within-individual” level. For this
reason, they are often termed “time-varying covariates” (Hedeker, 2000;
Snijders & Bosker,1999). In the study over the evolution of driving skills, for
example, the cumulative number of kilometres driven by participants during the
year preceding each measurement was included as an explanatory variable.
Given that this predictor’'s value is likely to change over the different occasion
measurements, it must be conceived as a level-1 explanatory variable, or as a
time-varying covariate. Participants’ gender, on the contrary, is a level-2
explanatory variable: It does not change over time.

In order to put forth the similarities between the multilevel analysis of cross-
sectional and longitudinal data, the notation used for level-2 units will be “j”, and
the one for level-1 units will be “”, by analogy with section 2.2.1 (“Basic two-
level model”). This will help making clear that the models described in both
sections are identical. The reader must nevertheless remain aware that the “'s”
here refer to the individual participants while the

I's” designate the
measurement occasions.

Before defining the multilevel model as applied to longitudinal data, a comment
is necessary about the particular option chosen to code the time effect: In all
subsequent developments, the latter will be noted “B,(t—t,)”. The 7

measurement occasions were indeed coded as “t=0,1,2,....6”. The value 0 has
been assigned to the first occasion in order to make it the reference point in the
analyses. Subtracting the value t, from t allowed the intercept referring to this

first measurement occasion rather than to a possibly meaningless 0 value.
Various sensible coding options exist, and could prove more suited to other
research problems. It is also important to note that specifying the effect of time
as “B,(t—t,)”, implies that this effect is a linear one: The evolution of driving

skills from one occasion to the other is here assumed to be the same, whatever
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the pair of occasions considered. Again, more elaborated functions are
available, and would probably allow a more realistic representation of the time
effect®®. Actually, the quality of a model fitted to longitudinal data greatly
depends on the particular function chosen to depict the effect of time on the
criterion variable. A necessary step in the analyses consists of probing the
model’s fit with different such functions, using as a guide empirical and
theoretical knowledge of the problem investigated. However, this topic will not
be further discussed here, because this is a general question with respect to the
analysis of longitudinal data, and not a specific issue of the application of
multilevel analyses to these data. Furthermore, this is vast an issue, and could
constitute the object of a whole chapter in the present document. For more
detailed discussions of the modelling of time effects in the context of multilevel
models, the reader is referred to Hedeker (2005) and Snijders and Boskers
(1999).

2.4.2.1. Definition of the random intercept model

As its name indicates, the random intercept model specifies that the value of the
intercept is allowed to vary randomly at level 2 (between individuals). Given the
particular coding option chosen here for the time variable, the intercept refers
here to the individuals’ level of driving skills at the 1% occasion measurement.

The random intercept model is:

Yij =B0j+Bl(t_t0)jj +eij (2413)
The coefficient for the time effect (B,) is bound to be fixed, while the one for the

intercept, which is assigned the subscript “j” is defined as random at level-2.
Unfolding the model’s hierarchical nature, the following equation defines the
intercept:

B()j =B, +uy (2.4.1b)

This equation describes the level of driving skills at the first measurement
occasion as being a function of a fixed population value ( 5, ) and of individuals’

random departure from this value (u,). The term u, thus describes the
individual-specific influence on the intercept’s value.

The “complete” model is thus written as:
Y, =B, +B,(t—t,), +uy +e, (2.4.1¢c)

The random part of the model (u, +e;) specifies that two random sources
determine the value of the observations (Y, ): the individual and occasion-level.

5 Examples are : polynomial, piecewise, or spline functions. Each is discussed in details in
Snijders & Bosker (1999).
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Each of these parameters’ variances (c’., and o> for the individual and

occasion-level residuals, respectively) indicates the magnitude of the variation
in the observations that is attributable to each level. The variance of the
observations themselves (Y;) is defined as being composed of individual and

occasion-level random departures:
Var(Y,) = 6%, +0° (2.4.2)

Note that this model estimates 2 and only 2 parameters to define the random
variance of the observations. These parameters are bound to remain the same
at all occasion measurements. This is an important property of the random
intercept model: It assumes compound symmetry. This issue will again be
addressed in the section devoted to the model assumptions.

It is also important to clarify the nature of the parameter “ G2u0 ”. This parameter
actually corresponds to the covariance between two observations randomly
selected among the whole set of observations provided by one (randomly
selected) individual:

Cov(y;.yiy) = 6’y (2.4.3)

The intra-class correlation coefficient is obtained by calculating the ratio of the
level-2 variance to the total variance, and thus “quantifies” the degree of
resemblance of two observations taken among those generated by one
individual (as compared to observations selected among the observations of
different individuals):

=pY..Y..
Pr p{ VN 6%y, +o7 Var(y,)
Applied to the research example of young driver's skills, the intra-class
correlation coefficient would thus correspond to the average correlation
between the driving skills of the same driver measured at any two different time
points.

} 02u0 _ COV(yij’Yi'j)

(2.4.4)

2.4.2.2. Definition of the random intercept and slope model

One can assume that substantial between-individual variation affects the
relationship between time and the criterion variable (e.g.: driving skills). In other
words, the effect of time on the dependent variable could be larger for some
individuals than for others. Such a supposition leads to the following model
specification:

Yij = BOj +B1j(t_t0)jj +eij (2458)

The slope parameter B, is now assigned the subscript j and is thus allowed to

vary randomly among individuals. The two macro-models defining the level-2
intercept and slope are:
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B()j =B, + Uy, (2.4.5b)

Py =P +uy (2.4.5¢)

B, and B, represent the population intercept and slope, u, and u,; respectively
represent the individuals’ departure from these population intercept and slope.

Combining the equations for the two macro-models gives:

Yij =B, +B, (t -t )ij +u, + ulj(t -t )ij +¢€; ) (2.4.50)
The random part of the model (u,, +u,, (t—to)ij +e;) now specifies three random

sources to determine the value of the observations: Within-individuals random
deviations (e;) and between-individuals variations, which are now further

subdivided into random departures from the intercept and random departures
from the slope.

Together, the variances of the random intercept and slope (¢, and c?.,)

provide a rough indication of the importance of inter-individual variation from the
population intercept and slope. The covariance between the random intercept
and the random slope (o, ) is also part of the parameters estimated in the

model. This parameter represents the co-variation between individual-related
variation of initial driving skills (the random intercept) and individual-related
variation of the effect of time on these skills (the random slope). A negative
covariance (the higher the intercept, the weaker the slope), for example,
indicates that time has a more important impact on the driving skills of those
individuals who were initially poor at driving.

The introduction of a random slope for a given effect in a model thus
substantially complicates the latter. It amounts to estimating 3 parameters for
one predictor (the fixed coefficient, the random slope’s variance and its
covariance with the random intercept). Random slopes also introduce
complexity with respect to the definition of the observations’ variance. Indeed:

Var(Y,)=6"y, +26, (t—t,)+0"y (t—t,)+0G" (2.4.6)
1 ug, 0 0

This model expresses the total variance of the drivers’ skills to be a function of
(1) the various “between-individual variations” (variation in the average skill
value at the first measurement occasion (c°.,), in the average time effect

(c6’w, (t—t,)) and the co-variation between both) and (2) the within-individual

variation (s*). In contrast to the random intercept model, both the slope
variance and the slope-intercept covariance depend on time
(20, (t—t,),0%, (t—t,)). Consequently, the observations’ variance itself is
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allowed to vary over time. The same is true for the observations’ co-variances
(i.e.: the co-variance between two driving skills measurements made at different
time points on the same individual):

Cov(Y,, Y, ) =0, +0, { (t—t,), +(t—1ty), }+cu(t—t,),(t—t,), +c° (2.4.7)

The random intercept-and-slope model does not assume compound symmetry
for the matrix of the observations’ variance-covariances. For this reason, it
allows a more realistic representation of longitudinal data.

When defining the random intercept model, it was established that the intra-
class correlation coefficient expresses the ratio of the level-2 variance (i.e.:
between individual) to the total variance (between- plus within-individuals) in the
observations. In the case of the random intercept and slope model, however,
the level-2 variance is made up of the random intercept and the random slope
variance, as well as of their covariance. These two parameters depend on time.
Being variable over time, they render impossible the definition of a unique intra-
class correlation coefficient.

2.4.3 Model assumptions

2.4.3.1. Random parameters

The level-2 random coefficients (or level-2 residuals) are considered
representative of distributions of individual effects in the population. These
distributions parameters themselves are assumed to be normally distributed

with means 0 and variances ¢°.,,c°., for the intercept and slope, respectively:

uoj O qu“Guou
~ N[, 1 (2.4.8)
ulj 0 (Suoulcszu1

The level-2 coefficients are also assumed to be independent over j (i.e.: across
the level-2 units, or individuals), and independent from the level-1 residuals, e;.

The level-1 residuals (e;) are assumed to be normally distributed with mean 0
and variance ¢° (&5 ~ N(0,6%)), and to be independent from one another.

These assumptions must be understood in the framework of the conditional
nature of the model. From this perspective, saying that the level-1 residuals are
independent amounts to stating that they are independent, conditional on other
effects in the model. To put it in other words: Once the individual-level effects
(u,,u,;) are specified in the model, the level-1 error term is “cleaned”, and the

residuals at level 1 can be considered independent from one another. By
contrast, when they are not specified in the model, the individual-level random
effects are confounded with the level-1 error term and introduce dependence
among the level-1 residuals.
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2.4.3.2. Structure of the observations’ variances and covariances

For the random intercept model, the variance and covariances of the
observations were defined as:

Var(Y,) = 6%, +0° (2.4.9)
Cov(Y,.)=0", (2.4.10)

i
The random intercept model assumes the observations’ variances and
covariances to remain the same whatever the moment at which the
observations are made. This is the compound symmetry assumption. The
introduction of a random slope to qualify the effect of time implies a more
complex variance-covariance structure for the observations: The variance of the
individuals’ observations is allowed to vary as a function of time, and so is their
covariance. Defining the time coefficient as random is thus one way to relax the
compound symmetry assumption.

2.4.3.3. Assumptions about missing values

As noted by Hox: “In longitudinal research, a major problem is the occurrence of
panel attrition: Individuals who, after one or more measurement occasion, drop
out of the study altogether” (2002, p. 95). Depending on the causes underlying
the occurrence of panel attrition (or missing data), three broad situations can be
distinguished (Goldstein & Woodhouse, 2001).

First, data can be said to be Missing Completely At Random (MCAR): Their
missingness is independent of all other variables included in the model. In the
driving skills example, it is likely that the requirement to come back seven times
in order to have one’s driving skills assessed would appear too much of a
burden to many participants, and that consequently far fewer of them would
have completed the 7" measurement occasion as compared to the first one. In
such a case, panel attrition is linked to a broad feature of the study (its
longitudinal nature), but is neither related to the true value of the response
(participants’ actual driving skills), nor to any of the predictors measured and
included in the model. As Wothke puts it: “The fact that a variable’s data is
missing is not thought to affect its distribution, that is: P (Y]y missing) = P (Y]y
unobserved)’ (2000, p. 224).

The second situation termed: “Missing At Random” (MAR) is one in which the
probability of being missing depends on predictor variables in the model, or on
previous observed values of the dependent variable; but is otherwise unrelated
to the model’'s parameters, in particular, to the level-1 and level-2 random
effects (Goldstein & Woodhouse, p. 25). In the case of the example again, one
could imagine that males are, generally speaking, less compliant or
conscientious than females. This could lead them to drop out from the study
more easily than female participants do. Yet, it remains reasonable to assume
that missing data occur at random, conditional on the other variables included in
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the model (in this case, gender), and, still conditional on these variables, that
they are independent of the values of the response variable. Provided that
gender is measured and included in the model, missingness does not constitute
a problem. Again quoting Wothke, one could say: “missing and observed
distributions of y are identical, conditional on a set of predictors or stratifying
variables x, that is, P (Y|y missing, X) = P (Y|y unobserved,X)’ (2000, p. 224).

When data are MCAR or MAR the property or mechanism that caused some
data points to be missing does not endanger the interpretation of the results,
because it is either unrelated to the observed values (MCAR) or taken up into
the model by the inclusion of a predictor (MAR). Finally, a third and more
problematic scenario can be faced: The one in which “the probability of a non-
response depends on the unobserved value of the observation itself”. One can
imagine, for example, that participants with the poorest driving skills produce
more missing values because the risk of them being involved in a crash is
larger, making them more likely to be unavailable for further tests in the course
of the study, because of hospitalisation - or worse - death. In such a case,
missing data cannot be said to occur at random any more and, in contrast to
MAR data, the “mechanism” underlying missingness is ignored and cannot be
controlled for®.

Multilevel models assume data to be Missing At Random (MAR). On this point
they differ from other statistical models, such as Multivariate Analysis of
Variance, which assume data to be missing completely at random. MANOVA is
used not only to assess effects of predictors on panels of dependent variables,
but also on repeated measurements. Yet multilevel models, when applied to
either type of data offer the additional advantage of being able to handle
missing values, because they assume MAR rather than MCAR data.
“Individuals with incomplete response vectors may be included in the analysis
on the basis of the assumption that the association between their responses
will, on average, mimic that which is observed for individuals with complete
response vectors”. (Goldstein & Woodhouse, p. 25). A note of caution is
nevertheless necessary: Incomplete responses on the explanatory variables
cannot be included in the analyses. This problem is, obviously, more likely to be
encountered when time-varying predictors or covariates are included in the
model. The only solution, in this case, is to proceed to a “completer analysis”,
just as in MANOVA, and to exclude all cases with missing values on
explanatory variable(s) from the analyses.

2.4.4 Research problem

Given the lack of appropriate data, the present analyses are based upon a
fictitious example study for which a dataset had to be simulated. Although the
tests and predictions presented here are coherent with existing literature and
empirical evidence on the topic assessed - namely, the evolution of driving skills

3 Strategies for dealing with non-random missing data are discussed in
Goldstein & Woodhouse, 2001.
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with age and the experience acquired - the results of the analyses reported
here thus remain to be interpreted as hypothetical.

Accident records unequivocally indicate that young drivers have considerably
higher risks of being involved in a crash than older drivers do. This risk declines
most dramatically during the first years following the acquisition of the driving
license, the trend then becomes smoother. Although the phenomenon itself is
well documented, the factors that determine the overrepresentation of younger
drivers in accident records are still poorly understood. The relative importance
of age on the one hand, and of driving experience, on the other is the object of
many discussions (see Catchpole, Macdonald, and Bowland, 1994, and
Vlakveld, 2005 for reviews). Empirically distinguishing these two factors is, of
course, uneasy a task: The older one gets, the more one has driven, the more
experience acquired and the better developed one’s driving skills! The empirical
problem which is focused on in this section is the one of the relative impact of
age and experience (here understood as the number of kilometres a driver
drives in his/her daily life) on the evolution of driving skills among newly
licensed drivers. Is age important in itself, or is it the intensity of the drivers’
training that counts?

The design of this fictitious study would be the following: Upon reception of their
brand new driving license, a large panel of 500 young drivers was invited to
take part in a 7-year long study. The first test of their driving skills took place 1
to 4 weeks after obtainment of the driving license. During six years afterwards,
the participants took every year the same practical evaluation of their driving
skills. A single “driving skills” score was calculated on the basis of the test. The
occasion variable was coded as “0” for the first measurement occasion; the
others were assigned numbers 1 to 6. A similar coding scheme was adopted for
the “experience” predictor, which was defined as the number of km driven
before each measurement occasion. It was coded “0” at the first measurement
occasion and corresponded to the cumulative number of km driven for all the
others. In order to avoid as much as possible confounding effects between the
age, occasion and experience predictors, age was defined as the “initial age”,
i.e., the individuals’ age when they started to drive. Defined in this way, age is
made an individual-level predictor and tracks are kept of the only meaningful
“age aspect” from the point of view of the study described®. For this reason,
and for the sake of clarity, the term “initial age” will be used from now on to refer
to this predictor.

% Defined as a time-varying covariate of the kind of the « occasion » or « experience » one, the
age coefficient would have indicated how driving skills vary with 1-unit increase in age (i.e.: a
one year increase). This would have been an information identical to the one conveyed by the
“occasion” predictor. The way the age predictor is currently defined, on the opposite, indicates
the change in driving skills associated with a one-unit increase of the age the individual has
when starting to drive...
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2.4.5 Dataset

The total number of participants in the simulated data-set is n = 500. The total
number of observations amounts to N = 3500. The driving skills score ranges
from 0 to 15 (mean 6.54, SD 2.5). The effects of the following predictors were

assessed: “occasion measurement”,

experience”, and “initial age”®.

Model 2
Parameter ‘I‘\/Iodel 0 ” Model 1 ., “Occasion” and
Empty model Fixed “occasion “Experience”
effect P
Estimate (s.e.) Estimate (s.e.) Estimate (s.e.)
Fixed
Intercept 6.54 (0.08) 5.10 (0.09) 5.05 (0.10)
Occasion / 0.50 (0.01) 0.03 (0.04)
Experience / / 0.95 (0.07)
Random
Level 2
o, (intercept)  2.86 (0.21) 3.03 (0.21) 3.02 (0.30)
© o / / /
(covariance)
o, (occasion)  / / /
Level 1
2
e, 3.40 (0.09) 2.25 (0.06) 2.14 (0.06)
-2xloglikelihood 15182.69 13947.38 13784.95
2 _ . _
Deviance test / Xl =;p<.000 :’[’;_ 06;p=.74,

Table 2.4.1: Models fitted and associated estimates

% The data were simulated as follows: For each individual for each year an experience value
was created by adding a random number between 0 and 1 to the experience value from the
preceding year (starting with 0 at telaps=0). In this way experience was highly correlated to
telaps (0.89). For the simulation of the skill score, there was a random number for each
individual that constituted this persons intercept (driving skill at telaps=0). To calculate the
increase of the driving skill, the experience value was multiplied by a slope-value. The slope
value consisted of the following summation: 1) a constant, 2) the same random number as that
for the intercept, so that intercept and slope would be moderately correlated, 3) the initial age
value for that individual (a random number between 18 and 54, with 75% between 18 and 23),
so that the increase in driving skill per experience unit would be higher for persons with a higher
initial age and 3) another random number unique to the slope of that particular individual. By
construction, driving skills are therefore directly related to experience (r=.42), while the relation
between driving skills and telaps (r=.40) runs exclusively via experience.
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2.4.6 Model fit and diagnostic

The simplest model that can be fitted to account for the evolution of drivers’
skills is the empty model (model 0). No explanatory variable is included in this
model, and the average skill value is merely defined as being determined by
two sources of random variation: one taking place between individuals and the
other taking place within individuals, between each occasion measurement.
Table 2.4.1 provides the estimated parameters associated with each model
fitted. As it indicates, the average skill value at the first measurement occasion
is 6.54. The random variation around this value is lower at level 2 — or at the
individual level —than at level 1.

Taken at face value, this result would suggest that there is more variation
between the driving skills of the same individual measured at two different time-
points than between the average driving skills of two different individuals. This is
simply due to the fact that the time effect (i.e., the “occasion” variable that also
indicates how many years have passed since the acquisition of the driver's
licence) has not been included in the model yet. Once the “time effect” will be
included in the analyses and that the occasion-level variance will be properly
modelled, the estimate for the individual-level variance will become much more
realistic. This is what is done in model 1, and in this case the level 1 variance
estimate is indeed lower than the level 2 variance estimate.

The results associated with model 1 reveal a significant effect of the “occasion”
predictor (Z = 50, p < .000). However, once the fixed effect of experience is also
included in the model, the occasion coefficient decreases substantially and
turns out not to be significant any more (Z = 0.75, p = .22, n.s.). This suggests
that occasion affected the participants’ driving skills essentially because it
shared an important part of variance with experience. This is not surprising;
given the way the two predictors were respectively coded (see section 2.4.6).
The correlation between these predictors is indeed extremely high (r = .89,

occ.exp
p < .000). For this reason, the occasion predictor was dropped from subsequent
analyses, experience then constituting the only time-varying predictor remaining
in the model (model 3).

Table 2.4.2 presents the estimated coefficients for the models fitted once the
occasion predictor is excluded from the analyses. The fixed effect of experience

on skills is highly significant (Z = 33, p < .000). The slope coefficient reveals that
a 1-unit increase in the number of km driven is associated with a 1-unit increase
in driving skills.

Model 5 specifies this effect as being random at the individual level. The
estimate for the random variation of the experience slope at level 2 (ajl) is
small, but significant (Z = 45, p < .000). The intercept-slope covariance (o, )

is positive and also significant (Z = 48, p < .000). This indicates that the effect of
experience was larger among the drivers who had good driving skills from the
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start. In other words: The higher the initial driving skills, the faster progresses
are made as a function of the number of kilometers one drives.

How does age affect the evolution of driving skills over the years? Model 6 was
specified to assess the effect of initial age on driving skills. It also includes the
“initial age x experience” cross-level interaction. The deviance test comparing
this model to model 6 indicates a significant fit improvement, although the
cross-level interaction is the only significant effect (Z = 5, p < .000). The
coefficient for this interaction is positive; suggesting that the experience effect

increases with the individual’s age at the time he/she has begun to drive. The

slope variance of the experience effect (o) also decreased substantially in

model 6 as compared to model 5, suggesting that the “experience x age”
interaction explains part of the random variation of the experience effect among
individuals.

Model 6
Model 4 « :
Parameter “Experience I%/Iodgl5 I ¢ E)((jperlence, ar?e.’
only” andom slope for an ' their
“experience” interaction”
Estimate (s.e.) Estimate (s.e.) Estimate (s.e.)
Fixed
Intercept 5.06 (0.09) 5.06 (0.08) 5.06 (0.08)
Experience 1.00 (0.03) 1.00 (0.03) 1.00 (0.03)
Age 0.01 (0.02)
Age x Experience 0.05 (0.01)
Random
Level 2
o, (intercept)  3.02 (0.21) 2.09 (0.19) 2.09 (0.19)
/ 0.24 (0.05) 0.24 (0.05)
(covariance)
o, (occasion)  / 0.09 (0.02) 0.04 (0.02)
Level 1
2
e, 2.14 (0.06) 2.03 (0.06) 2.03 (0.06)
-2xloglikelihood 13785.50 13700.75 13634.49
2 _ . 2 .
Deviance test / Z= 8475 p < 1= €6.26; p <
.000 .000

Table 2.4.2: Models fitted and associated estimates

2.4.7 Model interpretation

The application of multilevel techniques is also truly beneficial for the analysis of
longitudinal data. The theoretical developments made earlier in this section
made several points pleading for the statistical advantages of conceptualising
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longitudinal measurements into a multilevel structure (relaxed variances-
covariances assumptions...).

The fictitious example dataset and the results presented above in addition
illustrated the conceptual interest of doing so. These results clearly indicate that
driving skills do increase over time, but that this was mostly a function of the
additional practice that the driver acquires over the years. Should single-level
modeling have been used, however, the heterogeneity of this effect among
individuals would have go unnoticed, and no attempt could have been made at
determining what individual-related factors affect the impact of the experience
acquired over time on the driving skills of individuals. The present analysis in
contrast allows concluding that older individuals, as well as those who already
are “gifted” for driving (those with an initially high level of skills), will benefit from
intensive driving practice to a larger extent.

" Transport
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George Yannis, Eleonora Papadimitriou and Constantinos Antoniou (NTUA)

2.5.1. Objectives of the technique

All the models described in the previous sections considered only a single
response variable. In this section, models that allow the inclusion of several
responses simultaneously as functions of explanatory variables are examined.
Interest in these data lies in the relationship between the responses at various
hierarchical levels, in whether there are significant differences in this
relationship explained by other variables, and in whether the variability differs
among responses.

The analysis has the following objectives:

= Present the assumptions and properties of multivariate Normal multilevel
models in relation to univariate models

= Describe the assumptions and particularities of multivariate models for
Poisson responses

= Use the above techniques to explore the regional effect of police
enforcement on the number of road accidents and road accident fatalities in
Greece, testing both Normal and Poisson assumptions for the two
responses.

2.5.2. Model definition and assumptions

In order to define a multivariate model, the individual component should be
treated as a level 2 unit and the "within-component" measurements (e.g. the
different responses) as level 1 units. Each level 1 entry has a response, which
is one of the multiple responses. The basic explanatory variables are a set of
dummy variables that indicate which response variable is present. Further
explanatory variables are defined by multiplying these dummy variables by unit
level explanatory variables (Rasbash et al, 2000).

In particular, in the simplest case of a Normal bivariate model, each level 1
entry would consist of either of the two responses, with dummy variables
indicating which of the two variables is present (for each response there is a
dummy that is one whenever the level-1 value belongs to that particular
response variable and 0 otherwise). Further explanatory variables would be
created by multiplying their values with the dummy variables indicating which
response variable is present (Table 2.5.1).
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Individual Given Intercepts Explanatory Variable (X)
Response
Response 1 Response X.R1 X.R2
2

1 Response 1 0 1 0*x 1*X
1 Response 2 1 0 1*X 0*x
2 Response 1 0 1 0*x 1*Xx
2 Response 2 1 0 1*Xx 0*x
3 Response 1 0 1 0*x 1*X
3 Response 2 1 0 1*X 0*x

Table 2.5.1: Data matrix structure for the simple bivariate model

The statistical formula for the two level basic Normal bivariate model, including
one explanatory variable, is written as follows:

Yij = boziij + b1Zzj + b2zyiiX; + DsZoiXi+ UyjZiij+ UziZzi (2.5.1)
Where .= 11 ifresponset| _ .,
=10 ifresponse2[’ <2 1

Var(uyy)=0°y1, Var(uy)=0°,2 covar(uyj, uz)=0u12

It is interesting to note that there is no level 1 variation specified, as level 1
exists solely to define the multivariate structure. The level 2 variances and
covariance are the (residual) between-units variances. In the case where only
the intercept dummy variables are fitted and in the case where every unit has
both responses, the model estimates of these parameters become the usual
estimates of the between-units variances and covariance. The multilevel
estimates are statistically efficient even where some responses are missing
(Rasbash et al. 2000).

It should be noted that the estimates obtained are not necessarily the same as
those that would be obtained by fitting two separate univariate models. If there
is a tendency, for instance, to report or measure only one of the responses, or if
the occurrence rate of one response is different from the occurrence rate of the
other response, the omitted values of the other response are not missing
completely at random. In the univariate analysis there is no way to correct for
this bias, as it is considered that any absent values are missing completely at
random (MCAR). The multivariate model contains the covariance between the
responses, assuming that the absent values are missing at random given the
value of the other response (MAR), which is a weaker assumption (Hox, 2002).

Thus, the formulation as a 2-level model allows for the efficient estimation of a
covariance matrix with missing responses, where the missingness is at random.
This means, in particular, that multilevel analyses are particularly suited to
analyse research designs in which not every unit (e.g., not every individual) has
a value on every measurement but rather measurements are randomly
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allocated to units. Such "rotation" or "matrix" designs are common in many
areas and may be efficiently modelled in this way.

A third level can be incorporated and this is specified by inserting a third
subscript, k, and two associated random intercept terms:

Yik = boZj + b1Z21jx + b2Z1jwXjk + DaZzjkXik+ VokZiik+ VikZeik + UgZ1iki+ UijkZeik (2.5.2)

Where Zyjk = {2) iIff rreegggrr]‘gee ;} Zojk = 1 - Zyj, Xj= {2) }

Vok
Vik

N (0, Q Q _020
~ = v
(0. ) ’ Oy01 O\Z/J

r [ 2
uojk | _ _|o
_ou N Q) Q= 0321 051}

The 2 by 2 covariance matrix between response 1 and response 2 is partitioned
into a level-2 between-units component Q, and a level-3 between-units
component Q,.

This model could be extended further, by allowing the effect of the explanatory
variable for each response to vary on level 3. Further explanatory variables can
be added and their coefficients can vary randomly at either level. It should be
noted that, multiplying each explanatory variable with all the dummy variables,
each regression coefficient in the model is different for each response. In a
considerably simplified model, one could impose an equality constraint across
all response variables, which is equal to adding the explanatory variables
directly, without multiplying with the available dummies of level 1. This produces
common coefficients for the two responses, resulting in a model that can be
considered as "nested" within the above detailed model.

It should be noted that formulae 2.5.1 and 2.5.2 concern the bivariate Normal
multilevel case. However, in most cases in road safety the level 1 response is
discrete (Binomial, Poisson etc.). In this case, the two-level bivariate model can
also be specified in the usual way, by assuming e.g. a Poisson distribution at
the lowest level of the multilevel structure and a multivariate Normal distribution
at the higher levels of the multilevel structure, as follows:

Log (y//) = boZ1,‘/ + b122,'/ + b221,‘jX/’ + b3Zz,‘ij+ U1jZy1ji+ UzjZoj (2.5.3)
Wh A if response 1 =1 -7
ere Z11=10 ifresponse2[’ %4 ="~ Zi

covar(ysj, ys/ Uy uz)=0
covar(yyj, ¥z )= 012
covar(y;/ zi, zz)=p
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It should be underlined though that this formulation is not the formulation of a
(full) bivariate Poisson model, in which the variation in all levels is assumed to
be Poisson, and whose formulation is much more complex. This case of
multilevel models could be considered as a hybrid Normal - Poisson bivariate
model, where the bivariation comes from the normal side of the random factors,
i.e. is estimated at the 3" level of the multilevel structure.

A typical example to illustrate the multilevel normal multivariate response model
is given by Rasbash et al. (2000) and concerns the scores on two components
of a science examination taken in 1989 by 1905 students in 73 schools in
England. The first component is a traditional written question paper, and the
second consists of coursework. Interest in these data centres on the
relationship between the component marks at both the school and student level,
whether there are gender differences in this relationship and whether the
variability differs for the two components.

An example of fitting multivariate models with Poisson responses can also be
found in Langford et al. (1999), where deaths from cancer and cardiovascular
diseases in Glasgow are examined simultaneously in a spatial model.

Another, interesting example of multilevel multivariate modelling is given in
Duncan et al. (1999); the first response is a binary response indicating whether
or not an individual smokes, and the second response is only present for those
individuals who smoke and is the number of cigarettes smoked. This model has
two interesting features. Firstly, if the number of cigarettes smoked was
modelled as a continuous univariate response, there would be a large spike at
zero, which would violate any simple Normal theory. However, in the
multivariate framework, these individuals are properly included by the first
binary response. Secondly, the covariance between the two responses at
higher levels can be very informative. In Duncan et al. the individuals were
nested within neighbourhoods. A positive covariance at the neighbourhood level
means that smokers who are in an area where the probability of smoking is high
will tend to smoke more cigarettes than smokers in an area where the
probability of smoking is low. In other words: if you are a smoker and a lot
people around you are smoking you will smoke greater numbers of cigarettes
than if you are not surrounded by smokers.

2.5.3. Research problem and dataset

In Section 2.3.4 a Poisson multilevel model was fitted to the counts of road
accidents to identify within-county and within-region variability of the effect of
speeding and drinking-and-driving police controls on road accidents. An offset
term was included (see section 2.3.4), in order to model the accident rates per
population. Results had indicated a significant regional variation in road
accident occurrence, as well as a significant effect of both types of police
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enforcement explaining the accident reduction within the examined period.
Additionally, models with extra-Poisson variation assumptions (overdispersion)
and Negative Binomial assumptions were proved to be more flexible in relation
to standard Poisson variation assumptions, correcting for the overestimation of
the significances of parameter estimates due to overdispersion.

In this section, the effect of alcohol enforcement on both road accidents and
road fatalities is examined. The interest of this analysis lies in the fact that road
accident severity (number of fatalities) may or may not be related to accident
frequency (number of accidents). In particular, an improved road environment or
an increase in traffic may be the causes of fewer fatalities within the same
number of accidents. Accordingly, the intensification of police enforcement may
or may not have the same effect on the number of accidents as on the number
of related fatalities.

Therefore, the dataset presented in Section 2.3.4. is used to demonstrate
bivariate multilevel modelling. This dataset includes the number of road traffic
accidents and related fatalities in 49 counties nested within 12 regions of
Greece for the period 1998-2002. As mentioned in Section 2.3.4, this period
corresponds to a considerable intensification of police enforcement.

Bivariate models are therefore developed, with the following variables (Table
2.5.2):

region 1-12 regions of Greece

county 1-49 counties of Greece

accidents The number of accidents of each county

killed The number of fatalities in the road accidents of each county
alcontrol (1000) The number of alcohol controls of each county

Pop (10000) The population of each county

Cons The constant term

Table 2.5.2. Variables and values considered in the analysis

It should be noted that, as in the example of univariate Poisson models, the
Athens and Thessalonica metropolitan areas, where a disproportional high
number of accidents and police controls are observed, were not included in the
dataset. Additionally, only the number of alcohol controls is examined as
explanatory variable, since in the previous example (section 2.3.4) it was
proved that alcohol and speed enforcement are significantly correlated and
therefore they should not be examined jointly.

In order to demonstrate the particularities of multivariate multilevel models in

case of non - normal responses, two examples are shown:

e An example concerning the Normal bivariate multilevel model; on that
purpose, the rates of accidents and fatalities per population were log-
transformed and assumed to be normally distributed

e An example concerning the hybrid Poisson - Normal model, by assuming
extra-Poisson distributions for the counts of accidents and fatalities and
Normal distribution for the higher-level variation. It should be noted that all
the assumptions of Poisson multilevel models described in Section 2.3.4
also apply in this case.
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2.5.4. Model fit, diagnostics, and interpretation of results
2.5.4.1. A Normal multivariate multilevel model

In this example, the rates of accidents and fatalities per county population were
log-transformed, allowing assuming a Normal distribution for the two responses.
The initial stage of the analysis concerns a two-level model, which is specified
in order to define the bivariate response variable. In particular, level 1 is defined
as a dummy variable indicating the presence of each response and level 2 is
defined as the respective value of each response. Therefore, a response
variable of 98 units (counties) is created; 49 units corresponding to the 1%
response (accidents per population) and 49 units corresponding to the 2"
response (fatalities per population). Results are presented in Table 2.5.3.

Model 1
Log (accs/pop) Log (killed/pop)

Fixed effects
constant 2.691 (0.029) 0.739 (0.026)
Level 2
Random effects
G (constant) 0.213 (0.019)
oy (constant) 0.168 (0.015)
0u01j2 (constant/constant) 0.077 (0.013)
-2*Log - likelihood 528.92

Table 2.5.3: Effects of the basic two-level Normal bivariate model (intercept only)

The intercept terms of the two responses are both highly significant.
Additionally, a significant between-response covariance indicates that the two
responses follow similar trends. When proceeding in adding a fixed slope for
alcohol controls, the results presented in Table 2.5.4 indicate that, although the
effect of alcohol enforcement is intuitive (i.e. a negative parameter is obtained)
for both responses, it is significant only for accidents. Moreover, the variance of
the effect across counties is marginally significant for both responses and no
covariance of the effect of enforcement between responses is obtained.

Given that the higher-level variation for the two-level model is not significant, it
is unlikely that a three-model would be more efficient (i.e. further partitioning of
the random variation would not be meaningful). Moreover, convergence
problems were encountered, not allowing for the estimation of the three-level
Normal bivariate model, whose results could confirm this assumption. In the
following section, the same research problem is estimated under extra-Poisson
assumptions for the two responses.
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Model 2

Fixed effects

constant

Alcontrols

Level 2

Random effects

O'uojz (constant)

Outj, (constant)

Ouzj, (alcontrols)

Ou; (alcontrols)

Ouwo1 (Ccovariance constant/constant)
Ouwo2 (Covariance constant/alcontrols

Log (accs/pop) Log (killed/pop)

2.776 (0.036)
-0.014 (0.003)

0.757 (0.033)
-0.003 (0.003)

0.237 (0.029)
0.190 (0.024)
0.000237 (0.000117)
0.000125 (0.000087)
0.080(0.020)
-0.006 (0.002)

0.000 (0.000)
Ou12 (covariance alcontrols/constant
Ou13 (covariance alcontrols/constant
Ou23 (covariance alcontrols/alcontrols)

-0.003 (0.003)

(

( )
Oyo3 (covariance constant/alcontrols)

( )

( ) -0.003 (0.002)

(

0.00013 (0.00009 )

-2*Log - likelihood 479.16
Table 2.5.4: Effects of the two-level Normal bivariate model (intercept and slope)

2.5.4.2. A hybrid Poisson - Normal multivariate multilevel model

In this case, the untransformed accidents and fatalities counts are used , and
assumed to be extra - Poisson®’ distributed. However, the higher level variation
is assumed to be Normally distributed. As previously, a two-level model is
initially considered, in order to define the bivariate response variable. The
natural logarithm of the population is used as an offset in both responses, and
so the accident rates per county population are modelled. It should be noted
that extra-Poisson distributional assumptions are made so as to allow for more
flexibility in the estimations. In particular, the basic assumption of Poisson
multilevel models, being that the "real" level-1 variance is assumed to be known
(i.e. the variance at the county level), reduces the number of fixed and random
parameters that need to be estimated.

The modelling results for the simple examination of variability between
responses (two-level model with fixed intercept) are presented in Table 2.5.5.1t
is noted that conceptually this is the equivalent of a single-level bivariate model.

It is interesting to notice that the intercept terms of the two responses are both
highly significant. Additionally, a significant between-response covariance
indicates that the two responses follow similar trends. When proceeding in
adding a fixed slope for alcohol controls, the results presented in Table 2.5.6
indicate that the effect of alcohol enforcement is significant both for the number
of accidents and for the number of fatalities.

% In section 2.3.4, extra-Poisson distributional assumptions were found to be suitable for
modeling this data
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At the next stage, it is examined whether the regional effect on the responses is
significant, by adding a 3" level to the model (which would correspond to the 2™
level of the respective univariate model) and introducing a random intercept.

Model 3
Accidents Killed
Fixed effects
constant -6.471 (0.025) -8.380 (0.023)
Cov (accs/killed) 4.691 (0.042)

Table 2.5.5.. Effects of the basic two-level Poisson - Normal bivariate model
(intercept only)

Model 4
Accidents Killed
Fixed effects -6.455 (0.023) -8.372 (0.023)
constant
alcontrols -0.019 (0.003) -0.006 (0.002)
Cov (accs/killed) 4.139 (0.657)

Table 2.5.6._Effects of the two-level Poisson - Normal bivariate model (intercept and
slope)

The results presented in Table 2.5.7 show a significant regional variation of both
accidents and fatalities, as well as a significant covariance between the two
intercepts. Additionally, the regional variability of the intercept is higher for the
number of accidents, as indicated by the values of the related mean variances.
Moreover, it is interesting to notice that the covariance between responses and
its significance is reduced in comparison to those of Model 4. It can be deduced
that the variation of accidents and persons killed also follows the same trend
within different regions, i.e., some of the covariance between accidents and
persons killed is situated at the regional level.

Model 5

Accidents Killed
Fixed effects
constant -6.453 (0.044) -8.382 (0.028)
alcontrols
Random effects
Level 3
0w’ (constant) 0.092 (0.021) 0.016 (0.008)
0w (alcontrols)
Ouwoi® (covariance) 0.025(0.010)
Cov (accs/killed) 2.898 (0.556)

Table 2.5.7. Effects of the three-level Poisson - Normal bivariate model (random

intercept only)
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By adding a random slope to the model, the results shown in Table 2.5.8 are
obtained (Model 6). It is noted that, for practical reasons, only variances
(diagonal matrix) are presented. It appears that the mean effect of enforcement
on the number of accidents is higher compared to the related effect on persons
killed. However, the regional variation of alcohol enforcement effects is very low
as far as both number of accidents and persons killed are concerned and only
significant as far as the number of accidents is concerned.

Model 6

Accidents Killed
Fixed effects
Constant -6.475 (0.038) -8.381 (0.026)
alcontrols -0.025 (0.004) -0.004 (0.002)
Random effects
Level 3
0qu (constant) 0.053 (0.014) 0.010 (0.007)
omz (alcontrols) 0.0004 (0.0002) 0.0001 (0.002)
Cov (accs/killed) 3.313 (0.556)

Table 2.5.8. Effects of the three-level Poisson - Normal bivariate model (random
intercept & slope)

At this stage, there is enough evidence that road accidents and road fatalities
present a significantly different regional variation. Additionally, the increase of
alcohol controls is associated to a significantly different reduction on accidents
and persons killed at national level. However, while the effect of alcohol controls
on accidents varies significantly between regions, the respective effect on
persons killed does not. .

The above example concerns a multivariate modelling process under Poisson -
Normal assumptions. A significant regional variation was observed in both
responses. However, a significant variation related to the effect of alcohol
controls was observed for accidents only. A less complex univariate model was
successfully fitted on the accidents data in Section 2.3.4, and the results had
indicated a somewhat higher regional effect of enforcement than the one
obtained in the present bivariate analysis. It should be underlined that, for
validation purposes, a univariate Poisson model for the number of persons
killed was also fitted to the data and the non-significant regional variation of the
effect of alcohol enforcement was confirmed. Additionally, the magnitude of
fixed effects was also slightly different.

Summarizing, the multivariate structure provides slightly different results as far
as the magnitude of the examined effects is concerned, which is due to the fact
that dependencies among the two responses are taken into account. In the
present example, the number of persons killed in accidents is strongly related to
the number of accidents. However, the alcohol enforcement mainly affects the
number of accidents. It can therefore be deduced that an increase of alcohol
controls is related to a significant decrease of accidents. The number of persons
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killed probably decreases because the number of accidents decreases and not
because of a direct effect of alcohol controls.

The results seem to indicate that the nationwide intensification of enforcement
had an important effect mainly on severe accidents (which may resulting from
more risk-taking behaviour, such as speeding). In particular, drivers may have
perceived an overall increase of the presence of the Police and adopted their
behaviour accordingly, resulting in a significant decrease of severe accidents at
national level, and a related decrease on fatalities. However, the effect of
enforcement on less severe accidents (resulting from less risk-taking behaviour)
varies significantly among regions, and appears to be more dependent to the
regional / local presence of the Police on the road network.

2.5.5. Conclusions over techniques

In this section, a multivariate multilevel modelling process was demonstrated.
The main interest of the examples presented lies in the illustration of the lower-
level structuring to build a multiple response model. In particular, the basic
multilevel model structure is exploited to create a multivariate analysis, by
shifting the hierarchical structure one level higher and substituting the bottom-
level with dummy variables to account for the multiple responses. This process
provides several interesting features, mainly concerning the treatment of
missing values and the consideration of dependencies among responses.

The examples presented above concerned the effect of alcohol enforcement on
the number of road accidents and related casualties. Two approaches were
explored as far as the distributional assumptions of the responses are
concerned: a bivariate Normal model (resulting from a log-transformation of the
responses) and a bivariate hybrid Poisson - Normal model (in which extra-
Poisson assumptions were considered for the two responses, with the variation
at higher levels to be assumed as Normal). It is underlined that the latter
approach is different from the full Poisson bivariate model, in which the variation
at all levels is Poisson.

The bivariate Normal modelling approach was proved to be less efficient for the
investigation of the research question examined, as convergence problems
were encountered in the more complicated (and more interesting) models. On
the other hand, a three-level hybrid Poisson - Normal model was successfully
fitted to the data, providing some insightful results. It can be said that this
model, having fewer parameters to be estimated, is more parsimonious and
thus more flexible.

The multivariate modelling processes described above can be applied
accordingly to normal, binary, count or mixed responses. Some of the
particularities of multivariate multilevel modelling of discrete responses in
relation to Normal responses were briefly discussed in the framework of the
above examples. However, it is always recommended to begin by fitting simple
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univariate models for each response, in order to explore the variability of
regional or other effects and the explanatory power of variables, before
proceeding to a more complex structure.



2.6 Structural equations models

Christian Brandstaetter and Michael Smuc (KfV)

2.6.1 Objective of the technique

In this chapter, we will introduce concepts for latent dimensions. Often the most
important variables are not directly observable. This is true especially for most
concepts in psychology, e.g. attitudes, motives or personality traits. In these
cases the underlying construct cannot be measured directly, but nevertheless
can be assessed indirectly by measuring a number of relevant indicators.
Furthermore, the interdependency between these latent dimensions should be
analysed. Structural equation modelling, and the special case of factor analysis,
was developed for this purpose.

It is important to carry out such analyses where individuals are grouped within
hierarchies in a multilevel framework. For example, one may be interested in
attitudes with regard to new technologies relevant for traffic safety correlated
with driver characteristics. Data on such indicators may be available in different
countries and one can postulate a model whereby the underlying attitudes and
characteristics vary from country to country (level 2) and also vary randomly
over individuals within countries (level 1).

2.6.2 Model definition and assumptions

The theory and application of single level structural equation models, including
the special cases of observed variable path models and factor analysis models,
is well known (Joreskog and Sorbom, 1979, McDonald, 1985). In this chapter,
we look at multilevel generalisations of these models. We will not give details of
estimation procedures that are set out in Goldstein and McDonald (1987),
McDonald and Goldstein (1988) with elaborations by Muthen (1989) and
Longford and Muthen (1992). McDonald (1994) presents an informal overview.

One first considers a basic 2-level factor model where a set of measurements
for each person within a sample of countries is available. For the i level 1
responses, we first write a multivariate model with i responses, where in general
some may be randomly missing.

vy =(XP); + ) ez, (2.6.1)

One may wish to identify some of these factors as the ‘same’ factors at each
level, for example by constraining certain loadings to be zero. This means for
example that he observe variables for each level have the same correlation with
the underlying factor, the latent variable.

A straightforward and consistent procedure for estimating the parameters of this
factor model is to perform it in two stages. The first stage involves the
estimation of the separate level 1 and level 2 residual covariance matrices. The



Chapter 2 — Multilevel modelling

second stage involves the factor analysis of these separate matrices using any
standard procedure.

All structural equation models, in short SEM, have important assumptions,
which have to be known when applying such a concept.

2.6.2.1. Multivariate normal distribution of the indicators

Each indicator whih means he observed variables should be normally
distributed for each value of each other indicator. Even small departures from
multivariate normality can lead to large differences in the chi-square test,
undermining its utility. In general, violation of this assumption inflates chi-
square, but under certain circumstances may deflate it. Use of ordinal or
dichotomous measurement is a cause of violation of multivariate normality.
Please note that multivariate normality is required by maximum likelihood
estimation (MLE), which is the dominant method in SEM for estimating structure
coefficients. Specifically, MLE requires normally distributed endogenous (i.e.
latent or factor) variables.

The Bollen-Stine bootstrap and Satorra-Bentler adjusted chi-square are used for
inference of exact structural fit when there is reason to think there is lack of
multivariate normality or another distributional misspecification. Other non-MLE
methods of estimation exist; some do not require the assumption of multivariate
normality.

Under conditions of severe non-normality of data, SEM parameter estimates
(ex., path estimates) are still fairly accurate, but corresponding significance
coefficients are too high. Chi-square values, for instance, are inflated. Recall for
the chi-square test of goodness of fit for the model as a whole, the chi-square
value should not be significant if there is a good model fit; the higher the chi-
square, the more the difference of the model-estimated and actual covariance
matrices, hence the worse the model fit. Inflated chi-square could lead
researchers to think that their models were more in need of modification than
they actually were. Lack of multivariate normality usually inflates the chi-square
statistic such that the overall chi-square fit statistic for the model as a whole is
biased toward Type | error (rejecting a model which should not be rejected). The
same bias also occurs for other indexes of fit besides the chi-square model.
Violation of multivariate normality also tends to deflate (underestimate) standard
errors moderately to severely. These smaller-than-they-should-be standard
errors mean that regression paths and factor/error covariances are found to be
statistically significant more often than they should be.

2.6.2.2. Multivariate normal distribution of the latent dependent variables

Each dependent latent variable in the model should be normally distributed for
each value of the other latent variables. Dichotomous latent variables violate
this assumption. In this case, other classes of models should be used.

2.6.2.3. Linearity

SEM assumes linear relationships between indicator and latent variables, and
between latent variables themselves. However, as with regression, it is possible



2.6 Structural equation modelling

to add exponential, logarithmic, or other non-linear transformations of the
original variable to the model.

One might think SEM's use of MLE estimation means that linearity is not
assumed, as in logistic regression. However, in SEM, MLE estimates the
parameters that best reproduce the sample covariance matrix, and the
covariance matrix assumes linearity. That is, while the parameters are
estimated in a non-linear way, they are in turn reflecting a matrix requiring linear
assumptions.

2.6.2.4. Indirect measurement

Typically, all variables in the model are latent variables. Multiple indicators
(three or more) should be used to measure each latent variable in the model.
Regression can be seen as a special case of SEM in which there is only one
indicator per latent variable. Modelling error in SEM requires there should be
more than one measure of each latent variable. If there are only two indicators,
they should be correlated so that the specified correlation can be used, in effect,
as a third indicator and thus prevent under-identification of the model.

2.6.2.5. Low measurement error

Multiple indicators are part of a strategy to lower measurement error and
increase data reliability. Measurement error attenuates the correlation and
covariance on which SEM is based. Measurement error in the exogenous
variables biases the estimated structure (path) coefficients, but in unpredictable
ways (up or down) dependent on specific models. Measurement error in the
endogenous variables is biased towards underestimation of structure
coefficients if exogenous variables are highly reliable, but otherwise bias is
unpredictable in direction.

2.6.2.6. Complete data or appropriate data imputation

As a corollary of low measurement error, the researcher must have a complete
or near-complete dataset, or must use appropriate data imputation methods for
missing cases.

2.6.2.7. Not theoretically under-identified or just-identified

A model is just identified or saturated if there are as many parameters to be
estimated as there are elements in the covariance matrix. For instance,
consider the model in which V1 causes V2 and also causes V3, and V2 also
causes V3. There are three parameters in the model, and there are three
covariance elements (1,2; 1,3; 2,3). In this just-identified case, one can compute
the path parameters, but in doing so, uses up all the available degrees of
freedom. Therefore, one cannot compute goodness of fit tests on the model.
AMOS and other SEM software will report degrees of freedom as 0, chi-square
as 0, and then p cannot be computed.

A model is under-identified if there are more parameters to be estimated than
there are elements in the covariance matrix. The mathematical properties of

|
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under-identified models prevent a unique solution to the parameter estimates
and prevent goodness of fit tests on the model.

In most cases, researchers want an over-identified model, which means one
where the number of known (observed variable variances and covariances) is
greater than the number of unknowns (parameters to be estimated). When one
has over-identification, the number of degrees of freedom will be positive (recall
AMOS has a DF tool icon to check this easily). Thus, in SEM software output,
the listing for degrees of freedom for the chi-square model is a measure of the
degree of over-identification of the model.

The researcher is well advised to run SEM on pre-test or fictional data prior to
data collection, since this will usually reveal under-identification or just-
identification. One good reason to do this is because one solution to under-
identification is adding more exogenous variables, which must be done prior to
collecting data.

2.6.2.8. Recursivity

Recursive models are never under-identified (that is, they are never models
which are not solvable because they have more parameters than observations).
A model is recursive if all arrows flow one way, with no feedback looping, and
disturbance (residual error) terms for the endogenous variables are
uncorrelated. That is, recursive models are ones where all arrows are
unidirectional without feedback loops and the researcher can assume
covariances of disturbance terms are all zero, meaning that unmeasured
variables that are determinants of the endogenous variables are uncorrelated
with each other and therefore do not form feedback loops. Models with
correlated disturbance terms may be treated as recursive only as long as there
are no direct effects among the endogenous variables. Note hat recursivity is
just a guarantee for identification and that non-recursive models may also be
solvable (not under-identified) under certain circumstances.

2.6.2.9. Not empirically identified due to high multicollinearity

A model can be theoretically identified but still not solvable due to such
empirical problems as high multicollinearity in any model, or path estimates
close to zero in non-recursive models. There are some signs of high
multicollinearity:
o Since all the latent variables in a SEM model have been assigned a
metric of 1, all the standardized regression weights should be within the
range of plus or minus 1. When there is a multicollinearity problem, a
weight close to 1 indicates the two variables are close to being identical.
When these two nearly identical latent variables are then used as causes
of a third latent variable, the SEM method will have difficulty computing
separate regression weights for the two paths from the nearly-equal
variables and the third variable. As a result it may well come up with one
standardized regression weight greater than +1 and one weight less than
-1 for these two paths.
o Likewise, when there are two nearly identical latent variables, and these
two are used as causes of a third latent variable, the difficulty in
computing separate regression weights may well be reflected in much
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larger standard errors for these paths than for other paths in the model,
reflecting high multicollinearity of the two nearly identical variables.

o Likewise, the same difficulty in computing separate regression weights
may well be reflected in high covariances of the parameter estimates for
these paths - estimates much higher than the covariances of parameter
estimates for other paths in the model.

o Another effect of the same multicollinearity syndrome may be negative
error variance estimates. In the example above of two nearly identical
latent variables causing a third latent variable, the variance estimate of
this third variable may be negative.

2.6.2.10. Interval data are assumed

Unlike traditional path analysis, SEM explicitly models error, including error
arising from use of ordinal data. Exogenous variables may be dichotomies or
dummy variables, but unless special approaches are categorical, dummy
variables may not be used as endogenous variables. Use of ordinal or
dichotomous measurement to represent an underlying continuous variable is, of
course, truncation of range and leads to attenuation of the coefficients in the
correlation matrix used by SEM.

2.6.2.11. High precision

Whether data are interval or ordinal, they should have a large number of values.
If variables have a very small number of values, methodological problems arise
in comparing variances and covariances, which is central to SEM.

2.6.2.12. Small, random residuals

The mean of the residuals (observed minus estimated covariances) should be
zero, as in regression. A well-fitting model will have small residuals. Large
residuals suggest model misspecification (i.e. paths may need to be added to
the model, AMOS or LISREL provide tools to help the researcher in model
building based on tests of size of the residuals).

Uncorrelated error terms are assumed, as in regression, but if present and
specified explicitly in the model by the researcher, correlated error may be
estimated and modelled in SEM.

2.6.2.13. Uncorrelated residual error

The covariance of the predicted dependent scores and the residuals should be
zero.

2.6.2.14. Multicollinearity

Complete multicollinearity is assumed to be absent, but correlation among the
independents may be modelled explicitly in SEM. Complete multicollinearity will
result in singular covariance matrices, on which one cannot perform certain
calculations (e.g. matrix inversion) because division by zero will occur. Hence
complete multicollinearity prevents a SEM solution. Also, when the correlation

|
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between indicator variables r>=0.85, multicollinearity is considered high, and
empirical under-identification may be a problem. Even when a solution is
possible, high multicollinearity decreases the reliability of SEM estimates.
Strategies for dealing with covariance matrices that are not positive definitely
add a ridge constant, which is a weight added to the covariance matrix diagonal
(the ridge) to make all numbers in the diagonal positive. However, this strategy
can result in markedly different chi-square fit statistics. Other strategies include
removing one or more highly correlated items to reduce multicollinearity: using
different starting values, using different reference items for the metrics, using
ULS rather than MLE estimation (ULS does not require a positive definite
covariance matrix), replacing tetrachoric correlations with Pearsonian
correlations in the input correlation matrix, and making sure to handle missing
data list-wise rather than pair-wise because otherwise the result is often a non
positive definite correlation matrix.

2.6.2.15. Non-zero covariances

Measures of fit compare model-implied covariances with observed covariances,
measuring the improvement in fit compared to the difference between a null
model with covariances as zero, on the one hand, and the observed
covariances on the other. As the observed covariances approach zero, there is
no "lack of fit" to explain it (the null model approaches the observed covariance
matrix). More generally, "good fit" will be harder to demonstrate as the variables
in the SEM model have low correlations with each other. That is, low observed
correlations often will bias model chi-square and other fit measures towards
indicating good fit.

2.6.2.16. Sample size

Sample size should not be small as SEM relies on tests that are sensitive to
sample size, as well as to the magnitude of differences in covariance matrices.
In the literature, sample sizes commonly run 200-400 for models with 10-15
indicators. With over ten variables, sample size under 200 generally means
parameter estimates are unstable and significance tests lack power.

One rule of thumb found in the literature is that sample size should be at least
50 more than 8 times the number of variables in the model. Another rule of
thumb is to have at least 15 cases per measured variable or indicator. The
researcher should go beyond these minimum sample size recommendations,
particularly when data are non-normal (skewed, kurtotic) or incomplete. Note
also that to compute the asymptotic covariance matrix, one needs k(k+1)/2
observations, where k is the number of variables.

2.6.3 Dataset and research problem

Many expectations are connected with new technical developments, both from
the safety side and from the consumer side. SARTRE 3 will yield data that tells
us about the acceptance of various systems and also how realistic the drivers
will perceive the effects of such systems. This is of great importance as new
features in road traffic may change the perception of risk and safety; this know-
how is important for designing measures to counteract wrong safety beliefs. We
will use data from the SARTRE 3 survey to investigate if there are any factors
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that support the acceptance and use of safety relevant systems, which might
even restrict some freedom of the drivers. Acceptance of new technologies,
driving experience, nationality, profession and economic status will be relevant
factors of special interest. A multivariate SEM analysis was applied to take the
complex relationship of these factors into account.

The aim of this is to describe how characteristics of the drivers and
characteristics of specific technologies are related. When considering the
introduction of new measures in traffic it is important to know if different types of
drivers will react in a different way to these changes, or if there will be a
common effect. This issue also applies to the introduction of new technologies.
Still, the qualities of new technologies are also quite different from a
psychological perspective.

Therefore the analysis undertaken distinguishes three different aspects of
drivers and three different aspects of new technologies:

Driver (User) characteristics

- Emotional driving

- Professional car use

- Socio-economic characteristics

These three aspects have been extracted by principal component analysis from
the SARTRE 3 questionnaire data and can shortly be described as follows:

Emotional driving covers a mix of driving habits and feelings when driving.
Professional car use is a description of exposure characteristics. Emotional
driving and professional car use are dimensions that are related to some extent.
Socio-economic characteristics bring in another dimension, which is more or
less independent from the other dimensions.

Technology characteristics (benefits)

- Assistance and guidance systems
- Warning and intervention systems
- Enforcement systems

LISREL was used (software AMOS, v5.0) for data analysis. LISREL stands for
linear structural relation. By analysing the covariance matrix, the tool allows for
the estimation of the weights of paths for defined models. Goodness of fit
characteristics show how well the model represents the data.

The goal of this type of analysis was to aggregate data with factor analysis from
many questions of the survey to a few distinct latent dimensions on the driver
and on the technology side. This leads to a reduction of effect parameters to a
manageable size. The relations between the factors — called the structural
equation model in LISREL terms — can then be interpreted as an underlying,
inner structure between driver and technology characteristics.
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2.6.4 Model fit diagnostics and interpretation

In practice, the multilevel software available at this point in time offers only
limited possibilities to estimate structural equation models. On the contrary,
LISREL, which is the most appropriate software for structural equation
modelling, does not allow the inclusion of multiple levels. Therefore, the model
presented in the following research example, is not really a dedicated multilevel
analysis. To illustrate the consequences of a multilevel structure, a two-step
analysis was conducted:

First, data from all available 23 countries was put together to find a general
model that fits to all countries. In the next step, a confirmatory analysis was
conducted for every single country. Various goodness of fit statistics were
calculated to indicate whether the factor-structure given by the general model
could be applied to the country in question. This was the case for 19 countries.
For the UK and the Czech Republic, an alternative model with extrapolated
missing cases produced an acceptable fit. For four countries, the given factor
structure did not lead to an acceptable fit. Their results are not considered in the
following analysis. These countries were Belgium, Ireland, Portugal and Croatia.

In the future, especially with the newer versions of LISREL it will be possible to
do real multilevel analysis of SEM models.

It is proposed that there are clearly defined relations between the six
characteristics (arrows, whose weights point out the influence between factors)
— the three driver characteristics and the three technology characteristics — in
the following graph (Figure 2.6.1.), displayed as ellipsis.
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Figure 2.6.1: Proposed relations between driver and technology characteristics and
questions used for operationalisation of those characteristics (short description of
abbreviations/questions in the next section). Small circles represent the error terms.

These “true” dimensions are operationalised - measured by items of the
SARTRE 3 questionnaire. In the graph, a set of questions is displayed on the
left side; each question is presented by a box. These questions were used for
measuring driver characteristics. The boxes on the right side are those that are
used for distinguishing technology characteristics.

2.6.4.1. Measuring driver characteristics

There were only a few items in the questionnaire that really helped to
distinguish different characteristics of drivers. We have chosen the following 10
items to identify the three proposed driver characteristics:

v car usage (Q48: What applies most to you? | drive for my profession; |
need to drive during my work; | drive to and from work)

£ Transport
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v

NN

AN

v
v

private situation (Q43: Which of the following applies best to you at the
moment? Single; Living under common law marriage; Married; Separated
or divorced; Widowed)

How much do you agree with the following statements:

annoyed by other drivers (Q29a: | sometimes get very annoyed with
other drivers)

enjoy driving fast (Q29b: | enjoy driving fast)

driving without a break (Q54: What is the longest period of time in hours
you would spend driving without taking a break?)

exposure (In total about how many kilometres/miles have you driven in
the last 12 months? in classes of 5,000 km)

engine size (Q50: About the car you usually drive, is it a car with engine
size of...?7 in classes of 1,000 CC)

income (Q55: total annual income level per family unit)

vehicle age (Q53: How old is the vehicle you normally drive?)

2.6.4.2. Measuring technology characteristics

For distinguishing technology characteristics, we used the following items from
the SARTRE 3 questionnaire:

v

v

manufacturers should modify their vehicles to restrict their maximum
speed (Q28b)

Do you find it useful to have a device like:

o navigation system (Q30a)

o congestion warning system (Q30b)

o system which prevented from exceeding the speed limit (Q30c)

o alcometer (Q30d)

o system which detected 'fatigue' (Q30e)

Are you in favour of:

o speed limiting device (Q31a: Speed limiting devices fitted to cars that
prevented drivers exceeding the speed limit)

black box to record...speeding (Q31c)

black box to identify...accident causes (Q31b)

electronic identification to give access to services (Q31d)

electronic identification for police enforcement (Q31¢)

cameras for red light enforcement (Q34a)

speed cameras (Q34b)

O O O 0O 0 O

The results for the measurement model of the driver characteristics (left side of
Figure 2.6.1.) and technology characteristics (right side of Figure 2.6.1.) are
collected in Table 2.6.1.:
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driver characteristics Mean | StdDev
annoyed (929 _a) <--- emotional driving -0,2 0,2
enjoy fast (q29 _b) <--- emotional driving -0,5 0,2
priv. situation (q43) <--- emotional driving -0,3 0,1
without break (q54) <--- emotional driving 0,2 0,1
without break (g54) <--- profession 0,3 0,1
exposure (kilom_cl) <--- profession 0,7 0,1
enjoy fast (q29_b) <--- profession -0,2 0,2
car usage (g48) <--- profession -0,6 0,2
engine size (q50) <--- profession 0,3 0,3
engine size (g50) <--- low economic status -0,2 0,3
income (g55) <--- low economic status -0,4 0,1
vehicle age (953 _cl) <--- low economic status 0,2 0,1
technology characteristics Mean | StdDev
navigation (g30_a) <--- assistance & guidance -0,7 0,1
traffic jam warning (g30_b) <--- assistance & guidance -0,8 0,0
speed delimiter (q30_c) <--- assistance & guidance -0,2 0,1
alcohol meter (930_d) <--- assistance & guidance -0,3 0,1
fatigue (930 _e) <--- assistance & guidance -0,3 0,1
electronic services (q31_d) <--- assistance & guidance -0,2 0,1
speed delimeiter (g30_c) <--- warning & intervention -0,7 0,1
alcohol meter (g30_d) <--- warning & intervention -0,3 0,1
fatigue (930_e) <--- warning & intervention -0,4 0.1
speedlim. device (31_a) <--- warning & intervention -0,9 0,0
manufact. modify (q28_b) <--- warning & intervention -0,5 0,2
black box to record (g31 ¢) <--- enforcement -0,7 0,0
electronic services (g31_d) <--- enforcement -0,4 0,1
electronic serv. for police (g31_e) <--- enforcement -0,7 0,1
autom. cams f. red light (934_a) <--- enforcement -0,4 0,1
surveill. f. autom. cams (34 _b) <--- enforcement -0,6 0,1
black box to identify (q31_b) <--- enforcement -0,6 0,1

Table 2.6.1.: Mean factor loadings and standard deviations for the general model. For
technology characteristics, high negative values indicate higher support. For driver
characteristics, high negative values, i.e. q29a,b, indicate more emotional driving,
higher positive values in exposure more profession.

The dimension assistance and guidance systems represents, with high weights,
the support for navigation (0.7) and congestion warning with 0.8. But this
dimension also represents systems that were previously classified in the
technologies “that impose behaviours” - alcohol meter and fatigue warning (0.3)
and speed limiting device and electronic services (0.2).

The dimension Support for warning and intervention largely represents the
previous classification of systems that impose behaviour. It represents the
questions about the usefulness of speed limiting devices (0.7), alcohol meter
(0.3), and fatigue warning (0.4). These variables are also considered in the
dimension assistance and guidance systems. Furthermore, the answers are
represented in the dimension if speed-limiting devices (0.9) are favoured, and if
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car manufacturers should modify their vehicles to restrict their maximum speed
(0.5).

Support for enforcement systems, the third dimension, corresponds with the
previously used classification of enforcement systems. It represents the
questions about black box to record drivers’ behaviour (0.7) or to identify what
caused an accident (0.6), electronic identification to give access to services
(0.4; also in dimension assistance and guidance) and electronic identification for
enforcement by the police (0.7). Also, the questions about automated cameras
for red light surveillance (0.4) and speed excess (0.6) have been taken into
account.

In the central, structural part of the model, all dimensions between the driver
and the technology part are connected to each other. Due to technical, LISREL-
specific reasons, the driver characteristics relate to each other by covariance.
While the covariance values between emotional driving and profession (0.1) and
economic status (0.0) are low, the interrelation between profession and low
economic status are weighted higher by -0.6.

Compared to the outer parts of the model, which consist of factor weights from
specific questions, dimensions behave almost stable over different countries.
There is little variation in driver characteristics and even less variation in
technology characteristics (see Table 2.6.1.); much more variation could be
found in the central part of the model. These findings were taken into
consideration in the following part of this report, which takes the structure
between drivers and technology as a starting point.

Overall, the main results in the structural pattern for all technological systems
are:
o Low economic status drivers are most supportive,
o Professional drivers are also supportive, though less so than the above
group, and
o Emotional drivers do not support new technologies (except assistance
and guidance systems).

Driver characteristics derived from various variables by principal component
analysis are interrelated in the following way: The covariance between low
economic status and professional driving (mean -0.6 for general) is very high in
Cyprus (0.8). Emotional driving and profession (mean 0.1) are highly
interrelated in France, Spain and the UK. Low relations can be found in
Germany and Slovakia. Low economic status and emotional driving do not show
any coherence in the general model (0.0). Above-mean values can be found in
Greece, the Netherlands and Finland. Poland and the UK have below mean
values.

If we take a closer look at similarities in driver characteristics between countries,
emotional drivers show, in general, similar patterns in France and Spain (Table
2.6.2.). Neither supports any new technology. In contrast, the support of new
technologies from Polish and Slovakian emotional drivers lies clearly above the
average, whose support is even at the highest level.



2.6 Structural equation modelling

g 2

s g E g o g 5 8 & - 5 5
: 2 § E § 5 & E 3 2 - & & § ¢ £ B 2 s
3 S N @ % c < @ o =] 5 @ o © © o =  x = 2
®© o o © o = E o) o £ = c a » » a » =1 » 1S
enforcement <--- low economic status = + + - - + + | 1,0
warning & intervention <--- low economic status = + - + - + 1,0
assistance <--- low economic status = - + + + + ] 08
enforcement <--- profession == ++| == —= + + + + 0,7
warning & intervention <--- profession - - - - + + | 06
assistance <--- profession - + + + + ——=J06
enforcement <--- emotional driving -— ++4+ | + + f—— —=1-05
warning & intervention <--- emotional driving + + - —— ++ |+ + - -0,6
assistance <--- emotional driving J— J— ++ | + + == ++| 02

goodness of fit (chi-square/df) 3,1914,02]3,93|2,63[4,85] 3,13|2,60| 3,67 3,41|2,15[3,13]| 3,66] 3,06| 3,71| 3,53 | 4,14[2,78] 3,37 3,96

Table 2.6.2.: Weight differences in the structural part of the model for 19 countries in comparison to the general model. The ‘+’ symbol stands
for higher support, -’ for lower support, where a difference in standard deviation can be found. If standard deviation is higher than 0.5, ‘++” and
“ -’ are used instead. The highest values are marked in orange; the lowest values are marked in blue. Means of weights for the general model
can be found in the last column on the right hand side, goodness of fit statistics in the bottom row.
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Another distinct pattern can be found for drivers characterised by low economic
status. In Finland and the UK, there is high support for warning and intervention
systems as well as enforcement systems in this driver group.

Cyprus and Germany often show similar patterns: The low economic status
group and the professional drivers group do not support new technology
systems. A possible explanation could be that Cypriot drivers’ scepticism
concerning new technologies might be affected by the fact that these
technologies are not easily affordable in their country. In contrast, German
drivers’ expectations might have been scaled down due to experience. There
are, however, many differences in driver characteristics in both countries, hence
these results do not support the “saturation effect” hypothesis. To conclude,
because the differences regarding driver mentalities between these two
countries seem to be very decisive, the experience effect cannot easily be
separated.

Nevertheless, there are still some arguments for the “saturation by experience
effect”. Many traffic experts see Germany as a prime example for the spread of
traffic-related new technologies. German drivers have similar characteristics to
the general model and they show the highest saturation effect. Cypriot driver
characteristics show that prestige plays an important role. Furthermore, the
strong support from the low economic status group reinforces the saturation
hypothesis: The less affordable these systems are, the higher expectations are.

In conclusion, a short summary of the application of structural equation models
is introduced using the relationship of driver characteristics and their
acceptance of new technologies in traffic.

For this analysis we have used a LISREL model, which led to an acceptable fit
for 19 countries. With this method, it was possible to carry out a detailed
analysis about support for different characteristics of new technologies in
relation to different driver characteristics.

Drivers were characterised by dimensions of “emotional driving”, “professional
driving” and drivers with “low economic status”. For new technologies, the
dimensions were distinguished between for “assistance/guidance systems”,
“warning/intervention systems” and “enforcement systems”.

Three main results in driver characteristics can be seen regarding support of
new technologies:

e Low economic status drivers are most supportive of all new technologies,
with their highest support for warning and interventions systems, as well
as for enforcement systems.

e Professional drivers are also supportive, although in general they are
less supportive than the low economic status group. This group shows
the highest support for enforcement systems and slightly lower support
for assistance/guidance and warning/intervention systems.

e Emotional drivers do not support new technologies (except moderate
support for assistance/guidance systems).
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2.6.5 Conclusion

Structural equation modelling offers one of the most complex data analyses in
multivariate research methods. It connects confirmatory factor analysis with
linear regression, creating a latent structure of the analysis. Hypothetical
constructs are taken as latent variables in this approach.

On one hand, this chapter shows the basic form of such models in the multilevel
case, dealing mainly with assumptions on data. On the other hand, this chapter
discusses the necessary theoretical concepts of these models.

Analysis with structural equation models places high requirements on data. The
requirements depend on the selected method of estimation of the unknown
parameters. Assumptions can be divided into general conditions and statistical
conditions. General assumptions consist of: the relationships between the
variables is linear, the effects of explanations on dependant variables is
additive, the relationship between the variables is stochastic. The most
important statistical assumptions are: the variables have to be measured
continuous and are interval-scaled, and they can be represented by the mean,
variance and covariance which is known as a multivariate normal distribution.

At first these models seem ideal to use with a large variety of data but in
practice they turn out to be difficult to implement. One is generally successful if
data collection is carried out with a theoretically-based structural equation model
already in mind. These models are not appropriate for use with exploratory
approaches.
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Eleonora Papadimitriou, Constantinos Antoniou, George Yannis (NTUA)

2.7.1 Introduction

In the previous sections the concepts of multilevel modelling were introduced
and it was shown how to develop simple models under Normal distribution
assumptions for hierarchical data structures in the context of transport and road
safety. It was demonstrated how multilevel models can be applied in the
framework of generalized linear modelling, i.e. under non Normal distributional
assumptions. Moreover, more advanced multilevel models were presented,
including multivariate models, factor analysis and structural equations models.
In these sections the emphasis was on the theoretical background, the models
assumptions and the interpretation of results, by means of modelling examples.

It was shown that the motivation for multilevel modelling in road safety analysis
is that the processes we wish to model often take place in the context of a
hierarchical structure (Rasbash et al., 2000), each level of this hierarchy
contributing to a random variation of the variable of interest. Accordingly, all the
examples presented in the previous sections concerned classical hierarchical
data structures e.g. accidents and fatalities nested into regions, speed
measurements nested into different road sites etc. However, the assumption
that the structures we wish to model are purely hierarchical is often an over-
simplification (Rasbash et al., 2000). Individuals or cases may be classified
according to more than one group at a given higher level of a hierarchy (cross-
classification) and each group can be a source of random variation. For
example, in a mobility analysis, individuals may be classified according to the
transport mode they use and the area they live, while each area may include all
transport modes and each transport mode may serve all areas. Moreover,
individuals or cases may belong to more than one sub-groups of the higher level
group (multiple memberships). For example, in a longitudinal study, individuals
may change area and finally belong to more than one area in the study. These
special cases of hierarchical data structure and the resulting multilevel models,
often referred to as "non-hierarchical" multilevel models (Browne et al., 2001),
are described in the following sections.

2.7.2 Cross - classified data

An example of cross-classified hierarchical structure in the context of road
safety may be the following: within a mobility survey, both the area type an
individual lives in and the travel mode an individual uses have an important
effect on mobility. Therefore, there are two possible higher level classifications
of the individuals examined in the survey and these classifications are not
mutually exclusive.
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While a classical nested multilevel structure can be described as in Figure
2.7.1.A, a crossed multilevel structure can be described as in Figure 2.7.1.B.

Areas Areas Transport modes
(Level 2) (Level 2) (Level 2)
A
Individuals Individuals
(Level 1) (Level 1)
A. Nested multilevel structure B. Crossed multilevel structure

Figure 2.7.1. Nested and crossed multilevel structures

In this case, however, each area includes individuals using different transport
modes and each transport mode also includes individuals from different areas.
Consequently, not only are there two different higher level classifications of the
individuals, but also these two classifications are not mutually exclusive. No
pure hierarchy can be found and individuals are contained within a cross-
classification of transport modes by areas, as shown in Figure 2.7.2.

Transport mode

VAYWINZN

Individual 12 110
(Level 1) %M
Area

(Level 2)

Figure 2.7.2. Cross-classification of individuals within transport modes and areas

It is obvious that individuals can be sorted by transport modes within areas or
areas within transport modes, but not both. The consequences of ignoring an
important cross-classification are similar to those of ignoring an important
hierarchical classification (Rasbash et al. 2000). A simple model describing this
situation can be formulated as:

Yigk) = O+ Uj+ Uk + i) (2.7.1)

Where
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Yig is the mobility of the i individual from the (jk)"" area type / transport
mode combination

a is the overall mean

uj is a random departure due to transport mode j

Uk is a random departure due to area k

€igx is anindividual level random departure

Obviously, the model can be further elaborated by adding level-1 explanatory
variables, whose coefficients may vary across areas or modes. Also, level-2
variables can be incorporated to explain variation across areas or modes.

Starting from the above baseline model, more complex models can also be
formulated, which may include multiple cross-classifications, and/or mixed
nested-and-crossed structures. The following example shows the different
structures and the related formulations of the multilevel equations, which can be
considered according to the specifications of the problem: Within a mobility
survey, individuals (i) are interviewed by interviewers (j); the individuals come
from (k) transport modes and (I) area types.

If each individual is interviewed by a more than one interviewers (in case, for
instance, that a survey has more than one questionnaire and each
questionnaire is processed by a different interviewer), there is an individual /
interviewer cross-classification at Level 1. Moreover, if a different set of
interviewers operates in each transport mode, the Level-1 individual/interviewer
cross-classification is nested within transport mode at level 2. A model
describing this situation can be formulated as:

Yiipk = a+ Uk + €ik + (2.7.2)

The interviewer and interviewee (individual) effects are modelled by the level-1
random variables ex and ey, while the transport mode random effects are
modelled by the level-2 random departure uk (note that the area type effects are
not considered in this model). It should be noted that, in such a model, the
cross-classification does not need to be balanced i.e. some individuals may not
be interviewed by all the interviewers.

If each individual is interviewed by only one interviewer and the same set of
interviewers is used for all transport modes, interviewers are cross-classified
with transport modes. An equation such as (2.7.1) can be used to model this
situation (in this case though, k would refer to interviewers rather than areas). If
transport modes are also crossed by area types, then individuals are nested
within a three-way interviewer/transport mode/area type classification. In this
case, equation (1) can be extended by adding a term v, for the interviewer
classification:

Yi(jkl) = a+ uj + uk + ul + ei(jkl)

Where now i refers to individuals, j refers to interviewers, k refers to transport
mode, and / refers to area type.

(2.7.3)
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Furthermore, if interviewers are not crossed with transport modes (i.e. a
different set of interviewers is used in each transport mode), but transport
modes are crossed with areas (i.e. the same transport mode is used in different
areas), the formulation would become:

Yigky = A+ Uk + Up + Cjki) + €j(ki) (2. 7.4)

It is obvious that, according to the context of the problem, different structures
can be considered; a cross-classification may be present at any level of the
hierarchy, from the lowest (equation 2.7.2) to the highest level (equation 2.7.1).
Moreover, a cross-classification may be multiple (equation 2.7.3). Finally, a
higher level classification may include one cross-classification and one simple
higher level classification (equation 2.7.4). In any case, a related multilevel
formulation is available.

In order to fit a cross-classification multilevel model, a special procedure is
required. For instance, in a level 2 cross-classification with 10 transport modes
drawing individuals from 30 areas (as in equation 1), if the data is sorted by
transport mode and the cross-classification with areas is ignored, the transport
modes impose a block-diagonal structure® on the N by N covariance matrix of
responses, where N is the number of individuals in the data set. In order to
account for the cross-classification of transport modes and areas, a non-block-
diagonal covariance structure needs to be estimated (Rasbash et al. 2000).

This can be achieved by setting a third (higher) level in the model. First, a
"constant" variable is created, with one unit value which covers the entire data
set, and this variable is declared as the third level. Then, thirty dummy variables
are created, one for each area, and their coefficients are set to vary randomly at
level 3, with a separate variance for each of the 30 area. Finally, all 30
variances are constrained to be equal (Rasbash et al, 2000). This constraint is
necessary in order to obtain one common estimate of the level-3 variance.
Other coefficients can be set to vary randomly across modes, as level-2 random
parameters, in the usual way.

However, if a coefficient of a slope is set to vary randomly across areas, the
procedure becomes more complicated, as thirty additional variables need to be
created; these would be obtained as the product of the area dummy variables
and the examined slope. The new variables are set to vary randomly at level 3,
with the respective equality constraint in order to obtain a common estimate.
Furthermore, in order to examine the covariance between intercept and slope,
90 random parameters are needed at level 3: an intercept variance, a slope
variance and an intercept/slope covariance for each of the 30 areas, each set of

% A block matrix is a matrix that is defined using smaller matrices, called blocks. A block
diagonal matrix is a block square matrix, having main diagonal blocks square matrices, such
that the off-diagonal blocks are zero matrices.
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=

Project co-financed by the European Commission, Directorate-General Transport and Energy

Page 151



Chapter 2 — Multilevel Modelling

them (30 intercept variances, 30 covariances and 30 slope variances)
constrained to produce 3 common (level-3) estimates, and so on.

It should be noted that, although a 3-level structure is defined, conceptually only
a 2-level model is considered, in which transport mode and area are crossed at
level 2. The third level is only used as a tool to convert the crossed structure
into a nested structure and allow for estimation of the crossed structure
(Rasbash, Goldstein, 1994).

2.7.3 Multiple membership models

Multiple membership models refer to a situation where, in a 2-level model for
instance, level-1 units belong to two or more level-2 units. Thus, for example, in
a longitudinal study, some individuals (i) may change region and may finally
"belong" to more than one region (j) during the study. This kind of classification
is graphically presented with a double arrow, as in Figure 2.7.3:

Fegion

F ¥ Y

indisiduzal

Figure 2.7.3. Multiple membership structure

When modelling such data, level-2 effects are shared between all the units
(regions) to which an individual belongs. It is therefore necessary to allocate a
set of weights for each individual to attach to these units (Rasbash et al, 2000).
First, it is assumed that an individual belongs to more than one region and this
set of regions is defined as j.. If the weight 17, associated with the j2" region for
individual /, is known, (e.g. the proportion of time spent in that region) with:

J2
ijz =1

=

a simple variance components model can be formulated as:

Yige) = (XB)igz) + Z U e + eigp) (2.7.5)
2
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T = {14, ..., M2}

Mo ={ My, ..., T}

Var (ug?) =o.f,  Cov (uy'”, u?) = 0, Var ( Z up® mip) = 0.° Z i
2 2

In the above formulae, N is the total number of individuals and u®is the (J2x 1)
vector of the regions . effects. This is therefore a 2-level model, in which the
level 2 variation among regions is modelled using j» sets of weights for
individual i (14, ..., miy2) @s explanatory variables, with mi>the (N x 1) vector of
individuals weights for the jo"" region.

For a basic example, we may consider five individuals and three regions
according to the weights of Table 2.7.1 (proportion of time spent in each region):

Region 1 (j=1) Region 2 (j=2) Region 3 (j=3)
Individual 1 (i=1) 0.5 0 0.5
Individual 2 (i=2) 1 0 0
Individual 3 (i=3) 1 0 0
Individual 4 (i=4) 1 0 0
Individual 5 (i=5) 0 0.25 0.75

Table 2.7.1. Multiple membership weights

In this case, individual 1 spent half of his time in region 1 and half of his time in
region 3, and individual 5 spent 25% of his time in region 2 and 75% of his time
in region 3. If we use these weights into formula (2.7.5), we obtain the following
set of formulae:

Yi=XB+05u/®?+05u5? +¢e

Yo=XB + ui® + e

Ys=XB +u/® + ¢

Yi=XB +ui® +eYs=XB+0.25u? +0.75 us? + e

The above example, where an individual sequentially moves from one region to
another is the most frequent case of multiple membership. However, it may also
be the case that individuals alternate between regions and may be considered
as simultaneously belonging to more than one region. This case can also be
dealt with, by using weights which reflect time spent within each region
(Goldstein et al. 2000).

In order to fit a multiple membership model, a process similar to the one used
for the cross-classified models is adopted. Considering the above example, in
which individuals change regions over time, it is necessary to create a set of
variables to attribute the weights corresponding to each region for each
individual. As in cross-classified models, level-2 is defined by a "constant" unit
value variable, which covers the entire dataset. Then, a set of weighted
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indicator variables are created, showing the proportion of time spent in each
region by each individual. For example, if there are 20 regions, 20 new variables
will be created, one for each region, providing the proportion of time spent in
each region by each individual. These weighted indicator variables are set to
randomly vary at level-2. In order to obtain one single variance estimate for all
regions, an equality constraint is imposed for the variances of the 20 regions
(Browne et al. 2001).

It is obvious that, technically, this two-level structure is different from the
classical one; the higher level is not defined by a "real" variable (but from a
"constant" variable) and the higher level variation is not estimated on this higher
level itself (but obtained from a set of variances constrained to be equal).
However, this structure allows for an efficient estimation of higher-level variance
in multiple membership models. For details of these models and examples see
also Hill and Goldstein (1997), Browne et al. (2001).

An interesting sub-case of multiple membership models is the case of spatial
modelling with neighbourhood matrix. In section 2.3.4.6, the applications of
ecological and aggregate spatial analysis in road safety research were briefly
presented. In some of these applications (e.g. MacNab, 2004) spatial variability
is expressed on the basis of neighbourhood (instead of e.g. distance, as in other
studies). The multiple membership structure arises from the fact that each unit
of analysis (e.g. county) neighbours with more than one other unit, leading to a
neighbourhood matrix in which each diagonal element is equal to the number of
neighbours of the corresponding area, and the off-diagonal elements in each
row are equal to —1 if the corresponding areas are neighbours and 0 otherwise,
allowing to weight the data accordingly. These models are mainly fitted by
means of Bayesian approaches (see chapter 2.8).

2.7.4 Summary

The multilevel models described in the previous Chapters of this document were
proved to be capable of dealing with a wide variety of hierarchical data
structures within the context of road safety analysis (accidents analysis, road
users' behaviour, monitoring of road safety measures etc.). These models allow
for both continuous and discrete responses to be modelled, as well as for
different levels of hierarchies to be considered (spatial, qualitative etc.). They
can also handle multiple responses (multinomial responses or multivariate
analyses), as well as longitudinal data (e.g. repeated measurements).

In this section, cases of data having a structure which is not purely hierarchical
were briefly presented. It was shown that level-1 units may be clustered not only
into hierarchically ordered units (e.g., individuals nested within regions, within
countries etc.), but may also belong to more than one type of unit at a given
level of a hierarchy (cross-classification). Moreover, individuals may belong to
more than one sub-groups of a given higher level group (multiple
memberships). It was shown that multilevel models can be extended to handle
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such complex "non-hierarchical" data structures, and the basic formulation of
these models was presented by means of simple indicative examples.

These models allow for such complex structures to be defined and explored,
which would be a difficult or impossible task with conventional techniques. It
should be noted, however, that in practice difficulties may be encountered when
fitting such complex models, both in terms of obtaining satisfactory numerical
convergence and interpreting results (Goldstein et al. 2000). In particular,
conventional estimation methods like maximum likelihood or quasi-likelihood,
which exploit the nested structure of the data in multilevel hierarchical models,
are not efficient in this case. As these two types of structures are not purely
nested, they need to be converted into nested (purely hierarchical) structures,
with a set of constraints reflecting the particularities of the structure (Browne et
al. 2001). More advanced (simulation-based) estimation methods, which are
presented in the next section, apart from their other advantages compared to
the default estimation methods, are also more powerful in dealing with these
complex structures.

N Tran']_‘j"ﬁﬁf'%fl
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Eleonora Papadimitriou, Constantinos Antoniou, George Yannis (NTUA)

2.8.1 General

In all the models presented in the previous sections, conventional default
estimation methods were used in the modelling process and little or no mention
was given to alternative approaches to fitting multilevel models. These default
estimation methods are either maximum likelihood or some approximation of
maximum likelihood (e.g. quasi-likelihood), which are based on Generalized
Least Squares (GLS) estimation. In the present document, maximum likelihood
values were used for Normal models and quasi-likelihood methods were used
for generalized linear models, according to the common practice (Browne et al.
2001).

However, it was mentioned that an important problem rises from the use of
approximation methods; the estimated likelihood ratio is very approximate and
can not be used for the assessment of models fit. Moreover, when default
methods are applied to more complex data structures, such as the "non-
hierarchical" structures mentioned above, numerical and convergence
difficulties are often encountered.

In this section, a group of alternative estimation methods for multilevel models
are described, namely the Markov Chain Monte Carlo (MCMC) and the
bootstrap methods. These advanced estimation methods are both based on
simulation techniques and the estimates they produce are dependent on
randomly generated numbers (Rasbash et al. 2000). In contrast to the default
estimation methods, where a single estimate (described by a mean and a
variance) for a parameter is obtained by a single sample, these simulation
methods generate a large number of samples from the initial sample, and yield
thus a sample of means and a sample of variances, allowing for the calculation
of intervals for parameter estimates. For this reason, they are also able to
provide accurate likelihood statistics.

More specifically, a single sample gives one estimate for the mean and one
estimate for the variance of each parameter. Obviously, the larger the sample
size, the more accurate the mean estimate will be. Accordingly, if a sample of
means estimates and a sample of variances estimates could be available,
interval estimates for the parameters could be calculated. This idea of
generating a large number of samples to create interval estimates is the
motivation behind most simulation methods (Rasbash et al. 2000). In the
following sections two groups of simulation methods that can be used in
multilevel modelling, namely MCMC methods and bootstrap methods, are
presented.
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2.8.2 MCMC methods and Bayesian modelling

In this section, the aim is to provide some background for understanding the
general concepts behind Bayesian statistics (Barnett, 1999) and MCMC - Monte
Carlo Markov Chain methods (see e.g. Casella and George, 1992, Smith and
Gelfland, 1992), as well as their use in the context of multilevel analysis.

The motivation for MCMC comes from the need to obtain accurate statistics
(such as point estimates and confidence intervals) with small samples.

The Generalized Least Squares methods (IGLS - Iterative Generalized Least
Squares and RIGLS - Restricted lterative Generalized Least Squares) were
considered and used in the previous sections of this document in order to
parameter estimates. As the random variables were assumed to have a
multivariate Normal distribution at each level, IGLS gave maximum likelihood
estimates and RIGLS gave restricted maximum likelihood estimates. These
methods are based on iterative procedures and the process involves iterating
until two consecutive estimates for each parameter are sufficiently close
together and hence convergence has been achieved. These methods give point
estimates for all parameters of the model, estimates of the parameter standard
errors and large sample hypothesis tests and confidence intervals (Rasbash et
al., 2000).

Markov chains (or processes) are a way of representing multi-state stochastic
systems, whose states (discrete or continuous) are defined by a transition
probability. In a Markov chain of order n, the current state depends on the n
previous states. For example, in the most commonly used 1% order Markov
chain, the state only depends on the previous state. A Markov chain can be
represented by a transition matrix, with the (i,j) cell representing the transition
probability that the current state will be (j) given that the previous state was (i).
Monte Carlo is used to describe sampling techniques that are based on random
variables (equivalent to draws of a fair dice).

MCMC is a general technique for the generation of fair samples from a
probability distribution using random numbers from uniform probabilities. The
idea behind MCMC is to draw a sample from the full posterior distribution and
make inferences using the sample (instead of the posterior distribution). For
example, instead of computing the mean and variance of a parameter of a
distribution, the sample mean and sample variance of the parameter is
calculated from the sample. A posterior distribution of a parameter can be
obtained by a histogram/empirical density function of the distribution of the
parameter in the sample (Rasbash et al., 2000).

MCMC is particularly interesting in the context of Bayesian statistics (Barnett,
1999). The simple Bayes rule dictates that the posterior is equal to the prior
times the likelihood of available data:
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P(BIA)P(A)

P(A1B)= B)

(2.8.1)

where P(A) and P(B) are the prior (or marginal) distributions of A and B
respectively, and P(B|A) (respectively P(A|B)) is the posterior (or conditional)
distribution of B given A (respectively A given B).

A simple variance components multilevel model can be written as follows:
Yij = Boij Xo + B1 X1j (28.2)
Boij = Bo + Uoj + €ojj
2
UD/ ~ N(0,0'uo )
2
eoll ~ N(0,0'eo)

In a Bayesian formulation of this model, prior information about the fixed and
random parameters, Bo, B+, Ous’, Oed’, are combined with the data (Rasbash et
al., 2000). These parameters are regarded as random variables described by
probability distributions, and the prior information for a parameter is
incorporated into the model via a prior distribution. After fitting the model, a
posterior distribution is produced for the above parameters, which combines the
prior information with the data. MCMC methods make a large number of
simulated random draws from the joint posterior distribution of all the
parameters, and use these random draws to provide a summary of the
underlying distribution. From the random draws of the parameter, it is then
possible to calculate the posterior mean and standard deviation, as well as
density plots of the complete posterior distribution.

It should be noted that, in Bayesian statistics, every unknown parameter must
have a prior distribution, describing all information known about the parameter
prior to data collection. Often little is known about the parameters a priori, and
so default prior distributions are required to overcome this lack of knowledge.
The most natural distribution for this application is the conceptual equivalent of
a uniform distribution, i.e. a distribution that assumes that all states have equal
probability of occurring or, in other words, that a parameter has the same
probability of taking each value. These rather uninformative priors are
sometimes called diffuse or vague priors.

Multilevel models contain many unknown parameters and the objective of
MCMC estimation of these models is to generate a sample of points in the
space defined by the joint posterior distribution of these parameters. In the
Normal variance components model, this consists of generating samples from
the distribution

P (Bo, B1, U, Oud’, Ged” | ¥), Where upis the vector of ug/s.

Unfortunately, to calculate this distribution directly would involve integrating
many parameters, which can be extremely complicated; however, an alternative
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approach is available. This is due to the fact that although the joint posterior
distribution is difficult to simulate from, the conditional posterior distributions for
each of the unknown parameters often have forms that can be simulated from
easily (Rasbash et al., 2000).

MCMC is not a new concept. The ideas have actually been around for several
decades. However, as these techniques are computationally very demanding,
widespread use followed the emergence of computing. These techniques have
been in widespread use for some 15 years and have made Bayesian statistics
more practical and accessible to researchers and practitioners. Metropolis-
Hastings sampling is based on the seminal paper by Metropolis et al. (1953),
which was later expanded by Hastings (1970). Gibbs sampling was first
described in Geman and Geman (1984). The name Gibbs is associated with
statistician J. Willard Gibbs (1839-1903). Even though Metropolis-Hastings
sampling precedes Gibbs sampling, Gibbs sampling is the simpler and more
easily implemented sampling method for MCMC.

A) The Gibbs Sampling method

Gibbs sampling works by simulating a new value for each parameter in turn
from its conditional distribution, assuming that the current values for the other
parameters are the true values. For example, in the Normal variance
components model, the parameters and level 2 residuals would be split up into
4 subsets: B, up, 0u%, and oe’, where B8 = (Bo, 81).%°

Firstly, it is necessary to choose starting values for each set of parameters, §(0),
uo(0), 0u2(0), and 0e(0). These can be taken from fitting a multilevel model
with the standard estimation methods before MCMC estimation is applied. In
fact, it is common practice to use IGLS or RIGLS methods before using MCMC
estimation, in order obtain good starting values. The method then works by
sampling from the following conditional posterior distributions, firstly

= P By, uo(0), 0u’(0), 0e(0)) to generate (1), and then from

= P(uoly, B(1), 0.,6°(0), 0o?(0)) to generate up(7), and then from

= P (o’ ]y B(1), u(1), oes (0) to generate 0,°(1), and then
from

= P (0l |y, B(1), Uo(1), 0ui®(1)) to generate oes (7).

By performing all 4 steps, all of the unknown quantities in the model are
updated.

A random walk is generated from this initial point by propagating in a similar
way. For k=2...n:

% It should be noted that, given the values of the fixed parameters and the level 2 residuals, the
level 1 residuals eg; can be calculated by subtraction. Therefore, they are not included in the
algorithms.
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* B(k) ~P (B, Uo(k-1), 0yo’(k-1), Ogo”(k-1))
= Uo(k)~P (uo | y, B(k), Ous’(k-1), Oeg”(k-1))

" 0u(k)~P (0ud | y, B(k), u(k), oed” (k-1))

" 0ed’(k)~P (00" | ¥, B(K), to(k), Ous’ (k)

where ~ means that the left-hand value is drawn from the right-hand distribution.
When a new value is drawn, it immediately replaces the previous one and
therefore only one set of values is stored at any given time. The resulting
sequence is a Markov chain, as the values at the k-th step only depend at the
values in the previous step. This chain tends to a stationary distribution that
corresponds to the desired distribution P (8o, B+, Uo, Oud’, Oed® | ¥).

This method is very efficient when the conditional posterior distributions are
easy to simulate from, as in the case for Normal models. However, when the
conditional posterior distributions do not have simple forms, a second MCMC
method should be considered, called Metropolis Hastings sampling.

B) The Metropolis Hastings sampling

In general MCMC estimation methods generate new values from a "proposal”
distribution that determines how to choose a new parameter value given the
current parameter value. As the name suggests, a "proposal" distribution
suggests a new value for the parameter of interest. This new value is then either
accepted as the next iteration or rejected and the current value is used as the
next iteration. The Gibbs sampler, discussed above, has as its "proposal”
distribution the conditional posterior distribution, and is a special case of the
Metropolis Hastings sampler where every proposed value is accepted.

In the case of the Metropolis Hastings sampler, almost any distribution can be
used as a "proposal" distribution. In most cases (e.g. in the MLwiN software),
the Metropolis Hastings sampler uses Normal "proposal” distributions centred at
the current parameter value. This is known as a random-walk proposal. This
"proposal” distribution for parameter 6 has the property that it is symmetric in
O(t-1) and 6(t), that is:

P®()=alé(t-1)=b)=p O (1)=b/6 (-1) = a)

MCMC sampling with a symmetric proposal distribution is known as pure
Metropolis sampling. The proposals are accepted or rejected in such a way that
the chain values are indeed sampled from the joint posterior distribution
(Rasbash et al., 2000).

As an example of how the method works, the procedure for the parameter 3, at
time step tin the Normal variance components model is as follows:

- Draw B,* from the proposal distribution Bo(t) ~ N(Bo(t-1),0,°) where a,,° is the
proposal distribution variance.

- Define r; = p (Bo* B1, Uo, 0us™0e0” | ¥) / P (Bo(t-1), B1, Uo, Oud’0ed” | y) as the
posterior ratio and let a; = min(1,r;) be the acceptance probability.
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= Accept the proposal Bo(t) = Bo* with probability a;, otherwise let Bo(t) = Bo(t-1).

In this algorithm, the method either accepts the new value or rejects the new
value. The difficulty with Metropolis Hastings sampling is finding a "good"
proposal distribution that generates a chain with low autocorrelation. The
problem is that, since the output of an MCMC algorithm is a realisation of a
Markov chain, autocorrelated (rather than independent) draws from the
posterior distribution are made. This autocorrelation tends to be positive, which
can mean that the chain must be run for many thousands of iterations to
produce accurate posterior summaries. When using the Normal proposals as
above, reducing the autocorrelation to decrease the required number of
iterations corresponds to finding a "good" value for the "proposal" distribution
variance o,°.

As the Gibbs sampling is a special case of the Metropolis Hastings sampling, it
is possible to combine the two algorithms so that some parameters are updated
by Gibbs sampling and other parameters by Metropolis Hastings sampling.

It should be underlined that there is a restriction on the MCMC techniques that
can be used on discrete response models for a different reason. In the previous
sections, where discrete response models were discussed, it was noted that we
could no longer use simple maximum likelihood based techniques, but instead
had to use quasi-likelihood techniques. The Normal models discussed above
are a special set of models, as all the parameters in these models have
conditional posterior distributions that have standard forms. This means that the
standard Gibbs sampling method can be used for all parameters. For discrete
response models the conditional posterior distributions for both the fixed effects
and the residuals do not have standard forms and consequently Metropolis
Hastings sampling must be used for these parameters.

2.8.3 Bootstrapping

Bootstrap can be used to estimate the parameters of a model and their standard
errors strictly from the sample, without assuming a theoretical sampling
distribution. A number of n samples are drawn with replacement from the
available sample. The statistics of interest are then estimated for each of the n
samples, and the observed distribution of the n statistics is used as an empirical
sampling distribution, from which estimates of the expected value and the
variability of the statistics of interest can be obtained. For an introduction to
bootstrap, cf. e.g. Efron, 1982, Efron and Tibshirani, 1993, or Davidson and
Hinkley, 1997. An overview of bootstrapping in the context of multilevel models
can be found in Hox, 2002.

Bootstrapping relies on the available sample for the inference about the
population statistics. Therefore, the original sample must have a reasonable
sample size. Based on a review of available literature, Yung and Chan (1999)
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conclude that a general recommendation for the minimum sample size required
for the sample size is not possible. Good (1999) suggests a minimum sample
size of 50 in the case of non-symmetric underlying distributions. Nevitt and
Hancock (2001) on the other hand suggest that for accurate results despite
large violations of normality assumptions, the bootstrap needs an observed
sample of more than 150. The number of bootstrap iterations n is typically in the
order of thousands (Booth and Sarkar, 1998, Carpenter and Bithell, 2000).

Bootstrap also has some assumptions and restrictions. A key assumption of the
bootstrap is that the resampling properties of the statistic resemble the sampling
properties (Stine, 1989). It is also not ideal for properties that involve only a
narrow subset of observations, such as the maximum value (Stine, 1989).
Another assumption that is particularly relevant to the use of bootstrap in
multilevel modelling commands that the resampling scheme that is used must
reflect the actual sampling mechanism used to collect the data (Carpenter and
Bithell, 2000). This last property is important and must be followed so that the
hierarchical sampling mechanism of multilevel models bootstrap procedure is
simulated correctly.

Bootstrapping can be either based on resampling complete cases or resampling
residuals (Stine, 1989, Mooney and Duvall, 1993). Resampling complete cases
is perhaps the most intuitive approach, but also more difficult in practice,
especially in the context of multilevel models. When sampling residuals, it is
assumed that the predictor variables have exactly the same value for each
case, and therefore the only difference is in the residuals. To bootstrap
residuals one first needs to run a multiple regression to estimate the regression
coefficients and a set of residuals. In each bootstrap iteration the fixed values of
the regression coefficients are used to predict outcomes, to which bootstrapped
sets of residuals are added. The resulting bootstrapped responses are used to
estimate the required statistics.

Bootstrapping cases is more complicated in multilevel models because it implies
bootstrapping units at all available levels. This does not only change the values
of the explanatory and outcome variables, but also the way the variance is
partitioned over the different levels (Hox, 2002). This redistribution of the
variance affects all other estimates. Two bootstrap approaches can be used:
parametric and non-parametric.

Parametric bootstrapping uses assumptions about the distribution of the data to
construct the bootstrap datasets, usually the multivariate normality assumption.
For instance, for a sample of 100 cases with mean y and standard deviation of
o, parametric bootstrap would draw a large number n of samples of size 100
from a Normal (u, o°) distribution. Then for each sample the parameter of
interest would be calculated and used for the calculation of the statistics of the
population.

Non-parametric bootstrapping does not assume a distribution for the data but
instead generates a large number of datasets by sampling (with replacement)
from the original sample. In the above example, lots of samples of size 100
would be generated, with replacement of the values of the initial sample. This
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approach is called non-parametric, because it preserves the possibly non-
normal distribution of the original data. Obviously, if the data are normally
distributed, then parametric and non-parametric bootstrap would be equivalent.

Spiegelman and Gates (2005) describe a non-parametric double bootstrapping
procedure for direct comparison of quantiles of two or more sample populations.
The first bootstrap simulation is used to produce estimates of standard errors for
the desired quantiles and thereby overcome the inability to make reasonable
variance estimations. The second layer of bootstrap simulations is used to
determine the threshold cut-off values based on a desired level of confidence
for the test of hypothesis. The cut-off values also may be used to form
confidence intervals.

In multilevel modelling, bootstrapping can be used for two main purposes
(Rasbash et al., 2000). Firstly, it can be used as an alternative procedure to
MCMC methods, to make accurate inferences on the basis of simulated
parameter estimates. Thus, for example, while in Normal response models we
can construct confidence intervals for functions of the fixed parameters
assuming Normality, this may not be appropriate for the random parameters,
unless the number of units at the level to which the parameter refers is large.

The bootstrapping methods are used to construct the bootstrap datasets and
then the classical Generalized Least Squares estimation methods can be used
to find estimates for each dataset. The parametric bootstrap works exactly as
mentioned above, i.e. the datasets are generated (by simulation) based on the
parameter estimates for the original dataset. Due to the multilevel structure, the
simple non-parametric approach introduced above can not be used; a new
approach is used, based on sampling from the estimated residuals (Rasbash et
al., 2000).

The second purpose for which bootstrap estimation can be used is to correct
any bias in the parameter estimation (again as an alternative to MCMC
methods). This is useful in models with discrete responses, where the standard
estimation procedure based upon quasi-likelihood estimation produces
estimates, especially of the random parameters, that are downwardly biased
when the corresponding number of units is small (Goldstein and Rasbash,
1996). The severity of this bias can be trivial in some data sets and severe in
other data sets. A complicating feature in these models is that the bias is a
function of the underlying "true" value so that the bias correction needs to be
iterative.

The following example, presented in Rasbash et al (2000), can be considered:
suppose a data set for a simple variance components model is simulated,
where the standard estimation procedure has a downward bias of 20% for the
variance of level 2, and the true value for the variance of level 2 equal to 1.
Then if this model is estimated for several simulated datasets using the
standard procedure, an average estimate of 0.8 would be obtained.
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If there is just one simulated data set with a level 2 variance estimate that
happens to be 0.8, together with fixed parameter estimates to which the same
procedure can be applied, a large number of new response vectors from the
model with level 2 variances of 0.8 can be simulated (parametrically
bootstrapped), and the average of the variance estimates across these new
replicates can be estimated. A value of 0.64 would be expected, since the level
2 variance is estimated with a downward bias of 20% (0.8*0.8 =0.64). If the
downward bias of 0.16 is added to our starting value of 0.8, a bias corrected
estimate of 0.96 would be obtained. Another set of simulations can be run then,
taking the bias corrected estimates (0.96 for the variance) as the starting
simulation values. Averaging across replicates, an average of 0.768 for the
variance parameter would be expected, resulting in a bias estimate of 0.192.
This estimated bias would then be added to 0.8 to give a new bias corrected
estimate of 0.992. Another set of replicates from the latest bias corrected
estimate could be then simulated; the process could be repeated until the
successive corrected estimates converge®.

2.8.4 Applications of simulation methods and Bayesian
multilevel modelling in road safety

The use of Bayesian approaches to highway safety research began with the
introduction of empirical Bayes (EB) into the field by Hauer and colleagues (see
e.g. Persaud and Hauer, 1984, Hauer, 1986, Hauer and Persaud, 1987, Hauer
et al., 1988, Hauer, 1996a, Hauer, 1996b, Hauer, 1996c¢, Hauer, 1997, Hauer et
al, 2002a, Hauer et al., 2002b, Hauer et al., 2004). Since then, much research
using EB has emerged. Over the past years, "full" Bayesian modelling in
general, and MCMC methods in particular, are becoming increasingly popular,
especially as computational power of recent computers makes them practical
(Davis and Guan, 1996, Davis, 2000, Davis and Yang, 2001, Miaou and Lord,
2003, MacNab, 2004).

Qin et al. (2005) use crash and physical characteristics data for highway
segments from several US states to investigate the relationship between crash
count and traffic volume. A hierarchical Bayesian framework has been used to
fit zero-inflated-Poisson regression models for predicting counts for each crash
type as a function of the daily volume, segment length, speed limit and
lane/shoulder width using Markov Chain Monte Carlo methods.

Carriquiry and Pawlovich (2006) discuss the basic differences between various
Bayes approaches to traffic safety data analysis and use data from a four-lane
to three-lane conversion study to illustrate the implementation of these methods.

Pawlovich et al. (2006) used Bayesian methods and MCMC estimation to
assess whether the reduction of number of lanes (“road diets”) resulted in crash
reductions on lowa roads. Crash data at each site was collected before and
after the conversions were completed. Given the random and rare nature of

** In models where the bias is independent of the underlying true value (additive bias) only a
single set of bootstrap replicates is needed for bias correction.
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crash events, a hierarchical Poisson model was fit to crashes, where the log
mean was expressed as a piece-wise linear function of time period, seasonal
effects, and a random effect corresponding to each site. The posterior
distributions of the parameters in the model were estimated using Markov chain
Monte Carlo (MCMC) methods.

As regards Bayesian multilevel modelling in road safety, several applications
have been published in the last decade within the context of spatial analyses.
The most important applications are briefly described below; nevertheless, a
more detailed presentation of these applications is provided in section 2.3.4.6.
MacNab (2004) examines ecological and contextual determinants of area-
aggregated motor vehicle accident injury in relation to socio-economic,
residential and environmental indicators by means of Bayesian multilevel
modelling (MacNab, 2004). Hewson (2005) examined child casualty rates
aggregated within different areas and compared a simple generalized linear
model, with an extension of it, in which a spatial structure is assumed for the
random effects, and eventually with a Bayesian model, in which the “random
effect” can be given a spatial prior structure and “shrink” the estimates of
casualty rates across adjacent areas.

McMillan et al. (2007) developed Bayesian hierarchical binomial regression
models in order to measure county-level variability in changes in alcohol-related
crash rates while adjusting for county socio-demographic characteristics, spatial
patterns in crash rates and temporal trends in alcohol-related crash rates.
Aguero-Valverde and Jovanis (2006) compared full Bayes hierarchical models
(including spatial effects, temporal effects and space-time interactions) to
traditional negative binomial estimates of annual county-level crash frequency in
Pennsylvania, and found that, in general, highly significant variables in the
negative binomial models were also significant in the Bayesian models;
however, variables marginally significant in the negative binomial models were
non-significant in the Bayesian models. Because the FB models address spatial
correlation and take into consideration all sources of uncertainty, the authors
believe the FB models more accurately associate covariates with crash risk and
are better suited for this type of data.

2.8.5 Summary

It is obvious that both simulation techniques presented in these sections include
a substantial amount of computation. For this reason bootstrapping, like MCMC
estimation should not be used for model exploration, but rather to obtain
unbiased estimates and more accurate interval estimates at the final stages of
analysis.

Moreover, it should be noted that the estimates these methods produce are
dependent on random numbers. Consequently, using a different set of random
numbers or a longer simulation run can produce (slightly) different estimates.
For this reason, and because these methods are fairly new, compared to GLS
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estimation methods, and have only recently started to be widely used in the
context of multilevel analysis, it is important that they are implemented with
care.
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Heike Martensen and Emmanuelle Dupont (IBSR)

Throughout this chapter a number of examples have been shown for
hierarchically structured road-safety data. Accident data have a hierarchical
structure because accidents can involve several vehicles, which may contain
several passengers. Road safety data that are sampled from larger populations
are often structured hierarchically when a limited number of primary sampling
units (e.g. road sites) are selected from which the secondary units (e.g. cars)
are randomly sampled. Hierarchies can also arise due to administrative
structures like counties that are nested in regions that are nested again in
countries.

Many researchers in road-safety are not aware of the consequences a
hierarchical structure has for the appropriate analysis. The main goal of Chapter
2 of this deliverable is therefore to give guidelines how to deal with hierarchical
data of different types.

2.9.1 Summary of multilevel techniques

It has been shown how the multilevel approach can be applied to a wide range
of analysis techniques to solve the problems inherent to hierarchically
dependent data in a productive way. Multilevel versions of those techniques that
are most commonly used in road safety research have been presented.

2.9.1.1. Regression analyses

The regression techniques described in sections 2.2 (linear regression of
normally distributed data); 2.3.2 (logistic regression for binomial response data);
and 2.3.4 (Poisson regression for count data) are powerful tools to link different
types of variables to each other. They can help to describe how a number of
observed predictor variables (e.g., number of police controls) affect a particular
outcome (e.g. number of fatalities). The limitations inherent to the original
analyses concern the distribution of the outcome data, the form of the function
that links dependent and independent variable, the overlap between predictors,
and the distribution of the residuals; all of which — if not taken into account
correctly — can jeopardize the interpretation of the results.

One of the most important assumptions is the independence of the residuals.
Multilevel modelling is necessary in situations where this assumption is violated,
as often the case when dealing with a hierarchical data structure. When data
are collected from a nested structure (e.g. drivers nested in road site), the data
coming from the same unit of the higher-order structure (e.g., all drivers
checked at a particular road-site) are often more similar to each other than to
those from another higher-order unit (e.g. the drivers checked at a different road
site). While in traditional regression techniques such a hierarchical structure can
cause violations of the independence assumption, this structure is explicitly
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included in multilevel analyses by allowing the specification of sources of
random variation at different levels of a hierarchy. Therefore, the most obvious
advantage of multilevel analyses is to allow the researcher to respect one of the
most important assumptions for regression techniques.

Moreover, the hierarchical structure itself can be a source of information. It can
be interesting to know whether there is variation between the units of a higher
level. For example, by comparing models that include “region” as a higher order
level and those who do not one can investigate whether there is regional
variation with respect to a particular phenomenon. By conducting a residual
analysis, it is also possible to identify higher order units that behave differently
from the others.

The multilevel structure of the analysis also allows investigating the relationship
between variables that are situated at different levels of the hierarchy, for
example the weather (a road site variable) might influence the effect that speed
(a car specific variable) has on the probability of an accident. Another
advantage concerns variables that are conceptually situated at a lower level
(e.g. accidents, drivers, road sites, etc) but are available only at some higher
aggregated level (e.g. county, region, country). As an example, traffic density is
known to affect the risk of an accident. This density varies within a particular
region but different regions also have different overall densities. Although in
theory it would be preferable to include the density at the accident level, this
information will often be unavailable. Multilevel modelling offers the solution to
include traffic density as a regional characteristic, while still analysing the effect
of some other variable at accident level.

2.9.1.2. Multivariate responses and repeated measures

Multilevel modelling was also introduced as a new way of dealing with more
than one independent variable. This can be the case when several dependent
variables of interest are analysed in parallel (Section 2.5) or with response types
that are in fact represented by several variables. The latter case concerns, for
example, multinomial responses, i.e. categorical variables that can take more
than two different values (section 2.3.3). When such a variable forms the
dependent variable, each response option is considered as a variable apart and
they are jointly submitted to a multivariate analysis. When analysing multiple
dependent variables, the lowest level of analysis consists of a dummy variable
specifying to which response variable a particular value belongs, while the
individual from which the values are obtained are coded at a higher level.

In a similar way, multilevel modelling can be used to analyse repeated
measurements from the same subject (section 2.4). Instead of regarding the
different measurements as levels of a factor as in traditional repeated-
measurement approaches, one can enter all measurements simultaneously
from each subject in the first level and consider the subject as a higher-level
variable that groups the different measurements together.

Defining the multivariate or repeated measurement structures as a level in a
multilevel analysis allows an easier handling of missing values as compared to
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traditional multivariate methods. Values yoked to the ones missing can be kept
in the analysis. Moreover, the assumptions with respect to the cause of missing
values are less strict. While traditional multivariate models are based on the
assumption that all missing values are missing completely at random, multilevel
models can cope with values not missing completely at random, as long as the
source of non-randomness is specified in the model.

The section on structural equation models (2.6) shows the basic form of such
models in the multilevel case, dealing mainly with assumptions on data. On the
other hand, this chapter discusses the necessary theoretical concepts of these
models. Finally, a short summary of the application of structural equation
models is introduced using the relationship of driver characteristics and their
acceptance of new technologies in traffic.

2.9.2 When is the use of multilevel modelling necessary?

Generally, when dealing with a hierarchical data-structure, one should consider
using multilevel modelling. In some cases the dependency among cases can be
compensated by taking up higher order variables that cause this dependence
without actually introducing a higher level into the analysis. As an example: The
speed of cars is measured throughout the country by cameras at randomly
selected road sites. The cars measured at the same road site will resemble
each other more with respect to speed than those measured at different road
sites. One might try to capture this dependency by taking up variables in the
model equation that are responsible for the speed-differences between road
sites. An obvious candidate is the speed limit which varies across road-sites
and will indeed affect the speed of all cars at a particular road site in the same
way. If the speed limit was the sole reason for the speed of cars resembling
each other at the same road site, including it as a predictor would solve the
dependency problem. The reason for this is that the assumption of
independence must be applied to the residuals after all variables in the model
have been accounted for. If one can include all sources of dependencies as
variables into the models, there will be no dependency among the residuals
anymore.

Practically however, it is usually a large numbers of factors that lie at the basis
of the dependence. To keep with our example, road sites do not only differ with
respect to the speed-limit but also with respect to the number of lanes, road
conditions, traffic density, viewing conditions and probably a number of other
factors of which the researcher might not even be aware that they affect the
driving-speed. Consequently, the attempt to capture the dependencies with
higher-level variables taken up in a single-level model will often, if successful at
all, result in a large number of predictors many of which in them selves are not
of interest to the researcher. As mentioned before, including many predictors
can create problems with respect to interpretation. Moreover, they reduce the
degrees of freedom which might make it more difficult to get a clear picture
about the variables concerning the actual research question.
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Apart from these practical problems with the inclusion of many predictors, by
applying a single-level model, one misses out on important information about
the data structure. In the case of random intercept models, the variance partition
coefficient gives information to what extent cases within a second-level unit
resemble each other more than cases between units. In the case of models with
random slopes and random intercepts, the covariance between these two
sources of variance tells the researcher whether there is a relation between the
general level of measurement in the second order units (i.e. the intercepts) and
the slope of the variable of interest. In sum, capturing hierarchical structures in
multilevel models is easier and more informative than capturing the hierarchy by
including second-level predictors in a single-level model.

While multilevel models offer an elegant solution to the problem of hierarchical
data-structures, they inherit all other advantages and limitations of the
regression models from which they are derived. An example is the treatment of
correlated predictors. As demonstrated in Sections 2.3.3 and 2.4, the regression
weights for correlated predictors are difficult to interpret. Non-significant weights
can either mean that the variable has no effect, or that the effect is
simultaneously captured by another variable included in the equation. A careful
investigation of the correlation among the predictors and/or comparisons of
various versions of the model (including each predictor singularly and then
together) are necessary for a proper interpretation of the results. As the readers
of this deliverable are expected to master the traditional analyses that each
particular multilevel model is based on, it exceeds the scope of this document to
give a full account of the possible limitations and problems in the interpretation
that multilevel models inherited from traditional regression analyses. It must be
kept in mind though that all other assumptions of a traditional model, except that
of independent distribution of data, still have to hold in order to safely interpret
the results of its multilevel version.

It is also important to realise that the possibility to carefully check whether there
are hierarchies in the data, is actually a two-way street. Sometimes, one might
think of possible higher-level variables (e.g. regions or countries) but it turns out
that there is little variation between the units. The great advantage of the
multilevel approach is that it is possible to represent a hierarchical structure, but
of course that only makes sense if that structure is actually present in the data.
It should also be noted that models can grow very complex very quickly. This is
already the case with traditional multiple regression models where the inclusion
of many predictors can lead to patterns of results that are difficult to interpret.
With the introduction of multilevel models each predictor can moreover be
defined as having a random slope at each level in the model (or not). This way
the set of possible models is growing very quickly. We advise to introduce
random slopes for particular predictors very sparsely, preferably on the basis of
theoretical reasons.

2.9.3 Recommendations

The most important message we would like the reader to take home is the
following: Always check the assumptions your analysis model is based on. If
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you have hierarchically dependent data, statistical tests conducted with
traditional methods of analysis might be flawed. Use multilevel modelling to deal
with these dependency issues and make optimal use of all the information
present in the data.

Multilevel modelling enables researcher to specify models that resemble
complex hierarchical data-structures, allowing the parallel analysis of data at
different levels of aggregation and the investigation of interactions between
variables at different levels. With all these great opportunities, keep in mind,
however, to make your model as complex as necessary but to keep it as simple
as possible.

i Transport
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3.1 Introduction to time series models
F. Bijleveld (SWOV)and Ruth Bergel (INRETS)

This chapter introduces the fundamentals of time series analysis as it is
commonly used in road safety analysis and other fields. In road safety research,
most time series are constructed by aggregating or averaging some quantity
over a specific period of time, and then tabulating its value for subsequent
periods. Probably the most common example of a time series used for road
safety analysis is the annual or monthly number of fatalities in a country. For
obvious reasons, the number of fatalities recorded every month at any space-
aggregated level is the risk indicator of interest for road safety analysis, But to
give another example, a series consisting of the maximum temperature
recorded in the day at some meteorological station, averaged over several such
stations and per month is also a time series, and is also of interest as risk factor
for road safety analysis. In road safety research as in other fields, for commodity
reasons, the time periods are almost always taken equal in length.*’

A distinguishing feature of models for time series data over models for
traditional cross-sectional data is that the order of observations is important: a
linear regression on the data presented in reverse (or any other) order than the
original one would yield exactly the same results. This will typically not be the
case with time series analysis because effectively, an estimate for a particular
observation may be dependent (among others) on the previous observation,
which may be another observation in another ordering of the data.

Time series analysis can be regarded as an extension of regression analysis. In
particular, it extends regression analysis by allowing for a certain type of
relations between the residuals of the regression model, while in regression
analysis residuals have to be fully 'independent'.

As discussed in the introduction (1.1.2), the error term of a model is assumed to
be identically and independently (Gaussian) distributed. In practice, this
assumption is tested with the help of the residuals of the model once a dataset
of observations of the time series of interest is available and a model has been
estimated on this dataset, and, as an extension, it is said that this assumption is
related to the residuals. A similar, but more general concept has to be
introduced for time series analysis: stationarity.

4 Technically this is often not true. A year has either 365 or 366 days, a difference that is mostly
ignored, which is not the case for monthly data (28, 29, 30 or 31 days). However, such effects
may be corrected for in the model or directly in the data.
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In this document, stationarity®® is understood as follows: a time series is
stationary if its expected value and covariance remain the same across and
between time points. Although this seems restrictive, compliance with this (or a
similar) assumption is essential for inferences to be made: you have to be able
to assume your model is valid up to the year you want to make prognosis for. If
you cannot do this, you cannot draw inferences for the future based on past
observations.

Many time series analysis techniques require the time series to be stationary, or
at least its random structure to be homogenous. See further definitions in
Section 3.4.2.2.

A time series y; is a sequential series of measurements over time. A time series
model is a model for such a time series. In the introduction (Section 1.1.1), a
simple model for driving errors as a function of driving experience is introduced:

driving _errors; = b, + b, years _experience, +e,.

Basically, a time series model may not be that different from this model. In fact,
if the annual number of driving errors is recorded for one person over his or her
driving carreer, we already have a time series model:

driving _errors, = b, + b, years _experience, +e,,

for t= the first year, the second year, and so on. Labelling these years by 1, 2,
..., we obtain the familiar form:

driving _errors, =b, + bt +e,.

At this point the model is in fact no different from an ordinary linear regression
model. It is called a descriptive model, because no other variable than time is
used to predict the driving errors. It would be called an explanatory model when
additional variables were used (Section 3.3.1.1). The differences between
ordinary linear regression models and time series models are determined by
how the residuals e; of the regression model are treated as a consequence of
the correlation property described above, and the fact that past observations
can be considered. Schematically (and slightly simplified), the treatment of the
e: and the fact that past observations can be considered can be added to the
model formula as follows:

driving _errors, = functioni(present,) + function2(past,) + e,,

where function1 and function2 are generic -- but usually linear or at least
additive -- functions and past; is all information that became available in the past

*2 This definition of stationarity is by far the most commonly used: it is called covariance or
second order sationarity, or also weak stationarity - in lieu of strict stationarity which assumes
identical joint distributions.
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(at times t-1, t-2, ..), whether they be driving errors, explanatory variables or
residuals, and present; is all new information at time t, Note that in most cases
this distinction between past; and present; is more conceptual than practical, but
in the end, the presence of the component which is a function of past; in the
model distinguishes time series models from cross-sectional models.

Usually, the practical model representation is different from the one above.
Instead of referring to the distinction present vs. past, it may be rearranged into
components that have an interpretable role, such as for instance the trend, the
general tendency of time series, and the periodic component in the case of a
periodic pattern. The possibilities for the model specification in relationship with
the components of interest, and in relationship with additional variables too, are
numerous. A general model specification, referring to the nature of the variables
used within the model, is discussed in Section 3.3.1.

However, besides identifying components based on the role they play in a
model, two other important categorisations can be considered: based on
whether a component is observed or not and based on whether a component is
deterministic (non-random) or random. In practice the potential combination,
unobserved random components can be important.

It is commonly said that that the dependent variable y; is the observed one, and
that its unobserved components are: the cycle, the trend, the seasonal
component and the irregular component. In practice, some components may not
be relevant, and for instance the cycle will never be considered in the
applications to road safety analysis presented in this document. The seasonal
component exists only in the case of a periodic (seasonal) pattern, and will
mainly be estimated on the monthly datasets presented. See Section 3.3 for
precise definitions.

In its simplest form, it is possible to construct a linear trend component using a
linear function of the time index at+b, and to construct a seasonal pattern using
dummy variables or a trigonometric function. The real interest of considering
such ‘parts’ as components emerges when such components can be regarded
as being random. A component can be regarded as being random (also called
stochastic) when it changes over time. It is not (necessarily) meant that its value
changes with time - a trend for instance in general is supposed to — rather it is
meant that its structure changes. For instance the slope (a in the linear trend
at+b may level off or increase a little over time, or the seasonal pattern may
change. Such a phenomenon may be modelled using a random component.
See in Section 3.3 the discussion on decomposition models for precise
definitions.

In many cases, data are transformed before analysis. Although this is not strictly
a time series feature, many time series in road safety are log transformed
before analysis.

In time series analysis two types of transform are most common:
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1) at each individual time point, transformations where just one observation at a
time is considered. The most common in traffic safety research being the
logarithmic transform. In practice, one or both of two goals is intended to be
achieved by applying the logarithmic transform: making a multiplicative model
additive, and obtaining (approximately) equal observation error variances,
attempting to satisfy second order stationarity requirements. The logarithmic
transform, however, belongs to a special class of transforms called the Box-Cox
transforms, which play for instance an important role in the DRAG-modelling
context, but are also used in other contexts.

2) along the time axis. This type of transform in addition considers observations
at other (usually previous) time points. This type of transform is mostly used to
remove certain properties from a time series before the time series is analysed,
in order to have the transformed time series satisfy requirements imposed by
the technique that is intended to be used, or because these components are not
of immediate interest for the analysis. Usually the requirement to be satisfied is
first order stationarity.

Among these transforms, differencing is the most common. Differencing is
performed to create a series of differences

VYi=Yi— Y

If the resulting series Vy, is not stationary, the process is repeated by
differencing again. See Section 3.4 for more details.

Nevertheless, some time series fail the stationarity assumption because for
instance the expected value at a time point is a more complicated function than
what can be removed by repeated differencing. Another reason for failing the
stationarity assumption is non homogeneity in covariance, as it was said above.
In such cases often a non-linear transformation is applied to the data before
they are modelled and a time series analysis technique is performed on the
residuals of this model. An example of a non-linear time series model is shown
in Section 3.2.3.

The remainder of this chapter is organised as follows:

The linear regression model is used as a starting point, and treated in Section
3.2.1. This type of model is deterministic as it only contains deterministic
components. The same section also discusses the identification of dependence
in more detail (as well as discussing the other assumptions). Although
knowledge of linear regression models is assumed in this document, it is
strongly advised to read this section.

Due to the potential importance of the distributional assumptions, the
generalised linear model (McCullagh & Nelder, 1989), which -- in particular its
time series aspects -- is the topic of much ongoing research is treated in Section
3.2.2. Nonlinear least squares models are the subject of Section 3.2.3. In both
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sections the treatment of time dependence is informally introduced. In the
generalised linear models section this is done using functions. In the non-linear
least squares models section this is done using lagged residuals, thereby
informally introducing autoregressive models, which are discussed in more
detail in Section 3.4.

The above-mentioned sections discuss the time series aspect by extending the
GLM and nonlinear models approaches to time series. After a general
introduction to dedicated time series models in road safety is given in Section
3.3, two sections devoted to specific dedicated time series analysis approaches
based on linear Gaussian models are given. Of the dedicated models, Auto
Regressive Moving Average (ARMA) type models are discussed in Section 3.4.
This type of model is by far the most often used for fitting stationary and not
stationary data, and calling on additional variables as well. The following
section, 3.5, discusses the closely related DRAG model (Demand for Road use,
Accidents and their Gravity), a three level approach using many explanatory
variables, where certain nonlinear transformations on the data, both dependent
and independent, are considered. An alternative, based on state space
techniques is the topic of Section 3.6. These models, which are unobserved and
stochastic components models, and also referred to as structural time series
models, are directed at decomposing the time series into interpretable
(un)observed components structures. To conclude, in Section 3.7 the state
space approach and the ARIMA approach are discussed in terms of similarity,
and two examples of equivalences between well-defined specifications of
models of these two classes are given, on datasets already modelled in
Sections 3.4 and 3.6. Finally in section 3.8 the conclusions and
recommondations of this chapter are summarized.



3.2 Classical linear and non-linear regression models

3.2.1 Classical linear regression models
Christian Brandstaetter and Michael Gatscha (KfV)

3.2.1.1 Objective of the technique

In the field of social science, no other statistical procedure has offered so many
impulses as the procedures of analysing correlations. The knowledge of a
correlation between two variables is an essential pre-condition in order to draw
conclusions by predicting one variable through another.

Time series data are often used in conjunction with linear regression techniques
in terms of predicting statistical trends. In time series analysis, the independent
variable x is given as time. The equation of a straight line is used to calculate
the trend that the dependent variable y adheres to as time passes:

y=bx+a (3.2.1)

where y represents the dependent variable, x is the independent variable, b
describes the gradient of the straight line and a the altitude in geometrical
terms. The gradient b of a straight line can be positive or negative. If the
gradient is positive, the y-values increase with increasing x-values. In the case
that b is negative, y-values decrease with increasing x-values.

When time is used as the independent variable, a number of complications that
are introduced to the regression method are expected. The most important
complication is caused by the time dependencies between the values of vy.
However, there is also an influence affected by the units that are used to
measure time. For example, if annual data are used, it will be impossible to
identify the seasonal factors that may well influence the data. So, when looking
at data with regard to accidents, one would probably want to view quarterly
figures rather than merely annual data, as one would expect there to be an
increase in accidents e.g. in the summer quarter when analysing motorcycle
accidents.

However, in order to identify a trend value of the time series data that is
analysed, a linear regression line can be drawn by using averages over periods
of time to smooth out fluctuations and, as a result, show the general trend.

3.2.1.2 Model definition and assumptions

The most basic relationship between two or more interval-scaled variables is
explained by the following equation to determine the regression:

yi = bo + bixil + .. + bpxip + ei (3.2.2)

where
yiis the i" value of the dependent scale variable
p is the number of predictors
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bjis the number of the /" coefficient, j=0,...,p
x;is the value of the /" case of the j" predictor

e; is the error in the observed value for the /" case

For visualization reasons in the following text, the equation can be simplified to
formula 3.2.1.

If one has obtained n pairs of observations x;, y; (i =1, . . ., n), it is possible to
illustrate these observations by means of a scattergram (see Figure 2.15).
Graphically, the principle of a linear regression is to construct a straight line in a
two-dimensional system of coordinates such that all data points within the
system of coordinates lie as near as possible to this line, as measured in the
direction parallel to the y-axis:

bx; +a

1

Figure 3.2.1 Scattergram with regression line

In Figure 2.15, y; is the observed value and y; is the predicted value. As a
consequence, the general term (y; —y;) describes the size of the “prediction
error”. One could assume now, that the regression line with the best fit to
describe the data is characterized through the minimization of the sum of (y; —
yi). However,it is also possible that this sum is a negative value and therefore it
can also be assumed that many regression lines exist for which the sum of the
differences (y; —y;) is zero. Hence, the best criterion for the fit of a regression line
is not the sum of the differences, but the sum of squared differences, or in other
words: the minimized sum of squared distances between the individual
observation points and the regression line measured in the direction parallel to
the y-axis:
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D (yi- 32 =min (3.2.3)
i=1

using (bx; + a) instead of y;, the equation looks like:

Zn:[yi - (bxi +a)]?* = min (3.2.4)
i=1

With that criterion in mind, it is possible to generate n values to draw the
regression line, but one has to hope that the calculated values are as small as
possible. It is also possible that another regression line, based on squared
differences, describes the observed values even better. For this reason,
variables a and b are defined by a differential equation, f(a,b), partially
differentiated with respect to a and b. Solving this equation yields to the
following explicit solution for a and b:

Z i bz Xi
a=——-—=_=y_px
n n (3.2.5)
n n Xi n yl n n n
Z xiyi — = nl_l nz Xiyi — Z )sz i
b= i=1 - — i:ln i:ln i=1 (32 6)
. (Z xzjz nz xi2 — (Z x;}
»_ \i=l i=l i=1
i=1 n

In the equations mentioned above, n is the number of data points in the time
series, e.g. the number of months. That is to say, y-values exist only for the
natural numbers (i =1, ..., n) on the x-axis. Thus, the regression line of the time

series arises through the connection of all points y, (fori=1, ..., n).

If a and b are calculated through these equations, the result is a regression line
for which the sum of squared differences is really minimized. This estimation
procedure is called ordinary least squares, or OLS, and is one of the basic
concepts of linear regression. The Gauss-Markov Theorem shows that:
v' b is an unbiased estimate of the regression coefficient , which means
that on repeated estimates, the distribution of b will be centred around .
v" The sampling distribution of b will be normal if the samples are large and
a sufficient number of samples are taken.
v" OLS provides the best linear unbiased estimate of B (BLUE).
v' “Best” means: OLS provides the most efficient unbiased estimate of p.
Efficiency refers to the size of the standard error of b (cp));

Most commonly, regression is used to predict the value of one variable from the
value of another, if the two are related. Therefore, one variable is normally
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defined as a predictor, whereas the other is determined by a criterion. This
categorization is quite similar to the definition of a dependent and independent
variable, although the latter relationship characterizes a narrower, causal
relationship.

In order to fit a simple linear regression model to a set of data, one has to find
estimators for the unknown parameters a and b, which are expected to have a
linear relationship of the shape y = bx + a. Since the sampling distributions of
these estimators will depend on the probability distribution of the random error
e, it is necessary to make several specific assumptions about its properties. The
mean of the probability distribution of the random error is 0. That is, the average
of the errors over an infinitely long series of experiments is 0 for each setting of
the independent variable x. This assumption implies that the mean value of y for
a given value of xis y = bx + a.

For estimated linear regression following the OLS procedure shown above, we
have four basic assumptions about the prediction error €. Corresponding to the
above-mentioned Gauss-Markov Theorem, they are called Gauss-Markov
assumptions:
1.  The prediction error ¢ is uncorrelated with x, the independence
assumption.

2. The variance of the error term is constant across cases (x) and
independent of the variables in the model. This is called
homoscedasticity, or homogeneity of the variance of €. An error term
with non-constant variance is said to be heteroscedastic.

3. The value for the error term associated with any different observations
is independent. The error associated with one value of y has no effect
on the errors associated with other values. This means that all observed
autocorrelations of the errors are near 0.

4. The random errors are distributed normally.

As mentioned earlier, when it comes to analysing time series with regard to
accident data, one can suppose that at least one of the listed assumptions is
often violated in practice, e.g. the assumption of nonautocorrelated.

The first assumption was the independence of the prediction errors and x. We
can find three different possibilities of problems:

v Spurious relationship: € and x may be correlated because z is a common
cause of x and y. In this case b is a biased estimate of the regression
coefficient .

v" Collinear Relationship: If xo is correlated with x; and y, but is not the
cause of either, by will be a biased estimate of 4.

v Intervening Relationship: x; intervenes in the relationship between x; and
y. In this case by will not be a biased estimate of B, but it will reflect both
the direct and indirect effects of x; on y.



3.2.1 Classical linear regression models

The second assumption is the homoscedasticity of the residuals. Here we can
find four different conditions (see Figure 3.2.2.; the lines represent the pattern of
the dispersion of the residuals. In all three conditions with heteroscedasticity, b
will be an unbiased estimate of B, but o, (0 is standard deviation) will be
incorrect - too large or too small. This yields wrong significance tests because
significance is tested with the Student's t-statistic t=(b/op).

6
3
4
2
2
1

Homoscedasticity Heteroscedasticity (+)

6 6

4 4
2 2
1 2 3 4 5

-

6 6

Heteroscedasticit (-) Heteroscedasticit (Hour-glass)
Figure 3.2.2 Overview of patterns of homoscedasticity und heterocsedasticity

In the case of Heteroscedasticity (+), SEy, is underestimated and a type | error
may occur. In the case of Heteroscedasticity (-), in contrast, SEp, is
overestimated and a type Il error may occur.

White (1980) has published a direct test for heteroscedasticity:

¥ (df)= R®n,

where n is the number of cases, R® is the squared multiple correlation
coefficient for the regression of the squared residuals on predictor? x, and the
number of degrees of freedom df is the number of independent variables. The
null hypothesis is that the residuals are homoscedastic.

Another widely used test for homoscedasticity is given by the following test
statistic:
D€l

H (h) == (3.2.7)
e
t=d

™ Tra n'&ﬁ'ﬁf*ﬁ'ﬂa
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where h is some time point in the series cutting the series in two parts: one
before and one after time point h. This statistic can be tested against an F(h,h)-
distribution.

The third assumption of non-autocorrelated errors is most often violated in time
series regression. Plotting the residuals of the classical regression analysis
against time can confirm that the observations are not independent. Since these
residuals are assumed to be completely independent, they should be randomly
distributed.

A useful diagnostic tool for investigating the randomness of a time series is
called the correlogram. The correlogram is a graph containing the correlations
between an observed time series and the same time series shifted t time points
into the future, for a (limited) number of t. Thus, the correlogram of the residuals
e; consists of the correlation between e; and ey, 1, the correlation between e; and
ei.2, the correlation between e and ej,;3 and so on. Using a more general
notation, the correlogram contains the correlations between e; and ej,x, fork = 1,
2, 3, etc. Since k equals the distance the observations are set apart in time, it is
called the lag. Moreover, since the correlations are computed between a
variable and itself (albeit shifted in time), they are called autocorrelations.

When the first order residual autocorrelation (i.e., the residual autocorrelation for
lag 1) is positive and significantly deviates from zero, a positive residual tends to
be followed by one or more further positive residuals. As pointed out in the
literature (see Ostrom, 1990, and Belle, 2002), the error variance for standard
statistical tests can be seriously underestimated in this case. This in turn leads
to a large overestimation of the F- or r-ratio, and therefore overly optimistic
conclusions from the analysis.

On the other hand, when the first order residual autocorrelation is negative and
significantly deviates from zero, then a positive residual tends to be followed by
a negative residual, and vice versa. In this case, the error variance for the
standard statistical tests is seriously overestimated, leading to a large
underestimation of the F- or r-ratio, and therefore overly pessimistic
conclusions.

The Ljung-Box test (Ljung and Box, 1978) is based on the autocorrelation plot.
However, instead of testing randomness at each distinct lag, it tests the "overall"
randomness based on a number of lags. More formally, the Ljung-Box test can
be defined as follows. The test statistic is

h 20 -
Ou=n(n+2)> 2 (3.2.8)
=t n—J
with n the sample size, p(j) the autocorrelation at lag j, and h the number of lags
being tested. The null hypothesis of randomness is rejected if

0u>y (3.2.9)
where %2 is the percent point function of the chi-square distribution.
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Excursion: The sample autocorrelation and partial autocorrelation

(F. Bijleveld, SWOV).

A plot of the sample (partial) autocorrelation (the word sample is often dropped
in applied studies) is often used to identify time dependence in residuals. It is
also used to identify the order of dependence, where the partial autocorrelation
is used to determine the order of the autoregressive dependence and the
autocorrelation is used to determine the order of the moving-average
dependence. See the "ARMA type models" section (3.4) for details. All
introductory time series books cover this subject extensively, including
Brockwell and Davis (1998, page 57 and 136) and Box and Jenkins (1976, page
32 and page 64).

Following the introduction of this document, it is argued that the presence of
time dependence in the residuals of road safety models is discovered by the
phenomenon that adjacent residuals tend to have the same sign, or tend to
have the opposite sign. It may also occur that, for instance the residuals of
winter-time observations share the same sign. For that reason, not only the
immediate adjacent residuals are compared, but in addition also residuals at
reasonable distance in time (lag). For instance, when monthly data are
analysed, it is common to compare a january residual with the january residual
the year before, february with february the year before, and so on, in order to
identify seasonal patterns. The maximum considered lag is usually determined
by the problem at hand. For monthly data, the maximum lag considered is
longer than 12, but often not longer than 24.

The sample autocorrelation coefficients from the residuals e; are computed as
follows:

r, ==t (3.2.10)

n

(e -2y

i=1
where nis the total number of observations and € is the average of the e.

Please note that r, differs slightly from what would be obtained when the
classical correlation coefficient between {ey,...,en«} and {ex.s,...,en} would be
calculated. Also note that ry is always equal to one. Also note that rk= r«. Finally
note that the autocorrelations for larger lags (larger values of k) are calculated
using less terms in the numerator, while the (number of terms in the)
denominator remains the same.

Once calculated, the sample correlations are then displayed like in Figure 1.2.3
in the introduction and Figure 3.2.7 later in this section. These figures are called
autocorrelation plots and often abbreviated to ACF plots. Approximate
confidence intervals (usually 95%) for each k are indicated by two lines (+ 0.343
in Figure 1.2.3). For the confidence intervals it is assumed that under the null

LT
=
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hypotheses of no autocorrelation at all, each r, has a standard error of
approximately 1/vn. Please note that these tests for all r, are not independent.

However, for very large lags compared to the total number of observations
these approximate confidence intervals may not be accurate. Therefore, in the
plot in Figure 2.18 (produced by SPSS, a different approximation is used (see
SPSS algorithms, page 4):

Var(rk)s%(Z;I;j (3.2.11)

Obviously, in most practical cases this correction can be ignored.

It is important to note that these tests on the (partial) autocorrelations are only
valid for stationary residuals, which is usually the case with residuals of a
satisfactory fitting model. However, the plot of the autocorrelation function is
also used as an indicator for non-stationarity.

The sample partial autocorrelation (PAC) indicates what correlation cannot be
accounted for by the sample autocorrelation. It is computed by means of linear
equations from the sample autocorrelations. The partial autocorrelations for the
residuals are usually assumed to have a standard error of approximately 1/An
(similar to the autocorrelation). How precise to compute the partial
autocorrelations is relatively complicated and can be found in introductory time
series books, for instance Brockwell and Davis (1998, page 136) and Box and
Jenkins (1976, page 64), Chatfield (2004, page 61).

Although the ACF and PACF are well suited to determine at what lags
significant correlations exist (and other conclusions to be discussed in the
Section ARMA type models), they may not be very practical to capture the
whole picture in one test. To that end, the Box-Ljung statistic is often used.

Sample (partial) autocorrelation can be contrasted with a theoretical (partial)
autocorrelation. The same is true for, autocovariances. In general, for simplicity
focussing on covariance instead of correlation here, two stochastic variables X
and Y have a theoretical covariance EXY-EX.EY.

In a sample, this quantity if mostly estimated by
1 n 1 n 1 n
S = 2 (X, =2 X )XW, = X)), (3.2.12)
— 1= i=1 =1

where it is assumed that the X; and Y, all have identical distributions (this
assumption can be weakened somewhat). Obviously, the figure Sxy is not very
meaningful when this (in practice a weaker) assumption cannot be upheld. In
fact, it is only useful when all X; and Y; have the same theoretical covariance
and we can thus talk about the covariance. In a similar fashion, the correlation is
defined.
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Please note that, like the estimate Sxy of the theoretical covariance above,
sample estimates (the final outcomes) tend to differ from theoretical "true"
values, and only if the estimates are unbiased, will they on average, if the
samples get larger, tend to the true value.

The issue of Xi and Y, having the same theoretical covariance extends to time
series analysis in a more complicated way. In time series analysis, the notion of
stationarity, already briefly mentioned above, is defined for this purpose. It is
discussed in the "ARMA-type models" section below.

End of excursion: The sample autocorrelation and partial autocorrelation

For testing the last assumption about normality, most statistical packages
provide both estimates of skewness and kurtosis and standard errors for those
estimates. One can divide the estimate by it’s standard error to obtain a z test
of the null hypothesis that the parameter is zero (as would be expected in a
normal distribution). There are other tests that in this situation are more
powerful, for example the Kolmogorov-Smirnov statistic (for larger samples) or
the Shapiro-Wilks statistic (for smaller samples). These have very high power,
especially with large sample sizes, in which case the normality assumption may
be less critical for the test statistic whose normality assumption is being
questioned.

Table 3.2.1 shows a summary of the different assumption violations and their
consequences.

It has to be mentioned that some assumptions are more important than others.
In the case of linear regression in time series applications, the most important
violation concerns the independence assumption. The second most important
assumption is the homogeneity of the residuals. The least important assumption
is that the residuals are normally distributed.
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Assumption Violation Consequences

Errors correlated with x

Spurious relationship b biased estimate of
Collinear relationship b biased estimate of
Intervening relationship b unbiased estimate of 3,

but reflects both direct & indirect effects

b unbiased, but not efficient; SE, too
Heteroscedasticity small/large; Type | or Il error may result
(Rxs.2# 0.0)

b unbiased but not efficient; SE, too

Autocorrelated errors small/large; Type | or Il error may result
b may be unbiased if homescedasticity

Errors non-normally distributed & independence assumptions meet & n
is large; if n is small, t distribution may
be biased

Table 3.2.1 Summary of assumptions and consequences of violations

3.2.1.3 Dataset and research problem

The dataset used is based on accident data from Austria and shows the
development of fatal accidents all over the country from 1987 to 2004 on a
monthly observation basis.

In this example, the distribution and development of people who were killed in
accidents based on monthly observations is shown in Figure 3.2.3.:



3.2.1 Classical linear regression models
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Figure 3.2.3 Scatterdiagram of the monthly number of fatalities in Austria from 1987 to
2004

3.2.1.4 Model fit, diagnostics, and interpretation

The model estimation of the example dataset was calculated with SPSS
(www.spss.com). First, the ANOVA table test procedure tests the acceptability
of the regression model. It shows that the unexplained variation (sum of
squares, residual row) is higher than the explained variation (sum of squares,
regression row).

ANOVAP
Sum of Mean
Model Squares df Squares F Sig.
1 Regression 46129,857 1 46129,857 79,228 ,0002
Residual 124600,5 214 582,245
Total 170730,3 215

a. Predictors: (Constant), TIME
b. Dependent variable: KILLED

Table 3.2.2 ANOVA table of the linear regression analysis applied to the monthly
number of fatal accidents in Austria in the period 1987-2004

The significance value of the F-statistic is less than 0.05, which means that the
variation explained by the model is not due to chance. While the ANOVA table
is a useful test of the model's ability to explain any variation in the dependent

" Transport

Project co-financed hy the European Commission, Directorate-General Transport antl_Eﬁergv

Page 187



Chapter 3 — Time Series Analysis

variable, it does not directly address the strength of this relationship. Table 3.2.3
shows the coefficients of the regression:

Coefficients?
Non standardized standardized
coefficients coeffizients
Standard
Model B error Beta T Sig.
1 Constant 1259,417 130,558 9,646 ,000
TIME -8,91E-08 ,000 -,520 -8,901 ,000

a. Dependent variable: KILLED

Table 3.2.3 Coefficients table of the linear regression analysis applied to the monthly
number of fatal accidents in Austria in the period 1987-2004

The gradient of the regression line is negative, whereas the beta-coefficient (i.e.
the coefficient of correlation) between x and y is —0.520. The gradient of the
regression line is checked by a t-test, which is equal to the square root of the F-
test in the ANOVA table mentioned before. The result suggests a highly
significant decrease in the number of fatalities in Austria since 1987.

Finally, the model summary table reports the strength of the relationship
between the independent and the dependent variable (Table 3.2.4)

Adjusted Std. Error of
Model R R Square | R Square | the Estimate
1 ,5202 ,270 ,267 24,130

a. Predictors: (Constant), Year/Month

Table 3.2.4 Model summary table of the linear regression analysis applied to the
monthly number of fatal accidents in Austria in the period 1987-2004

R, the multiple correlation coefficient, is the linear correlation between the
observed and model-predicted values of the dependent variable. Its value (0.52)
indicates a moderate relationship. The R Square value (the coefficient of
determination) is the squared value of the multiple correlation coefficient. It
shows that 27 percent of the variation in the number of fatalities is explained by
time.

The results shown above are only true if the basic conditions stated in the
Gauss-Markov assumptions hold. Based on the fact that linearity is only
assured if the residual value varies unsystematically, one can check the validity
of the model. All model checks are based on the assumption that the error term
is independent of the variables (x, y). So, when checking the plot, it must not
show any systematic relationships. If this is the case, the use of the linear
regression is not justified due to non-linear relationships in the data.

The histogram of the residuals reveals that the assumption of normality of the
error term is justified (the standard Kolmogorov-Smirnov test yields a z-value of
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0.594, which indicates no significant deviation from the normal distribution): see
Figure 3.2.5.

Dependent Variable: KILLED P-P Plot of Regression
30

Standardized Residuals
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Figure 3.2.5 Histogram and P-P Plot of standardized residuals (in other chapters also
the Q-Q Plot is used)

The shape of the histogram approximately follows the shape of the Gaussian
curve; the P-P plotted residuals also follow the 45-degree line (Figure 3.2.5).
Therefore, it can be concluded that the histogram is acceptably close to the
normal curve. Again, the assumption of normal distribution of the example data
is reasonable.

Additionally, a (shortened) table of residual statistics (Table 3.2.5) shows the
following:

Minimum | Maximum | Mean | Std. Deviation| N
Stud. Deleted Residual -3,191 2,527 | -,001 1,006 | 216
Cook's Distance ,000 ,097 | ,004 ,008 | 216
Centred Leverage Value ,000 ,046 | ,005 ,006 | 216

Table 3.2.5: Table of selected residual statistics

One can find the most important indices of the residuals in the row “Studentized
Deleted Residuals”. In the example dataset, the maximum for this value is
2.527. As a consequence, there is no evidence for extremely high or low
observation values. Furthermore, the values of “Cook’s Distance” and “Centred
Leverage Value” are also good checks for very influential values (Stevens,
1996). As both are around zero, this also indicates that there is also no sign of
outliers. For testing the assumption of homoscedasticity, there are some
heuristic ways by looking at different scatterplots (Figure 3.2.6.).
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Figure 3.2.6: Table of selected residual plots for identifying heteroscedasticity

All  plots

in the table above show no

the presence of heteroscedasticity in the data.

Finally, we are looking at the problem of autocorrelated errors, which is the most
likely violation in time series regression. This is also true in the data example

used in this chapter, as shown in figure 3.2.7.

indication of the presence of
heteroscedasticity except the one in the lower left, in which slightly higher
squared residuals in the early years are found. By using the previously
introduced White’s test, we find a 2 = 11.232 (R-Square of the regression of the
squared standardized residuals on the date variable is 0.052, the number of
time points in the analysis is 216, df is 1) which is highly significant and shows
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Figure 3.2.7: Table of autocorrelations and seasonal adjusted autocorrelations

The two plots in figure 3.2.7 show very high dependencies of consecutive
errors. Despite the fact that b will remain an unbiased estimate of B, the
significance tests shown above in the outlined example are wrong. When the
first order residual autocorrelation (i.e., the residual autocorrelation for lag 1) is
positive and significantly deviates from zero, a positive residual tends to be
followed by one or more further positive residuals, and a negative residual tends
to be followed by one or more further negative residuals. The error variance for
standard statistical tests is seriously underestimated in this case. This leads to
an overestimation of the F- or r-ratio, and therefore overly optimistic conclusions
from the analysis.

The above results are not an artefact of the seasonal component in the data
series, which is shown in the right-hand plot in Figure 3.2.7 and will be outlined
a bit more by performing two more analyses. Firstly, the regression equation will
be expanded by adding dummy variables for the month as a second set of
predictors in the model (the 11 variables feb thru dec are 0/1 dummys, January
is collinear with the 11 others) . Secondly, aggregated yearly data will be used
as dependent variable.

The model fit statistic (R Square) in Table 3.2.6 shows a much better fit of the
linear regression model including the dummy predictors for the month effect
compared to the simple model above (0.856 vs. 0.27).
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a Predictors: (Constant), dec, YM, jun, jul, mai, aug, apr, sep, mar, feb, oct, nov
Model Summary

Adjusted R Std. Error of the
Model R R Square Square Estimate

1 ,846(a) ,716 ,699 15,456
a Predictors: (Constant), dec, Year/Month, jun, jul, mai, aug, apr, sep, mar, feb, oct, nov

Table 3.2.6: Model summary table of multiple linear regression analysis applied to the
monthly number of fatal accidents in Austria in the period 1987-2004 with dummy
variables for the month of year as a second predictor.

Sum of

Model Squares df Mean Square F Sig.

1 Regression 122233,758 12 10186,147 42,638 ,000(a)
Residual 48496,570 203 238,899
Total 170730,329 215

a Predictors: (Constant), dec, Year/Month, jun, jul, mai, aug, apr, sep, mar, feb, oct, nov
Unstandardized Standardized
Coefficients Coefficients

Model B Std. Error Beta t Sig.

1 (Constant) 1286,700 83,738 15,366 ,000
Year/Month | -9 28E-008 ,000 -,541 -14,451 ,000
feb -9,474 5,152 -,093 -1,839 ,067
mar 6,136 5,152 -,060 -1,191 ,235
apr 7,502 5,152 ,074 1,456 147
mai 28,020 5,153 ,275 5,438 ,000
jun 39,324 5,153 ,387 7,632 ,000
jul 41,454 5,153 ,408 8,044 ,000
aug 48,869 5,153 ,480 9,483 ,000
sep 30,784 5,154 ,303 5,973 ,000
oct 36,525 5,154 ,359 7,086 ,000
nov 18,218 5,155 179 3,534 ,001
dec 16,570 5,155 ,163 3,214 ,002

Table 3.2.7 ANOVA? and coefficients® table of multiple linear regression analysis
applied to the monthly number of fatal accidents in Austria in the period 1987-2004 with
dummy variables for the month of year as a second predictor.

The results in Table 3.2.7 are very similar to the results in Tables 3.2.2 and
3.2.3 The inclusion of the predictor 'month' in the model significantly improves
neither the F-test nor the parameter tests. But the change in the model fit is
highly significant: the R? increases from .270 to .716 (F-Change=28.96, df=11).

The previous result on monthly data (see Table 3.2.6 and 3.2.7.) is replicated on
yearly data again. The number of fatalities in road accidents has been
decreasing since 1987 (see Table 3.2.8). The result of the regression on the
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yealy data is more significant than in the case of the monthly fatalities in the
above regressions because there are no seasonal artefacts in the yearly data
which introduce high variation not due to the general trend in the model.
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Model Summary

Adjusted Std. Error of
Model R R Square | RSquare | the Estimate
1 ,9332 ,870 ,862 74,77443
a. Predictors: (Constant), Year
ANOVA®
Sum of
Model Squares df Mean Square F Sig.
1 Regression 598633,5 1 598633,499 107,067 ,0002
Residual 89459445 16 5591,215
Total 688092,9 17
a. Predictors: (Constant), Year
b. Dependent Variable: Fatalities
Coefficients®
Unstandardized Standardized
Coefficients Coefficients
Model B Std. Error Beta t Sig.
1 (Constant) [71312,108 | 6778,903 10,520 ,000
Year -35,151 3,397 -,933 -10,347 ,000

a. Dependent Variable: Fatalities

Table 3.2.8: Plot of Yearly Fatality Data in Austria from 1987 to 2004 and regression
results

On the other side, we find that the distribution assumptions are also met in this
case, but not as close as in the monthly model (see Figure 3.2.8).
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Figure 3.2.8: Histogram and P-P Plot of standardized residuals for the regression
model on yearly Austrian fatalities data.
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Figure 3.2.9 Table of selected residual plots for identifying heteroscedascity

All plots (see Figure 3.2.9) show a light trend of smaller residuals in the later
years. This cannot be proven by White’s test: = 2,057, df=1, therefore we can
assume homoscedastiscity in the yearly fatalities data in Austria.

As expected from the previous analysis of the monthly data corrected for the
season, we find seriously high autocorrelations in the yearly data as well.

The one of the four Gauss-Markov assumptions about exogenous independent
variables has not been covered yet in this paper. This is because this cannot be
done with the limited dataset used in this section about introducing linear
regression. However, this is also true for most research problems in time series
analysis. It is not feasible in practical work to include all possible factors in
multivariate models and analyse the problem by co-linearity analysis or factor
models. So, the researcher needs a good theoretical understanding of the
context of the data on which he wants to fit a model. This is not only true for
simple linear regression models, but also for more sophisticated extensions
covered in other sections of this book.
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Figure 3.2.10 Table of autocorrelations

As already mentioned in the introduction to the time series analysis section, in
principle there is nothing wrong in fitting a classical regression model with
Austrian fatality data to obtain a rough idea of the linear trend in the series. The
results show a negative relation between the number of Austrian fatalities and
time, suggesting that the number of fatalities have decreased over the last 18
years. However, as soon as standard statistical tests are applied to ascertain
whether or not the relationship should be attributed to chance, serious problems
arise. As noted above, the F-test (or, equivalently, the t-test for the regression
weight) would lead one to conclude that the negative relationship between the
number of driver fatalities and time is highly significant. These tests are based on
the fundamental Gauss-Markov assumptions. In the examples shown,
especially the most important assumption of randomly distributed errors was
clearly violated, implying that the results of the statistical tests regarding the
regression could not be trusted.

3.2.1.5 Conclusion

For most studies, the fit of a linear regression model is a good start to examine
the different properties of the data, and if all conditions hold true, it is the most
efficient way to estimate a trend in a time series. This is true not only from a
statistical viewpoint, but also for communicating the solution. The parameters in
the model are simple and also non-statisticians can have an intuitive
understanding of the results. This is an important issue in road safety work,
where people have to make decisions which are costly both in terms of money
and fatalities.

In a risk management environment, not only the general trend is important, but
decisions are most often based on statistical inference. Therefore, it is important
to analyse all the model assumptions. This analysis is also a good start to
decide the direction of more advanced modelling of the data. In the example
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shown above with time dependent errors, further investigation of the data will
lead to dedicated time series models, which can handle this problem much
better than classical regression. Other violations of the assumptions may lead to
alternate estimation procedures. Weighted least squares or maximum likelihood
techniques are options in the case of heteroscedastic data.

Other sections in this chapter on time series analysis will lead to an in-depth
view of the various options to handle the specific properties of accident data in
more sophisticated model environments.



3.2.2 Generalized linear models (GLM)

George Yannis, Constantinos Antoniou and Eleonora Papadimitriou
(NTUA)

3.2.2.1. Objective of the technique

While the linear regression model is simple (to run and interpret), elegant and
efficient, it is subject to the fairly stringent Gauss-Markov assumptions
(Washington et al., 2003). The Gauss-Markov assumptions require:

Linearity (in the parameters; nonlinearity in the variables is acceptable);
Homoscedasticity;

Exogenous independent variables;

Uncorrelated disturbances; and

Normally distributed disturbances

If these assumptions hold, it can be shown that the solution obtained by
minimizing the sum of squared residuals (‘least squares’) is BLUE, i.e. best
linear unbiased estimator (in other words, it is unbiased and has the lowest total
variance among all unbiased linear estimators). These assumptions, however,
are often violated in practice. In this research, two of these violations -that are
relevant to road safety data- are considered, in particular correlated
disturbances; and non-normal error structures.

Generalized linear models (GLM), a generalization of the linear regression, can
be used to overcome these restrictions (McCullagh and Nelder, 1989, Dobson,
1990, Gill, 2000). The objective of GLM is to allow for more flexible error
structures (besides the Gaussian which is assumed by —linear and nonlinear—
regression). The allowable distributions belong in the exponential family. In this
section, we investigate the suitability of each distribution for road safety data
that are temporally correlated.

3.2.2.2. Model definition and assumptions

Generalized linear models facilitate the analysis of the effects of explanatory
variables in a way that closely resembles the analysis of covariates in a
standard linear model, but with less confining assumptions. This is achieved by
specifying a link function, which links the systematic component of the linear
model with a wider class of outcome variables and residual forms (McCullagh
and Nelder, 1989, Dobson, 1990, Gill, 2000).

A key point in the development of GLM was the generalization of the normal
distribution (on which the linear regression model relies) to the exponential
family of distributions. This idea was developed by Fisher (1934). Consider a
single random variable y whose probability (mass) distribution (if it is discrete) or
probability density function (if it is continuous) depends on a single parametero.
Probability (mass) distribution is the set of values x taken by a discrete random
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variable X (the domain of the variable) and their associated probabilities. If X is
a continuous random variable, the probability associated with any particular
point is zero; therefore, positive probabilities can only be assigned to intervals in
the range over which x is defined. In that case, the probability density function is
defined by the area under the distribution in the range of the interval of interest.

The distribution belongs to the exponential family if it can be written in the form:
f(y:6)=s(y)(@)e” (3.2.13)

where a, b, s, and t are known functions. The symmetry between y and 6
becomes more evident if we rewrite it as:

F(y:6)=expla(y)b(@)+c(8)+d(y)] (3.2.14)

where s(y)=exp[d(y)] and t(8)=exp[c(0)]. If a(y)=y then the distribution is said to
be in the canonical form. Furthermore, any additional parameters (besides the
parameter of interest 8) are regarded as nuisance parameters forming parts of
the functions a, b, ¢, and d, and they are treated as though they were known.
Many well-known distributions belong to the exponential family, including —for
example— the Poisson, normal, and binomial distributions. On the other hand,
examples of well-known and widely used distributions that cannot be expressed
in this form are the student’s t-distribution and the uniform distribution.

The generalized linear model can be defined in terms of a set of N independent
random variables yj, ..., yn, €ach with a distribution from the exponential family
with the following properties:

1. The distribution of each y; is of the canonical form and depends on a
single parameter 6; (not necessarily the same parameter for all variables):

2. The distributions of all the y; s are of the same form (e.g. all normal or all
binomial) so that the subscripts on b, ¢, and d are not needed.

The joint probability density function of ys, ..., ynis then

f(yi;ei)=exp{ﬁ(yib<ei>+c<a)+d<y,.))} (3.2.16)

i=1

When specifying a model, the N parameters 6; are usually not of direct interest
(the number of parameters 6 is N, since there is one for each y). Instead, for a
GLM, a smaller set of p parameters g, ..., By is considered (where p < N), such
that a linear combination of the Bs is equal to some function of the expected
value y;of yj, i.e.

g(u)=x;p (3.2.17)
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where,

g is a monotonic, differentiable function called the link function;

Xi is a (p x 1) vector of explanatory variables (covariates and dummy variables
for levels of factors); and

B=[B1, ..., Bp]T is the (p x 1) vector of parameters.

To recapitulate, in the univariate case, a generalized linear model has three

components:

1. A response variable y assumed to follow a distribution from the
exponential family;

2. Asetof parameters B and explanatory variables X=[x4", ..., X,']"

3. A monotonic link function g such that

gw)=x!p (3.2.18)

where u=E(Y))

Generalized linear models require uncorrelated observations. Time-series data
require special consideration, since the observations typically fail to meet this
assumption, as neighbouring observations are likely to be correlated. It is often
possible to include a large number of explanatory variables in a linear
regression model, resulting in seemingly serially uncorrelated residuals (and,
therefore, the linear model theory would apply). There are, however, two
problems with such a strategy. First, it may not be easy to identify the
appropriate explanatory variables that would reflect the serial correlation.
Second, and perhaps more important, the additional variables included in the
model to reduce the serial correlation may dilute the effects of the main
variables of interest, thus potentially affecting the power and the interpretation of
the model.

In a very different (with respect to road safety) context, Zeger (1988) introduced
a method for regression when the outcomes are a time series of counts (as is
often the case in road safety applications). The critical point about this model is
that the serial correlation in the observed data is captured through some
unobserved (or latent) process and conditional on this unobserved process, the
counts are independent. This is a reasonable assumption for road safety data,
since the occurrence of an accident (or a fatality or injury) is usually not directly
caused by another.

The data, however, are serially correlated because they are ordered in time,
and other factors (also ordered in time) are affecting the underlying risk. A
discussion on these properties, albeit in a totally different context, can be found
in Campbell (1994), who also presents a practical application of the approach,
where the only assumption that is made on the distribution of the error structure
is that it is mean stationary. Davis et al. (2000) developed a practical approach
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to diagnose the existence of a latent stochastic process in the mean of a
Poisson regression model.

For the Poisson model, the covariance matrix, and hence the standard errors of
the parameter estimates, are estimated under the assumption that the Poisson
model is appropriate. Occasionally one may observe more variation in the
response than what is expected by the Poisson assumption. This is called
overdispersion and implies that the estimates of the standard errors of the
parameters will not be correct. Overdispersion typically occurs when the
observations are correlated, and therefore it is very relevant in the context of
time-series analysis. Underdispersion (less variation than expected) is also
possible, although not as common.

The Poisson distribution has been considered suitable to counts of car crashes
for a long time (Nicholson and Wong, 1993). However, the Poisson model (while
arguably more appropriate than the Gaussian) is not without weaknesses and
technical difficulties. For example, the assumption of a pure Poisson error
structure may prove inadequate in the presence of "overdispersed" data
(Maycock and Hall, 1984). A straightforward approach to overcome this issue is
to use a quasi-Poisson model (i.e. estimate a dispersion parameter for the
Poisson model, thus allowing it to take values other than 1). Maycock and Hall
(1984) showed that the negative binomial model could also be used as an
extension to the Poisson. Miaou (1994) and Wood (2002) have also used the
negative binomial model for road safety applications. Maher and Summersgill
(1996) mention that, quite often, the two approaches (i.e. quasi-Poisson and
negative binomial) may give very similar estimation results. One may then be
tempted to think that the two models are equivalent and that it does not really
matter which model is selected. Maher and Summersgill further warn that this
may not be the case, as the two models may have different prediction
properties, as measured, e.g. by the prediction error variance.

Furthermore, few processes are adequately modelled by linear models in
practice. For example, several researchers have shown that conventional linear
regression models lack the distributional property to adequately describe
collisions. This inadequacy is due to the random, discrete, non-negative, and
typically sporadic nature that characterizes the occurrence of a vehicle collision.
Several researchers (including Hauer et al.1988, Hakim et al., 1991; Cameron
et al.,, 1993; Newstead et al., 1995), using road accident statistics, have
presumed that the explanatory variables have a multiplicative effect on
accidents (as opposed to e.g. additive).

3.2.2.3. Introduction of dataset and research problem

The use of generalized linear models for road safety research is demonstrated
using accident casualties and police enforcement data from Greece (excluding
the two largest cities, i.e. Athens and Thessalonica). Monthly data from January
1998 to December 2003 have been used for this research (Figure 3.2.12). The
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data of the first five years (60 observations) are used for the model estimation,
while the data for the last year (12 observations) are used for validation.
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Figure 3.2.12: Dataset overview

The model specification comprises three main effects: trend, seasonal effects,
and explanatory variables. The trend captures the evolution of the dependent
variable over time. This is captured in the specification by the addition of the
"Month" variable, which ranges from 1 (for the first month, i.e. January 1998) to
72 (for December 2003). Seasonal effects are captured by the incorporation of
sinusoid components (similar to those used e.g. by Zeger, 1988, and Campbell,
1994). Several frequencies have been investigated (from 1 to 15 months), but
the most useful proved to be the annual and its first (six month) harmonic.

{: Transport

Project co-financed hy the European Commission, Directorate-General Transport ll Energy

Page 201



Chapter 3 — Time Series Analysis

Furthermore, besides specifying trend and seasonal components, the impact of
explanatory variables is also tested, with an emphasis on enforcement data
(number of breath alcohol controls per month) and (the log of) vehicles in
circulation. To account for the delayed impact of enforcement in road safety (as
the word-of-mouth spreads) the number of breath alcohol controls has been
lagged by two intervals, capturing the impact of enforcement intensification two
months after it occurs. The log of vehicles in circulation has been entered as an
offset. This modeling decision was based on the comparison of this model and a
model in which the vehicles in circulation were entered as a regular variable
(however, that model led to counterintuitive parameter estimates). Naturally, the
two major Greek urban areas excluded from the casualty data have also been
excluded from the data of breath alcohol controls and registered vehicles. The
number of registered vehicles has been interpolated from annual figures.
Finally, a high number of casualties was observed during the month of August.
Therefore, a binary dummy variable has been introduced, that takes the value of
one for August and zero otherwise. Further exploration of the available monthly
data did not reveal any new insight in the seasonality of the road safety
phenomenon. The "August phenomenon" remained predominant.

Seasonality (August peak) observed mainly in the persons killed and seriously
injured but also on the enforcement can be attributed to increased summer
traffic in Greece as a holiday destination. The exceptional enforcement low
value on December 2001 cannot be explained by any other reason than the
internal enforcement programming of the Police.

3.2.2.4. Model fit, diagnostics and interpretation

In this section, different error structures -that are allowable within the GLM
framework and are also theoretically supported- are applied. Model estimation
and analysis has been performed using the R Software for Statistical Computing
(RDCT, 2006). First, the Gaussian (Normal) distribution is used. A Poisson
model is also fitted, along with a quasi-Poisson that relaxes the assumption that
the dispersion parameter is equal to one. Finally, a negative binomial model is
fitted. The link function used for all four models (Normal, Poisson, quasi-Poisson
and negative binomial) is the log function.

Estimation results and model fit for the four model families are shown in Table
3.2.10 A sinusoid term with an annual frequency and its (6 month) harmonic
capture periodicity. A negative coefficient value for the number of breath alcohol
controls indicates that the number of persons killed and seriously injured
decreases as the intensity of breath alcohol controls increases, which is an
intuitive result.

A binary dummy variable, taking the value of one for August and zero otherwise,
was also found to be significant. Other explanatory variables (such as the
number of speeding violations) were also originally entered into the model.
However, explanatory variables relating to enforcement were highly correlated
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(in particular the number of breath alcohol controls and speeding violations had
a correlation of 0.97). Therefore, while using either variable resulted in intuitive
results, their combination resulted in multicollinearity problems.

The coefficient signs, however, are consistent for all models and all retained
parameters are significant at the 1% level (with the exception of the
enforcement data in the quasi-Poisson and negative binomial models, which are
still significant at the 10% level). A comparison of the standard errors shows that
the values obtained for the Poisson model are significantly lower than those
obtained from the other three models. Therefore, the z-values obtained for the
Poisson model seem unusually high. A closer look at the model statistics
suggests that the data may be overdispersed.

Potential overdispersion can be identified by dividing the residual deviance
(defined -up to a constant- as twice the log-likelihood ratio statistic) by the
residual degrees of freedom (i.e. the number of observations minus the number
of parameters in the model). The resulting measure is an approximately
unbiased estimator of the dispersion parameter (Venables and Ripley, 2002). If
the deviance is equal to the degrees of freedom then there is no evidence of
overdispersion. Note that a dispersion parameter not equal to one does not
necessarily imply overdispersion, but could also indicate other problems, such
as an incorrectly specified model or outliers in the data. An incorrectly specified
model can be due to an incorrectly specified functional form (an additive rather
than a multiplicative model may be appropriate) or, more likely, that important
explanatory variables (or interactions) are missing from the model. However,
overdispersion can also be a property of the data, typically indicating a lack of
independence or heterogeneity among observations, sampling issues, etc.

The dispersion factor for the data at hand is equal to 151.11/51=2.96, which is
significantly different from one. The assumption of a Poisson model (with a
dispersion parameter equal to one) is therefore unlikely to be realistic. A quasi-
Poisson model (an extension of the Poisson model, in which the dispersion
parameter is allowed to vary from one) has also been estimated. The estimation
is based on the iterative algorithm proposed by Breslow (1984) for fitting
overdispersed log-linear Poisson models. The magnitude of the estimated
coefficient values is similar to that obtained by the Poisson model, and the signs
are the same. The significance of the coefficients, however, has significantly
decreased, indicating that in the Poisson model the standard errors were
underestimated due to the overdispersion. As expected, the dispersion
parameter for the quasi-Poisson model is 51.38/51=1.01, i.e. very close to one.

Finally, a negative binomial model has been fitted. The estimated coefficients
were similar to those obtained from the quasi-Poisson. This confirms the
findings of Maher and Summersgill (1996) who state that the two approaches
may provide similar estimation results. Slightly lower standard errors for the
binomial, however, lead to more significant statistics.

Further model diagnostics are presented in Figures 3.2.13 through 3.2.16.
Normal scores plot (QQ plot) of standardized deviance residuals is presented in

Project co-financed by the European Commission, Directorate-General Transport and Energy

Page 203



Chapter 3 — Time Series Analysis

the left subfigure of each figure. The x-axis represents the standardized
deviance residuals, while the y-axis represents the quantiles of the standard
normal. The dotted line in the QQ plot (left) is the expected line if the
standardized residuals are normally distributed, i.e. it is the line with intercept 0
and slope 1. If the deviance residuals are normally distributed, all points on the
plot would fall on this dotted line. The deviance residuals of the normal model
are far from normally distributed. The Poisson model is a slight improvement,
but still far off. The quasi-Poisson and the negative binomial model deviance
residuals, on the other hand, are practically normally distributed. While normality
of the residuals is not a requirement of the generalized linear model, it is an
indication of a well-behaved model specification.

On the right subfigure is a plot of the Cook statistics against the standardized
leverages. The standardized leverage of the i-th observation x; can be
computed as (Belsley et al., 1980):

" n (n-Ds?

where n is the number of observations, the overbar indicates the predicted
value, and s, is the standard error. There are two dotted lines on each plot. The
horizontal line is at 8/(n-2p) where n is the number of observations and p is the
number of parameters estimated. Points above this line may be points with high
influence on the model. The vertical line is at 2p/(n-2p) and points to the right of
this line have high leverage compared to the variance of the raw residual at that
point. If all points are below the horizontal line or to the left of the vertical line
then the line is not shown.

A large number of points appear to be influential (i.e. above and to the right of
the two dashed lines) in the Gaussian and the Poisson models, while only one
point has a high leverage for the quasi-Poisson and negative binomial models.

The estimation results and the model diagnostics suggest that the quasi-
Poisson and the negative binomial assumptions are more valid for the
considered problem (while this may not be always the case). The output of the
resulting models is very similar and therefore a clear decision regarding the
most appropriate model cannot be made. One observation relates to the
estimated standard errors, which are higher for the quasi-Poisson. Choosing to
err in the side of caution, one could retain this model.

It should be noted that the usual tests for comparing models, such as the Akaike
Information Criterion, AIC, (Akaike, 1973) or the Schwarz/Bayesian Information
Criterion, BIC, (Schwarz, 1978), are not suitable for comparison across these
models. (While a detailed discussion is outside of the scope of this document,
and there is a lot of specialized research on the topic, the AIC is best suited for
the comparison of nested models and models with similarly computed log-
likelihood measures. In this application, for example, the quasi-Poisson model is
not estimated using maximum likelihood.)
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Normal

Coefficient Estimate Std. error t-value
Intercept -7.9608 0.1175 -67.763

-0.0154 0.0017 -9.054
August dummy 0.1995 0.0355 5.628
sin(pi*Month/6) -0.2279 0.0215 -10.580
sin(pi*Month/12) -0.5326 0.1826 -2.917
cos(pi*Month/6) -0.4434 0.0781 -5.674
Laggedx2 alcohol controls (x100,000) -0.2949 0.1481 -1.992
Null deviance: 725 608 (57 d.o.f.)
Residual deviance: 79 290 (51 d.o.f)

Poisson
Coefficient Estimate Std. error z-value
Intercept -7.9881 0.0641 -124.548
Trend -0.0157 0.0010 -15.921
August dummy 0.1919 0.0241 7.963
sin(pi*Month/6) -0.2229 0.0123 -18.162
sin(pi*Month/12) -0.4859 0.0985 -4.932
cos(pi*Month/6) -0.4214 0.0430 -9.803
Laggedx2 alcohol controls (x100,000) -0.2629 0.0821 -3.201
Null deviance: 2042.30 (57 d.o.f.)
Residual deviance: 168.42 (51 d.o.f)
Quasi-Poisson
Coefficient Estimate Std. error z-value
Intercept -8.0038 0.1066 -75.068
Trend -0.0159 0.0017 -9.470
August dummy 0.1838 0.0466 3.949
sin(pi*Month/6) -0.2206 0.0212 -10.427
sin(pi*Month/12) -0.4582 0.1623 -2.824
cos(pi*Month/6) -0.4087 0.0718 -5.692
Laggedx2 alcohol controls (x100,000) -0.2410 0.1368 -1.761
Null deviance: 568.12 (57 d.o.f.)
Residual deviance: 51.41 (51 d.o.f)
Negative binomial

Coefficient Estimate Std. error z-value
Intercept -8.0027 0.1007 -79.434
Trend -0.0159 0.0016 -10.022
August dummy 0.1843 0.0436 4.229
sin(pi*Month/6) -0.2208 0.0199 -11.071
sin(pi*Month/12) -0.4602 0.1534 -2.999
cos(pi*Month/6) -0.4096 0.0678 -6.038
Laggedx2 alcohol controls (x100,000) -0.2425 0.1293 -1.875
Null deviance: 682.57 (57 d.o.f.)
Residual deviance: 58.78 (51 d.o.f)

Table 3.2.10. Estimation results
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Figure 3.2.13: Model fit diagnostic plots (Gaussian distribution)
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3.2.2 Generalised linear models

Figure 3.2.15: Model fit diagnostic plots (Quasi-Poisson distribution)

= :

£ 1 :

] = :

- o §

1] T (=] ¥

0 8 = :

= B g A

- . g m|® g o

@ »'Ep =1 o

= o

‘5‘ 2 gjct%o oW g

, o

& S M oo o g >
T T T o T T T
-2 -1 2 01 0.2 0.3 0.4

Ordered deviance residuals hi(1-h)}

Figure 3.2.16: Model fit diagnostic plots (Negative binomial distribution)

Figure 3.2.17 shows the values predicted by the quasi-Poisson model. The
dashed line shows the actual observed number of dead and seriously injured in
Greece (excluding the two major metropolitan areas of Athens and
Thessalonica). The thick solid line represents the model predictions and 95%
confidence intervals are also shown with thinner solid lines.
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Figure 3.2.17: Quasi-Poisson model predictions

3.2.2.5. Conclusion

The impact of different distributional assumptions for the dependent variables
on the model estimation results is demonstrated in this research within the
unified framework of generalized linear models. Due to the time-series nature of
the data, a modelling approach to capture serial correlation through the
introduction of sinusoid latent processes has also been demonstrated.

The signs of the estimated coefficients for all models are consistent and
intuitive. The estimated coefficients for the Poisson model are close to those
estimated by the other three models, but the standard errors are severely
underestimated (due to overdispersion), leading to artificially high t-statistic
values. Even though these values were indeed significant in this application, this
issue could have led to incorrect retention of insignificant variables in the
Poisson model. As a result, the use of the Poisson model in this case is not
recommended, and the quasi-Poisson or the negative binomial models should
be used instead. However, even though the magnitude of the estimated
coefficients for the quasi-Poisson and negative binomial is very similar, the
different models may have different predictive properties and therefore may not
be used interchangeably without further analysis.



3.2.3 Non-linear models

George Yannis, Constantinos Antoniou and Eleonora Papadimitriou
(NTUA)

3.2.3.1. Objective of the technique

While the linear regression model is relatively simple (to run and interpret),
elegant and efficient, few processes are adequately modeled by linear
regression models in practice. Linear regression models might have been a
practical necessity in the past, but theoretical and computational developments
have made the use of more elaborate (appropriate, accurate) methods practical.
This can also be seen in road safety research, where while early work used
multiple linear regression modeling (assuming normally distributed errors and
homoscedasticity), over the past two decades there has been a departure from
this model. Generalized linear models (GLM) allow for some nonlinear
relationships to be modeled and relax some restrictions on the distributional
assumptions of linear regression (McCullagh and Nelder, 1989, Dobson, 1990).
Although many scientific and engineering processes can be described well
using linear models, or other relatively simple types of models, there are many
processes that are inherently nonlinear. Non-linear models need then be used.
The biggest advantage of nonlinear regression over many other techniques is
the broad range of functions that can be fit.

Non-linear regression is widely used in road-safety related research. Several
researchers (including Oppe, 1979, 1989, Hauer, 1988, Hakim et al., 1991,
Cameron et al, 1993; Newstead et al., 1995), using road accident statistics,
have presumed that the explanatory variables have a multiplicative effect on
accidents (as opposed to e.g. additive). Henning-Hager (1986) presented a non-
linear regression model to express the relationship between road safety, traffic
volumes and the quality of transportation supply and demand in urban areas.
Qin et al. (2004) showed that the relationship between crashes and the daily
volume (AADT) is non-linear and varies by crash type, and is significantly
different from the relationship between crashes and segment length for all crash

types.

A commonly used macroscopic road-safety model is based on Smeed's original
relationship (Smeed, 1968):

F a{v Jﬂ (3.2.20)
= — +Zn
v

n

where F is the number of fatalities, V is the number of (motor) vehicles (in
thousands), P is the population (in thousands), n indicates the country, o and 3
are model parameters to be estimated and Z, are the disturbances. Using data
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for road fatalities, vehicles and population from 20 (mostly European) countries,
Smeed (1968) estimated the values of a and b as 0.0003 and -0.66
respectively. Jacobs (1986) repeated this analysis for a number of developed
and developing countries using data between 1968 and 1975 and obtained
values of 0.000204 and -0.84 for a and b respectively. Gharaybeh (1994)
applied Smeed's formula to assess the development of road safety in Jordan,
relative to that of other middle-eastern and developing countries.

In this section, four different models are presented in the context of road safety.
Using the model shown in Equation 3.2.20 as a starting point, a log-transformed
version is developed. Autoregressive versions of these two models are also
derived, to account for serially correlated disturbances. The four models are
developed and estimated in parallel, and their results are compared.

3.2.3.2. Model definition and assumptions

A non-linear regression model is most commonly written as:
Y, = f(x,,0)+Z, (3.2.21)

where f is the expectation function, x, is a vector of associated regressor
variables or independent variables for the nth case, Y, is the dependent
variable, 6 is a vector of parameters to be estimated and Z, are random
disturbances. This model is of the same general form as the linear model, with
the exception that the expected responses are nonlinear functions of the
parameters. More formally, for non-linear models, at least one of the derivatives
of the expectation function with respect to the parameters depends on at least
one of the parameters. The presentation of non-linear models on the following
sections relies on Bates and Watts (1988), while the following paragraphs
presenting the advantages and disadvantages of non-linear regression are
based on NIST (2006).

Non-linear regression is estimated using "least squares" procedures, using the
same underlying concepts as linear least squares regression. As a result,
nonlinear least squares regression has some of the same advantages (and
disadvantages) that linear least squares regression has over other methods.
One common advantage is efficient use of data. Nonlinear regression can
produce good estimates of the unknown parameters in the model with relatively
small data sets. Another advantage that nonlinear regression shares with linear
regression is a fairly well-developed theory for computing confidence, prediction
and calibration intervals to answer scientific and engineering questions. In most
cases the probabilistic interpretation of the intervals produced by nonlinear
regression are only approximately correct, but these intervals still work very well
in practice.

The major cost of moving to nonlinear least squares regression from simpler
modeling techniques like linear least squares is the need to use iterative
optimization procedures to compute the parameter estimates. With functions



that are linear in the parameters, the least squares estimates of the parameters
can always be obtained analytically, while that is generally not the case with
nonlinear models. The use of iterative procedures requires the user to provide
starting values for the unknown parameters before the software can begin the
optimization. The starting values must be reasonably close to the as yet
unknown parameter estimates or the optimization procedure may not converge
to the optimal point. Bad starting values can also cause the software to
converge to a local minimum rather than the global minimum that defines the
least squares estimates.

Disadvantages shared with the linear least squares procedure includes a strong
sensitivity to outliers. Just as in a linear least squares analysis, the presence of
one or two outliers in the data can seriously affect the results of a nonlinear
analysis. In addition there are unfortunately fewer model validation tools for the
detection of outliers in nonlinear regression than there are for linear regression.

The flexibility of non-linear regression is also a caveat, since similarly good fits
can be obtained with very different functional forms (whereas presumably only
one of them captures the modeled process). These different models may be
adequate for interpolation purposes, but may produce very different predictions
when used to extrapolate, i.e. predict values outside of the support of the
estimation dataset. This is a very important point, that should never be treated
lightly. It can (and it has) lead to seriously erroneous models, with potentially
very misleading predictive properties, when applied to slightly different data. As
a result, it is important to use appropriate tests and checks to ensure that the
selected functional form is appropriate for the problem at hand. It should be
noted, however, that this is not an exclusive property of non-linear regression,
and other methods, including linear regression, suffer from this.

The assumptions from ordinary least square (OLS) procedures (normal, i.i.d.
disturbances etc., sometimes collectively referred to as Gauss-Markov
assumptions) still apply in non-linear regression. Therefore, whenever time or
distance is involved as a factor in a regression analysis, it is important to check
the assumption of independent residuals. When the residuals are not
independent, the model for the observations must be altered to account for
dependence (e.g. moving average or autoregressive models of variable order).

Road safety data are often correlated in space and/or time, raising the suspicion
of correlated data (and hence residuals), which violates one of the underlying
model assumptions (that of independent disturbances). Correlation of the
disturbances can, for instance, be detected from an ordered time series plot of
the residuals versus time or from a lag plot of the residuals on the nth case
versus the residuals on the (n-1)th case. If a violation of independent
disturbances is detected, then the model needs to be altered to account for this.
Common forms for dependence, or autocorrelation, of disturbances are
(combinations of) moving average and autoregressive models of a certain order
(see e.g. Box et al., 1994).

A moving average process of order 1 can be written as:
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Z,=§E ~0E, (3.2.22)
while an autoregressive process of order 1, can be expressed as:

Z,=€+0Z,, (3.2.23)
where ¢,n=1,2,...,N are white noise terms (i.e. independent normal error terms
with zero mean and constant unit variance).

The problem to be fitted is
Y, = f(x,.0)+Z, (3.2.24)

where Z =& +¢Z, . In order to solve this problem by reducing it to a non-

linear least squares problem, one can subtract ¢ times the equation for Y. from
Y, thus obtaining:

Kl _¢ ’ Yn—l = f(xn’g)_ ¢ ’ f(xn—l ’0)+ Zn _¢ ’ Zn—l (3225)
which is equivalent to
Y,=¢-Y,  +f(x,.0)-¢ f(x,,.0)+¢, (3.2.26)

Substituting Equation 3.2.20 into Equation 3.2.26, the autoregressive non-linear
model that corrects for temporal correlation is:

O)-o) Aok e

n n-1 n n-1

The original non-linear model (Equation 3.2.20) can be converted to a similar
(but not equivalent) linear model through a simple log transformation. For
demonstration purposes, this model is presented next. Furthermore, in the rest
of this section, the various models are developed in parallel. This approach
demonstrates both the close relation of the models, but also highlights their
differences.

Taking the log of both sides of Equation 3.2.20 (temporarily ignoring the additive
error term), the following linear model is obtained (where log(a) has been

simplified to a):
3.2.28
logiij = 0{+,Blog(&j ( )
v, P,

Adding an additive error term, the equation becomes:



F, V (3.2.29)
log = |=a+ Blog = (+Z
o

n

This equation is similar, but not equivalent to Equation 3.2.20. The difference is
in the error term. If one takes the exponent of equation 3.2.29, the resulting

equation is:
p p (3.2.30)
L 0{1] exp(Z,) = a{lj z,
Vn Pll Pll

i.e. there is a multiplicative error term (as opposed to an additive error term in
Equation 3.2.20).

An autoregressive version of Equation 3.2.30 can be constructed in a similar
way to Equation 3.2.27:

F) F 1% 1% (3.2.31)
log(vj —¢-log(vj _1+a—¢-a+ﬂ-log(;jn—¢-ﬂ-10g(;j +€,

n n n-1

—6-1od £ —#)-a+B10d L] o B10d Y
—¢10g(vj +(1-9)-a+p log(P) ¢,310g(P) +€,

n—1 n n—1

Note that the above model (Equation 3.2.31) is not linear in the parameters, due
to the second and fourth right-hand terms (in particular (1-¢)- @ and ¢- ).

Rather than choosing a single model and using it to demonstrate nonlinear
regression models in this section, four models are developed in parallel. The
comparison of the model parameters, goodness-of-fit properties, and predictive
ability of these models may help the reader better comprehend the theory,
practice, advantages, and caveats of non-linear regression. In particular,
Equations 3.2.20 (nonlinear), 3.2.26 (AR nonlinear), 3.2.29 (log-transformed)
and 3.2.31 (AR log-transformed) are used. While the log-transformed model
ends up being linear, the other three models are nonlinear.

3.2.3.3. Introduction of dataset and research problem

Aggregate fatality, population and vehicle data from European countries
between 1970 and 2002 have been used. The first 25 years of the data (i.e.
1970-1994) have been used for fitting the models, while the last seven years
(1995-2002) have been used for validating the estimated models. This way, i.e.
through separating the available data into two groups, issues such as over-
fitting are overcome. The data have been obtained primarily from IRTAD.
Official representatives of the countries with missing data were contacted
directly, and several responses with additional data were incorporated to the
database. In the end, out of the 25 countries of the enlarged EU, sufficiently
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complete data have been available for 17 of them, for which this model has
been applied.

Figure 3.2.18 presents the following variables for the entire data-set:
e Fatalities per thousand vehicles (solid line, decreasing trend)
e Vehicles per population (dashed line, increasing trend)
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Figure 3.2.18. Presentation of the data set: fatalities per vehicle (decreasing trend) and vehicles
per population (increasing trend)

3.2.3.4. Model fit, diagnostics and interpretation

The model shown in Equations 3.2.20 and 3.2.27 were estimated for the
countries mentioned above and the estimated coefficients and statistics are
shown in Table 3.2.11. All models in this section have been estimated using the
R Software for Statistical Computing v. 2.3.0 (R, 2006). With the exception of
the results for the autoregressive model for Sweden (SE), all parameters are
very significant. The issue with the autoregressive model for Sweden




(highlighted in the Table 3.2.11) is the high estimated value for the coefficient o,

which is approaching 1.

Coefficient a

Coefficient b

Estimate Standard t-test Estimate Standard t-test
error error

AT 0,099 0,007 14,962 -1,962 0,054 -36,252
BE 0,080 0,006 13,215 -2,068 0,069 -30,091
CY 0,219 0,018 12,262 -0,770 0,108 -7,158
DK 0,012 0,004 3,204  -3,477 0,291 -11,958
FI 0,026 0,006 4597 -2,475 0,162 -15,263
FR 0,083 0,006 13,151 -2,153 0,073 -29,698
DE 0,070 0,006 12,469 -2,012 0,070 -28,597
EL 0,288 0,016 18,252 -0,711 0,023 -31,058
HU 0,172 0,028 6,260 -0,984 0,082 -11,987
IE 0,035 0,008 4540 -2,075 0,151 -13,762
IT 0,081 0,006 14,078 -1,677 0,060 -27,834
LU 0,156 0,018 8,626  -1,542 0,104 -14,815
NL 0,017 0,002 8,384 -2,844 0,091 -31,123
PT 0,290 0,039 7,398 -0,956 0,075 -12,753
ES 0,212 0,017 12,716 -0,876 0,049 -17,784
SE 0,028 0,005 6,117 -2,596 0,175 -14,830
UK 0,030 0,003 11,403 -2,210 0,076 -28,933

Coefficient a Coefficient b Coefficient phi

Estimate Standard t-test Estimate Standard t-test Estimate Standard t-test

error error error

AT 0,090 0,010 9,303 -2,051 0,096 -21,484 0,3387 0,1255 2,699
BE 0,077 0,012 6,215 -2,111 0,158 -13,396 0,4487 0,197 2,277
CY 0,214 0,027 7,994 -0,815 0,180 -4,524 00,2047 0,2905 0,705
DK 0,015 0,010 1,550 -3,227 0,617 -5,228 0,5686 0,1695 3,355
FI 0,021 0,009 2209 -2,687 0,370 -7,273  0,4647 0,1429 3,252
FR 0,068 0,016 4329 -2,382 0,251 -9,494  0,5339 0,1798 2,970
DE 0,069 0,011 6,215 -2,034 0,153 -13,329 0,5282 0,1752 3,015
EL 0,294 0,025 11,740 -0,701 0,037 -19,013 0,3005 0,2131 1,410
HU 0,155 0,062 2516 -1,045 0,218 -4,794  0,5825 0,1784 3,265
IE 0,034 0,015 2295 -2,119 0,309 -6,865 0,6081 0,152 4,001
IT 0,071 0,009 8,243 -1,818 0,116 -15,687 0,3571 0,1819 1,964
LU 0,131 0,015 8,521 -1,757 0,114 -15,438 0,2458 0,1454 1,691
NL 0,015 0,003 4986 -2,969 0,163 -18,200 0,3247 0,1364 2,380
PT 0,219 0,068 3,230 -1,154 0,196 -5,893  0,5303 0,1314 4,037
ES 0,135 0,054 2473  -1,306 0,418 -3,122  0,7992 0,0688 11,619
SE 0,096 0,147 0,653 -0,146 2,131 -0,069 0,913 0,035 26,065
UK 0,025 0,006 4244 -2,374 0,230 -10,333 0,5916 0,2184 2,709

Table 3.2.11. Non-linear model estimation results (top: base, bottom: after correcting for correlation)

Figure 3.2.19 and Figure 3.2.20 show the main diagnostics for the estimated
nonlinear models (as per Equation 3.2.20). For each country, the residuals per
observation are plotted, followed by the autocorrelation function (ACF) and the
partial ACF (PACF). Note that PACF plots start at lag 1 while ACF plots start at
0. It is clear from these figures that the assumption of independent disturbances
is violated for most countries. For some countries (such as Hungary, Spain and
Sweden), both the residuals' plot and the ACF plot suggest violations. The
different combinations of violations in these plots suggest that different
approaches may be required to correct the model for each country. In this
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paper, however, we will instead follow a unified approach. In most of the ACF
plots, the correlation decays quickly and falls below the limits (indicated with the
dotted lines) after one or two intervals. Please note that lag-O autocorrelations
have a value of 1 by definition. Therefore the fact that these values exceed the
limits should not be interpreted as a violation of assumptions. Both the apparent
exponential decay of the autocorrelations and the presence of a significant
partial autocorrelation of order 1 suggest that a first order autoregressive
process may be able to capture the correlation of the residuals. This is
confirmed, as the autocorrelation are mostly dealt in the residuals of the
autoregressive models (as per Equation 3.2.27), diagnostics for which are
provided in Figure 3.2.21 and Figure 3.2.22.

The estimated coefficients of the log-transformed models are shown in Table
3.2.12. The model shown in equation 3.2.29 is shown on top, followed by the
model presented in equation 3.2.31. Similarly to the non-linear model (Table
3.2.11), the estimation results are unreliable for models with estimated values
for @ very close to 1 (such as Finland, Germany, Ireland, Sweden and United
Kingdom, highlighted in the table). The term "unreliable" here is used to convey
inconsistency with expectations about these values, e.g. sign and magnitude.

This issue requires some further discussion. This finding can be an indication
that the data need to be differenced (an approach that is discussed later in this
document). Furthermore, it appears that values of ¢ up to at least 0.85 result in
“stable” models, while values above 0.94 result in “unreliable” models. This is an
indication that the critical value lies somewhere between these two values.
Finally, an indication of an “unreliable” model may be the very high t-statistic of
the estimated ¢ coefficients.
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Figure 3.2.19. Non-linear model diagnostics (per country — part A)
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Figure 3.2.20. Non-linear model diagnostics (per country — part B)
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Figure 3.2.21. Autoregressive non-linear model diagnostics (per country — part A)
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Figure 3.2.22. Autoregressive non-linear model diagnostics (per country — part B)




Coefficient a

Coefficient b

Estimate Standard t-test Estimate Standard t-test
error error

AT -2,395 0,057 -42,122 -2,031 0,057 -35,857
BE -2,521 0,074 -33,904 -2,056 0,077 -26,896
CY -1,555 0,083 -18,642 -0,818 0,120 -6,808
DK -4,004 0,278 -14,423 -3,047 0,273 -11,160
FI  -2,985 0,188 -15,884 -1,916 0,166 -11,528
FR -2,565 0,091 -28,050 -2,236 0,100 -22,443
DE -2,715 0,068 -40,134 -2,056 0,073 -28,224
EL -1,210 0,048 -25,150 -0,694 0,024 -28,465
HU -1,647 0,172 -9,669 -0,919 0,096 -9,567
IE -3,353 0,224 -14,995 -2,073 0,164 -12,682
IT -2,395 0,051 -46,635 -1,558 0,054 -29,118
LU -1,994 0,071 -27,923 -1,671 0,082 -20,433
NL -4,187 0,088 -47,684 -2,928 0,078 -37,472
PT -1,340 0,078 -17,150 -1,012 0,053 -19,184
ES -1,558 0,094 -16,500 -0,878 0,070 -12,540
SE -3,554 0,171 -20,833 -2,551 0,200 -12,782
UK -3,566 0,117 -30,529 -2,248 0,112 -20,050

Coefficient a Coefficient b Coefficient phi

Estimate Standard t-test Estimate Standard t-test Estimate Standard t-test

error error error

AT -2,452 0,097 -25,263 -2,100 0,103 -20,420 0,451 0,155 2910
BE -2,509 0,159 -15,772 -2,045 0,173 -11,850 0,539 0,188 2,862
CY -1,581 0,109 -14,456 -0,865 0,167 -5,191 0,079 0,300 0,263
DK -3,526 0,662 -5,324  -2,540 0,675 -3,765 0,688 0,150 4,594
FI  -1,871 1,036 -1,805 0,149 0,713 0,209 0,940 0,040 23,539
FR -2,954 0,571 -5,177  -2,697 0,711 -3,795 0,748 0,185 4,035
DE -2,567 1,269 -2,022 0,738 1,270 0,581 0,961 0,020 49,141
EL -1,184 0,087 -13,568 -0,680 0,045 -14,979 0,431 0,205 2,097
HU -1,977 0,508 -3,896  -1,110 0,304 -3,653 0,709 0,165 4,290
IE -2,817 5,391 -0,522  -0,523 0,582 -0,898 0,980 0,066 14,977
IT -2,360 0,126 -18,768 -1,521 0,149 -10,193 0,686 0,165 4,165
LU -2,053 0,063 -32,483 -1,760 0,075 -23,359 -0,033 0,184 -0,178
NL -4,219 0,134 -31,500 -2,963 0,122 -24,254 0,358 0,177 2,030
PT -1,437 0,145 -9,879  -1,094 0,109 -10,010 0,548 0,158 3,472
ES -1,948 0,687 -2,837 -1,216 0,760 -1,601 0,849 0,191 4,451
SE -2,830 2,391 -1,184 0,638 1,019 0,626 0,968 0,035 27,998
UK 0,123 2,283 0,054 0,044 0,766 0,057 1,040 0,040 26,168

Table 3.2.12. Log-transformed model estimation results (top: base, bottom: autoregressive model)
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Figure 3.2.23. Log-transformed model diagnostics (per country — part A)
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Figure 3.2.24. L og-transformed model diagnostics (per country — part B)

Project co-financed hy the European Commission, Directorate-General Transport and Energy

Transport

Page 223




Chapter 3 — Time Series Analysis

Austria
(-] A
8] . 8 ol -] T B e e e e e
=] a . Q
_E = LR o R b < 5 | I
b= ) Q <] =]
2 °° ° < | L1 e | | I [ ] ‘ T |
£ e o ° | [ T T 5
G k 52 R R e L e
5 10 15 20 4] 2 4 6 8 10 12 2 4 & 8 10 12
Observation Lag Lag
Belgium
- a *
° -
51" °° oot ] N
3 5 o a = ] . A o g - I | |
S . e o ° Q<] I I o I O B
] ! L [TT 1
e = ¢ ° a =+ N Ewr
s oy - — - T B B B e s S B e B s
T 5 10 15 20 4] 2 4 6 8 10 12 2 4 ] 8 10 12
Observation Lag Lag
Cyprus
i o n o 1 T e
w8 o ° I S
3 o = =
@ ) s 2 L = | R T
e o & o §3
‘? T T —i— ?o T T ﬁ""-‘"". """ R e s e T T P R R
2 4 6 8 10 12 14 4] 2 4 ] -] 10 2 4 6 8 10
Observation Lag Lag
Denmark
Q4 o+ prrrrrTTTTTTTTTT oo
- 4o o . @ o ) L
fole e 2 wedl =
7 0%o0® “tyEe) Qo S ST 1 :
£3] I S e e
—— L e sl —
5 10 15 20 4] 2 4 6 8 10 12 2 4 & 8 10 12
Observation Lag Lag
Finland
.°u a o EEY E: w ; """""""""""""""
-ﬁé E.- aoo = o : T i g o | .
2 S| R o g ] I o T ) T T 1 !
a ° @ < 1 I i I
L ° . o A T i
o a a S B P e R Y S e e
T 5 10 15 20 7 4] 2 4 1 ] i0 12 7 2 4 B a 10 12
Observation Lag Lag
France
=] <
u -] ey e R R R B B e R B B B e R R B B B R R R B B B
o g_ou 8, ev"oo" ° s ] & =
3 R L Taol | ‘
B o o ¢ @ Q o ] Tl L
§ 4 @ L < Ll I .gcu I J | T [
=] s o ° e ] T I ! !
= =+ [
9 . T T T e e e R e e
5 10 15 20 4] 2 4 6 8 10 12 2 4 ] 8 10 12
Observation Lag Lag
Germany
- a o crsrerrorroorororooTroTeT
ol Tes e B g i 6 °
gy — e 2 s e 2o | |
Sy o Q <] 8 o1 7T |
. B \ T T 7] |
& s o " e 4 P . TT E‘f
T 5 10 15 20 7 4] 2 4 6 ] 10 12 7 2 4 B a 10 12
Observation Lag Lag
Greece
& g 2 4 B o L
— 9 ? i w o
= o s @ o ] Q
i kil L o i w4 e | )
. T e Lo | == 71 T
p o g . : [T |
o ¢ 4] [T T &
T 5 q P R
5 10 15 20 4] 2 4 6 8 10 12 2 4 & 8 10 12
Observation Lag Lag

Figure 3.2.25. Autoregressive log-transformed model diagnostics (per country — part A)
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Figure 3.2.26. Autoregressive log-transformed model diagnostics (per country — part B)

Figure 3.2.23 and Figure 3.2.24 show the residual plots, ACF and PACF plots
for the log-transformed models, while Figure 3.2.25 and Figure 3.2.26 show the
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same statistics for the autoregressive log-transformed models. As with the non-
linear model, the autocorrelation of the residuals has been significantly reduced
in most cases due to the autoregressive process, and it has been practically
eliminated from the ACF and PACF plots. However, while only one country
(Sweden) seemed to face the issue with the high estimated parameter for @,
there are now four more countries with the same issue.

The autocorrelations for the various lags have been considered individually. A
different way to test this type of lack-of-fit of a model is to consider the first e.g.
12 autocorrelations as a whole. It should be noted that this value depends on
the data and is probably a bit high for this application. A lag of 4 or 5 might be
sufficient, and using a lower lag might not illustrate the temporal dependency.
Larger lags do not add to the inference, but are also rather harmless in this
context. Denoting the first K autocorrelations as r(a) (k=1,2,...K) Box and

Pierce (1970) showed that if the fitted model is appropriate then

S 3.2.32

is approximately distributed as x*(K—p-¢) where n=N-d is the number of

residuals used to fit the model. On the other hand, if the model is inappropriate,
the average values of Q will be inflated. Therefore a so-called "portmanteau”
test of the hypothesis of model adequacy can be obtained by comparing the
value of Q against a standard y* table. Ljung and Box (1978) argued that the
chi-squared distribution does not provide an adequate approximation of the
distribution of the Q-statistic under the null hypothesis, while Davies et al.
(1977) provided empirical evidence to support this argument. Ljung and Box
(1978) proposed a modified statistic (Ljung-Box-Pierce statistic):

O=n(n+2) (n—k)' r2(a) (3.2.33)

A more detailed presentation of these tests is available in several texts,
including Box et al. (1994), on which the development of this section is based.
In the following application, Equation 3.2.33 is used.

Figure 3.2.27 visually presents the Ljung-Box-Pierce test results for the four
groups of models. While the interpretation of the obtained p-values cannot be
easily quantified, smaller p-values indicate lack of fit. Both the non-linear and
the log-transformed models show mostly low p-values (and consequently a lack
of fit). A threshold of 5% (indicated by a horizontal dashed line) exceeds several
models' lines for the non-linear model and all-but-three for the log-transformed.
The situation is substantially improved for the autoregressive models, with the
p-values being considerably increased. Actually, only a couple of models fall
below the 5% threshold for the non-linear AR model, and only one for the log-
transformed AR model.
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Figure 3.2.27. Ljung-Box-Pierce test p-values

Summary validation statistics using all four models are presented in Figure
3.2.28. As it has been mentioned before, this data is different from the data set
that was used for the estimation of the models (i.e. years 1970-1994), in order
to avoid issues such as over-fitting. In particular, while estimation used data
from years 1970-1994, the validation used data from years 1995-2002.

The root mean square percent error (RMSPE) statistic (Pindyck and Rubinfeld,
1997) is used in Figure 3.2.28:

i Transport
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(xo_xl jz (3.2.24)

where x is the variable of interest, N is the number of observations (years) and
superscripts 0 and 1 denote observed and fitted measures respectively.

The impact of the autoregressive process in the prediction results is clear, with
both autoregressive models consistently outperforming the base models. The
non-linear AR model performs on average 39% better than the nonlinear model,
while the autoregressive log-transformed model performs on average 49%
better than the log-transformed model. This is a substantial improvement at the
cost of just one extra parameter (the AR coefficient phi). Also, the AR log-
transformed model also performs on average more than 13% better than the AR
non-linear model.
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Figure 3.2.28. Summary goodness-of-fit statistic (RMSPE)

Figure 3.2.29 presents a plot of the estimated model parameters per country.
While the log-transformed AR model seemed to provide a superior overall
performance in terms of RMSPE, the non-linear AR model is used for this
analysis, as its parameters are more reliable. In particular, significant overall
improvement in the fit of the autoregressive models over the nonlinear models
(39%) and over the log-transformed models (49%) has been obtained. On
average, the AR log-transformed models outperform the AR non-linear models




by 13%. However, the estimated coefficients of the AR log-transformed model
for five of the 17 countries are not reasonable, suggesting that this model
should be applied with caution, as its estimation results may not be reliable.

The interpretation of parameter o is fairly straightforward, as it is a positive
multiplicative parameter, and as such it can be considered as an indicator of the
level of traffic safety in the country. Naturally, these parameters are not always
directly comparable, as the value of the second parameter B also affects the
total number of fatality rate. As the base of the exponent term is the car
ownership rate, which is usually less than one, a larger negative value implies a
higher overall term.
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Figure 3.2.29. Interpretation of parameters (non-linear AR model)

Combining these two observations, safer countries should be to the left and top
of Figure 3.2.29 and less safe countries should be in the right and bottom. No
countries are located in the lower right triangle of the plot, which is a reflection
of the fact that the considered countries are developed and have a decent level
of road safety. It is expected that developing countries may be located closer to
the lower right corner of the plot. The least safe countries in terms of safety in
Europe today are Greece and Portugal, and indeed the respective points are
located closer to the right and top of the plot. Similarly, the United Kingdom and
the Netherlands (two of the safest countries in Europe) are closer to the left and
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bottom. Therefore, this analysis (using a simple model and few explanatory
variables) reflects the prevailing safety patterns, as evidenced by the literature
on the subject.

3.2.3.5. Conclusion

The non-linear regression model has been presented, in relation to the linear
regression model and the generalized linear model discussed above.
Extensions of the non-linear regression model that correct for correlation of the
disturbances have also been presented and applied to the estimation of fatality
rate for 17 European countries.

A simple non-linear regression model has been fitted first, and the model
diagnostics have been scrutinized to identify correlation of residuals and
determine an appropriate line of action to correct for it. An autoregressive model
has been selected and the approach to incorporate it into the non-linear
regression model has been shown. The results of the autoregressive non-linear
regression model have been presented. The model diagnostics demonstrate
that the correlation of the disturbances has been effectively dealt with. An
interesting finding is that Smeed’s widely used relationship may produce serially
correlated residuals, which —however- can easily be remedied by the presented
auto-regressive models.

While a single global recommendation about a “best” model cannot be made
based on the presented analysis, these results indicate that the autoregressive
non-linear model generally outperforms the other models, while also
overcoming the issue of serially correlated disturbances.

The ability to predict traffic safety trends is useful in setting and evaluating road-
safety targets, policies and initiatives. The predictions obtained by the presented
models can be used to evaluate the traffic safety performance of various
countries, identifying poor performers, as well as traffic safety leaders. Given
predictions of a country's expected performance, the actual traffic safety
performance of that country over the past few years may be assessed.
Furthermore, the study of more advanced (in terms of traffic safety and in
general) countries may be applied to predict the evolution of less developed or
successful (in terms of traffic safety) countries.



3.3 Dedicated time series analysis in road safety
research

Ruth Bergel (INRETS)

We shall now focus on Gaussian processes, i.e.: processes having a normal
distribution. The types of models described in this section are dedicated at
handling time dependence, and will be discussed in more detail in the following
Sections 3.4 to 3.6.

Time series models are defined in several specific manners, depending on the
point of view adopted.

Technically speaking, a random process can be regarded as being made of a
certain number of components. Whereas only the process can be observed -
through a sample of observations - its components can only be estimated with a
model’s help. Thus, the unobserved components models are meant to provide
estimates of each of these components, which it is not generally the case for a
model meant to provide an estimate of the observed component only.

In the case the unobserved components are estimated, the main components
(all components to the exception of the irregular component, which is stochastic
by nature, see 3.3.7) can be estimated while treated as being deterministic, or
as being stochastic: thus, deterministic vs stochastic components will be
considered.

At last, note that for different reasons the observed process may be
pretransformed before being modelled: in the case the transformation is a filter
of differences, filtered or integrated components will be considered.

Summarising these concepts, the following types of Gaussian times series
models can be given:

- models with deterministic main components (decomposition model with
deterministic trend/seasonality for instance.)

- models with stochastic main components (decomposition model with
stochastic trend/seasonality for instance.)

- models with integrated components (integrated model).

The basic structure of these models can be enriched in different ways, in order
to bring additional information, related to the past of the observed process, or
related to other processes. The reference to the past of the process is
performed by introducing autoregressive/moving average parts, whereas the
reference to the environment is performed by introducing other (explanatory)
variables. Finally, the form itself of the model, which generally is linear with
respect to the the parameters and components, might also be enlarged by
introducing non-linearity.

However, the systemic-approach of road safety adopted by researchers since
the beginning of the 1980’s aims at taking account of all explanatory risk factors
and at assessing road safety measures (Hakim and al., 1980), and at focusing
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on explanatory time series models.. As this research direction still holds and
has been enforced, the main distinction retained in section 3.3 is the distinction
between mere descriptive models and explanatory models (the second group
being an extension of the first one, as it will be demonstrated below). Within
each of these two groups, the basic model structures defined before hold, but
the focus in this chapter will be on decomposition models - whether with
deterministic or stochastic main components -, on the one hand, and on ARMA
and ARIMA models on the other hand.

The plan retained in Section 3.3 is as follows. The main distinction between
descriptive and explanatory models is first introduced in a general manner,
without reference to the road safety field, in Section 3.3.1; the methodological
framework for understanding time series analysis in the road safety context is
then recalled in Section 3.3.2, and a brief overview of time series analysis, as
performed since the beginning of the 1980’s in road safety research, is given in
Section 3.3.3. In the concluding Section 3.3.4, the models main features are
summarised.

3.3.1 Types of models

Two main kinds of models are usually distinguished, when one aims to
formulate the evolution over time of a stochastic*® process (Y;), for t being

1,2,3,..., having a number of observed values of the process - a sample of
observations : Y =(y,,y,.....y,) - at hand. The descriptive models on the one

hand - they will be defined here as models for which the only exogenous
variable used is time, which is thus not considered as an explanatory variable - ,
and the explanatory models on the other hand - models which do on the
opposite use exogenous, also called independent or explanatory** , variables.
The different types of models, whether descriptive or explanatory, will be
recalled and summarized in Table 3.3.1.

3.3.1.1. Descriptive models

Descriptive models take account for the trend/seasonal/irregular decomposition
of the process Y,. Here again, two main kinds of models are considered :

decomposition models on the one hand, which adjust for each of the
components by explicitly modelling it, often modelled using state space
methodology, and ARMA and ARIMA models on the other hand, which adjust
for the irregular component, after the process has (if necessary) been filtered in
such a way as to remove its trend and seasonal components.

3.3.1.1.1. Decomposition models

Descriptive decomposition models can be written, in the simple case of an
additive decomposition, as

“ The process (Y,) is stochastic, or random, in the sense that the values taken by Y, are

under measurement errors.

“ “Explanatory” as being used in an explanatory model

“Explanatory variable” is used here in the general acception, and no difference is to be made
yet between pure explanatory and intervention variables (as it will be made in Sections 3.4 to
3.6)
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Y,=T,+S, +u, (3. 3.1)

with: T, the trend of the processY,,
S, the seasonal (periodic) component®,
and u, the random component (also called irregular component),
assumed to be stationary*®.

These unobserved components, emerge very naturally: the long term
tendency T,, the seasonal component S, and the random residual component

u,.
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Figure 3.3.1: The monthly number of UK-KSI drivers, for the period January 1969 -
December 1984 - original data and unobserved components. The sample process
(green line), the trend (blue line), the seasonal component (grey line) and the irregular
component (violet line).

Figures 3.3.1 and 3.3.2 describe the development of the unobserved
components, as obtained with SPSS, of the two seasonal data sets modelled in
the following sections: the monthly number of drivers killed and seriously injured
in the UK (UK-KSI drivers), for the period January 1969 - December 1984, and
the monthly number of fatalities in France, for 1975-2001.

*® the sum of the seasonal component terms within a season (period) is also zero
6 its mean, variance and covariance structure are constant over time (see a precise definition
in 3.4.2.2), and moreover its mean is zero.

{7 Transport
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The data (green line) are the sum of the trend (blue line), of the seasonal
component (grey line) and of the irregular (violet line).

The data corrected for the seasonal component are the so-called seasonal
corrected, or seasonal adjusted data.

Once they are also corrected for the irregular component, only the trend
remains..

Of the three unobserved components, interest goes first to the trend. The trend
is often thought as a function of certain variables, which determine it, although
these variables can not always be quantified easily. In such cases, the trend is
modelled with a deterministic form, and is qualified as deterministic - the same
approach being retained for the seasonal component.

But the trend can also be considered as a random walk (Harvey, 1989). The
same remarks apply to the seasonal component. The structural modelling
proposed by Harvey is another form of the decomposition previously described,
in this case, the trend and the seasonal component may also be random. In
such cases, the trend and the seasonal are, as the irregular part of the model,
subject to random fluctuations. This approach is taken in most of the state
space models presented in this document (see Section 3.6).

At last, it should be mentioned that a more general model can be retained for
the decomposition of the process as a function of its unobserved components: If
it is not additive, as in (3.3.1), the decomposition form can be multiplicative or
semi-multiplicative accordingly to the Census decomposition method’s available
options (Dagum, 1980).
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Figure 3.3.2: The monthly number of fatalities in France, for the period 1975-2001. For
explanation see Figure 3.3.1.
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3.3.1.1.2. ARMA and ARIMA models

The descriptive autoregressive and moving average (ARMA) models focus on
describing the dynamics (the relationship between its values at different time
points) of the stationary sample process Y =(y,,y,,...y,). This relevant

property of stationarity allows separating Y, in two parts: the one related to the

past at time t, and the part that is new at time t - which is therefore called the
« innovation » - .in such a way that this later component is a white noise*’, and
is therefore called the innovation white noise.

Thus, the value taken by the process at time t:Y,, can be expressed as a
function, and more precisely as a linear combination of its passed values Y, ,,
Y, ,, ... , and of the innovation white noise u,. For parsimony reasons, as
different equivalent formulations can all be retained for describing the process
dynamics, the formulation currently chosen* is that Y, is expressed as a linear
combination of a small number (p) of its past values, and of a small number (q)
of the past values of the disturbances.

This can be written the following way:

Yi=0Y  +..+9,Y U, +6U,_ +.+60,U,,, (3. 3.2)

with: @, ¢,, .., ¢,, 6, 6,,.., 6, p+q real values,
and u, the innovation disturbance,

The fact of knowing the dynamics of the process enables to extrapolate it
without any call to additional variables, assuming that the dynamic’s structure
will stay unchanged in the future, at least at the forecast’s horizon (hence we
need to assume the process is stationary). The reference to the near past
makes the model adaptive.

In the general case where stationarity cannot be assumed, it is convenient to
assume that another stationary process exists, which is derived from Y, by

removing its trend and its seasonal component. An easy manner for doing this,
as recommended by Box and Jenkins in 1976, is to apply a so-called filter of
differences™ to the process ,» a8 many times as necessary until the result, the

filtered process, can be considered as fulfilling the property of stationarity, and
therefore be fitted with an ARMA model itself. This comes to removing the trend

" see a precise definition in 3.4.2.2
see a precise definition in 3.4.2.2 or in (Box,Jenkins, 1976)

*see a definition of the difference filter as a function of the backshift operator B in 3.4.2.2

Project co-financed hy the European Commission, Directorate-General Transport and_ine_r_g'v
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and seasonality from a non stationary process, in other words to solving the first
order non stationarity®. The fact that the filtered or integrated process obtained
by applying an appropriate filter of differences to Y, is fitted with an ARMA is

equivalent to say that Y, is fitted with an ARIMA (or integrated ARMA).

The second order stationarity can also be obtained by deriving another process
from the initial one. The logarithmic transformation is therefore currently®’
applied to the initial data in order to stabilizing their variance.

3.3.1.2. Explanatory models

3.3.1.2.1. Explanatory variables

In this subsection, exogenous - also called independent or explanatory -
variables will be considered. Note that other terms, such as “predictor” or
“regressor” are also commonly used, when a specific role is expected from
them.

Several data sets of different nature will now be considered, and used within
one and the same model:

- the observations of the endogenous stochastic process, i.e. the
sample of data ¥ =(y,,y,,.--.7,)

- the values taken by the k exogenous variables Z,, i=1 to k, assumed
to be known.

It is natural to distinguish several kinds of exogenous variables, depending on
whether they affect the trend, the seasonal component, or the irregular
component of the process Y,.Moreover, effects of exogenous variables can be

local - over time (the effect may be 'short-lived’) - , or permanent. It seems quite
natural, again, to distinguish the dummy variables, which are created (outside
the model) as witnesses of a local, isolated or repeated, effect usually having
values zero or one, and the variables of measure of a phenomenon (of which
the value is actually measured), assumed to be linked with the process Y,, and

which may have a permanent effect. As an example, climate and calendar
variables can be used for modelling the seasonal component, or the residual;
the variables used to model the trend are of a different nature, insofar as one
can expect their effect to extend over time.

% There are different ways for removing the trend a non-stationary process: the trend itself
being modelled, as a function of time for instance.

51 Among other transformations (see section 3.5). In case an independent variable is added in
the model, the form of the relationship between the dependent and the independent should be
fixed accordingly to the knowledge of existing additive or multiplicative effects.
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The explanatory time series models take into account the relationship between
the endogenous variable Y, and exogenous or explanatory variables - gathered

in a vector of the k exogenous variables Z, =(Z,,,2Z,,,....2)'

For instance, in the case in which there are two explanatory variables, Y, will be
expressed as a linear combination of Z, andZ, . The residual
Y, - B2, - B,Z,, of the regression of Y, on Z,, andZ,, will be noted YC,, and
modelled as described in the previous subsection.

For the commodity of the coming formulation, the function g will be used in the
general case where there are more than 2 exogenous variables, for
representing the relationship between Y, and Z, =(Z,,,2Z,,,...,Z,)", and =1 to k.

Explanatory models can be seen as descriptive models to which exogenous
variables have been added, and thus can also be classified as either
decomposition models with explanatory variables, or ARIMA models with
explanatory variables.

We shall now address these two kinds of models.

3.3.1.2.2. Decomposition models with explanatory variables

The decomposition models with explanatory variables can generally be written,
in the case of an additive decomposition, as

YC,=Y,—-g(Z)=T,+S, +u, (3.3.3)

with: YC, the process corrected for the exogenous effects,
T, , S, and u, the trend, the seasonal component and the
random component of YC,.

A basic example is the regression model, of the dependent variable - or
endogenous variable - on explanatory variables - or exogenous variables,
described in Section 3.2.1. The exogenous variables can account for the trend,
for the seasonal component, or for the residual. For instance, in the case of
periodic data, the regression model will contain dummy variables in order to
model the season (the day, the month, the quarter month),

Harvey’s structural model with explanatory - and intervention - variables is
another kind of stochastic decomposition model more general than the basic
structural model, mentioned before.

3.3.1.2.3. ARMA and ARIMA models with explanatory variables

The ARMA and ARIMA models with explanatory variables can generally be
written as
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YC, =¢YC,  +...+ ¢pYCt_p tu +ou  +.+6.u,,
YC,=Y,-9(Z) (3.3.4)

with: YC, the process corrected for the explanatory variables,
and u, the innovation disturbance of the process YC, .

In that general specification, Y, and Z, =(Z,,,Z,,,....,Z,)" =1 1o k- May have been

pretransformed (filter of differences, logarithmic transformation, ..) in such a way
that YC, can be assumed to be stationary.

ARMA or ARIMA models with explanatory variables can also be seen as
regression models with ARMA or ARIMA residuals, the two formulations being
equivalent. It is relevant to determine whether the exogenous variables do have
an effect on Y or on the variations of Y, after the trend and the seasonal
components have been filtered out.
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Descriptive models

Decomposition models
Y, = f(T,,S[,u,)

Autoregressive models
Yt = f(Yt-UY[-Z,."’Ut)

Autoregressive and moving average models
Y, = (Y Yo o Up Uy )

and, as extensions:
Integrated autoregressive and moving average models
(ARIMA models)

Explanatory models

Decomposition models with explanatory variables
YC[ = Yt 'g(Zt) = f(TuSuut)

Autoregressive models with explanatory variables
YC,=Y,-9(Z,)=f(YC,,,YC,,,..,u,)

Autoregressive and moving average models with explanatory variables
YC, =Y,-9(Z,)= f(YCH,YCt_z,..,Ut,Ut_L..)

Integrated autoregressive and moving average models with explanatory
variables (ARIMAX models)

Table 3.3.1: Types of models.

i : Transport
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3.3.2 The methodological framework

In this section, we recall the methodological framework which enables us to
quantify the influence of the different factors related to the transport system, to
mobility, and to road safety’s economy on road risk (Lassarre, 1994).

We address aggregated time series - on an annual, monthly or daily basis. The
dependent variables are in all cases aggregated at a territory’s or at a network’s
level, or aggregated according to a typology of injury accidents or victims.

3.3.2.1. The diagram of production of the risk
Risk analysis is based on the exposure/accident/victim triad.

We have to distinguish between:
- Two types of road risk : the accident’s risk, and the risk of being a
victim (killed, seriously injured, lightly injured) of an accident,
- And three levels of risk: risk exposure, accident’s risk, and accident’s
gravity.

Risk indicators and risk factors are defined at the three levels of this framework.

3.3.2.2. Risk indicators

The usual, but not always available, measure of risk exposure is an indicator
which measures the traffic volume: the mileage, measured in number of
vehicle kilometres driven on a road network.

The accident rate (number of injury accidents in a billion of vehicle kilometres)
is usually retained to measure the accident’s risk on a network; but, in order to
overcome the hypothesis that the number of accidents would be proportional to
the traffic volume, an absolute number of accidents is also retained, but is
then mostly considered as being a non-linear function of mileage®.

Finally, the indicators that measure accident’s gravity are like the fatality rate,
i.e. the number of victims (fatalities, seriously injured, slightly injured) by
accident; one may prefer to measure directly the absolute number of victims,
but it will then be considered as depending on the number of accidents, or
directly on the traffic.

It may be noted, at that stage, that the absolute numbers of accidents and
victims are also considered as accident’s risk and accident’s gravity indicators.

3.3.2.3. Risk factors

Risk factors are classified either as internal (to the transport system) factors,
related to the vehicle, to the driver and to infrastructure; or as external factors,
representing the environment, and related to the climatic, economic,
demographic and legislative systems (Gaudry, Lassarre, 2000).

%2 The same remark applies to the risk of being killed (or fatality rate, i.e. the number of fatalities
in a billion of vehicle-kilometres).
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3.3.2.4. Towards an explanatory approach

Since the beginning of the 1980’s, time series analysis in the road safety field is
directed at taking into account all explanatory factors of accidents frequency
and gravity, and at assessing road safety measures (Hakim and al., 1990).
Descriptive models have been followed by explanatory models - models with
explanatory variables -, built on the basis of a rich economic formulation, with
an elaborate econometric specification.

By examining the numerous models proposed for aggregate accident data of
European countries, it appears that they differ on the necessity of taking into
account an important number of explanatory factors, and on the nature of the
models that should preferably be used. The examples given now illustrate the
different approaches.

i: Transport
Project co-financed by the European Commission, Directorate-General Transport and Energy
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3.3.3 Applications in road safety research

Details about the examples of road safety analysis given in this section can be
found in (Cost 329, 2004), and additional references can be found at the end of
the Methodology Report

3.3.3.1. Deterministic versus stochastic

The purely descriptive models (without any explanatory variable, except for
time) have mainly been used to model a road safety indicator: the fatality rate.
The objective of these decomposition models was to adjust the trend as a
function of time. The trend/residual decomposition retained on an annual basis
is extended to a trend/seasonal/residual decomposition on a monthly basis. The
trend, and the seasonal component as well, is deterministic or stochastic.

Thus, on annual data, an example of a deterministic model is provided by Oppe
(1993), who proposes an exponential decreasing trend for the fatality rate
R, (the number of fatalities per billion of vehicle-kilometre):

R, =exp(at+b)
with: R, = 5
Vi

F, the number of fatalities, (3.3.5)
and V,the traffic volume.

This form proposed for the trend of the fatality rate R,has been enlarged
afterwards, and a transformation on the traffic variable was retained, to account
for the non- proportionality of the number of fatalities to the traffic volume, the
additional parametern representing the elasticity of the number of fatalities with

respect to traffic:

F
V—i, = exp(4,) (3.3.6)
t

In both previous cases, the trend of the fatality rate was modelled in a
deterministic manner, as a function of time. The simplest function being the
linear function u, = at+b as in the first case. But the trend can also be random
itself, in which case a specific error term is added to the model, for taking
account of its randomness. More precisely, there are as many additional error
terms as there are random components in the model.

A stochastic form has been proposed by Lassarre (1997) for the temporal
function 4, , which becomes locally linear, that is to say by supplementing the

basic structural model formulation:
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LogF, =nLogV, + u, + ¢,
My =y o+ By 17 (3.3.7)
By =B +¢

with S the slope of the trend 1,
€,n, ¢ white noises of variances o?, o) and o}, mutually non-
correlated.

In the case of monthly data, a seasonal component is added, which can also be
deterministic or stochastic. In fact, due to the larger number of data available on
a monthly basis, additional parameters can be estimated - i.e. additional
exogenous variables can be used - as this will now be discussed.

As has just been seen, a descriptive model of the fatality rate may be
considered as an explanatory model of the absolute number of fatalities, with as
single explanatory variable: the traffic volume. This kind of explanatory model
with a single exogenous variable has been enriched with additional variables,
more or less numerous. In fact, the real explanatory models take account of a
larger number of risk factors. Examples of such models will now be described.

It must be noted that the same formulation proposed for modelling the number
of fatalities can also be used for modelling the number of accidents, as a
function of the traffic volume and of additional variables.

3.3.3.2. Regression versus ARIMA

As an example of a decomposition model with a deterministic trend and with
explanatory variables, we shall mention Scott (1986) who uses an ARIMA
structure for modelling the monthly number of accidents in the United Kingdom
from 1970 to 1978, after having first regressed the data on exogenous variables
measuring the traffic volume, the petrol price, temperature, rainfall height and
the number of working days (in fact a regression with an ARIMA residual); he
then demonstrates that the ARIMA structure on the residuals of the regression
can be omitted, subject modelling the trend and the seasonal component with
the help of a time variable and of seasonal dummies, in the regression
equation.:

logY, = a+bt+S,+Y BiLogX,+ Y. B; X +Aw, + A0, +U, (3.3.8)

/

with: Y, the monthly number of accidents in the UK,
a+ bt the trend,
S, the seasonal, modelled with 11 dummy variables,
X;,i=12 : the traffic volume for two kinds of vehicles and the petrol
price,
X, j =123 : the two climate variables and the number of working days,
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@, and u,,two dummies indicating the oil crisis of 1974 and the
introduction of speed limitation in rural areas.

3.3.3.3. State space models

Among the different types of state space models, Harvey’s structural model with
explanatory - and intervention - variables (1986) is a type of stochastic
decomposition model more general than the basic structural model. Used on
the number of drivers killed and seriously injured (KSlI) in the UK, it included two
explanatory variables x, (the petrol price and the number of travel kilometres)

which have an effect on the trend of y,, as well as the dummy variable =1
which is used to assess the effect Aw, of the seat belt law.

|
LogY, = u,+y, + Z B.Logx, + Aw, + ¢,
i=1
Hi = Loyt B+,
A = Piy*é (3.3.9)
Vi =

z Vit
=

o
Vi = (cos ?ﬂ])?/j,t—1 + W,

with : Y, the monthly number of drivers KSI in the UK,
e, n, { et w,white noises of variances o , o7, o?and o2, mutually
uncorrelated.

In an equivalent way but on annual data, the largest formulation proposed by
Lassarre (2001) for the local linear trend model incorporates intervention
dummy variablesw,, @, and @, , which may modify the irregular component,

the level or the slope of the trend of the number of fatalities :

1

LogF, =nLogV, + u, + Y A, +&,
He = g+ By + D 4,0 +77, (3.3.10)
J

Bi=0+ Z/lkwkt +5,
3

Applied to aggregate data of several European countries, this formulation
allowed to assess the effect of the main road safety measures. For France, the
main measures taken in 1973 - the speed limitation and the seat belt wearing
obligation - caused a significant drop of 17% from 1973 onwards, in the fatality
rate. A drop of 9,3% in 1978 is caused by the introduction of random alcohol
tests on the road.
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3.3.3.4. ARIMA models

One type of ARIMA model with explanatory variables is very often used on
monthly data in the road safety field, in order to assess the effect of road safety
measures. These models, fitted on monthly aggregate numbers of injury
accidents and victims, generally take into account recognised exogenous
effects - such as the effect of risk exposure, the climate influence with the help
of one or two meteorological variables, and the calendar configuration influence
- and the effect of specific road safety measures.

As examples we shall mention the models proposed for aggregate data in Spain
and France.

In Spain, two variables of oil sales (gasoline and diesel) as a proxy for traffic,
the number of week-end days in the month WEND and another intervention
variable taking account for a great number of road safety measures gradually
enforced from June 1992 off LS®%?, were used for modelling the number of
injury accidents Y, from January 1982 to December 1996 (Rebollo, Rivelott,

Inglada Lopez de Sabando, in COST 329, 2004):

logY, = BLogX, +nWEND+ 1.S¢'** + N
' Z ' ' ' (3.3.11)
VVN, = (1-6,B)(1-6,,B")e,

The same econometric specification was used for modelling the aggregate
numbers of injury accidents and fatalities in France. The models account for the
mileage and the speed, but they mainly allow for assessing the safety measures
enforced during the period. It's the case of the first speed limitation of 1973, of
the oil crisis of 1974, of the legislation of 1978 introducing random alcohol tests
on the road (Lassarre, Tan, 1981, 1982, 1989).

Other models of the same type were also proposed for modelling the number of
injury accidents and fatalities on the main network categories in France: A-level
roads and motorways, secondary roads and urban roads, with the help of
climate and calendar variables for taking account of transitory factors as well
(Bergel, Depire, 2004).

3.3.3.5. Non linear models

As can be seen, non-linear models have often been transformed into linear
models, by applying a log-transformation to some of the variables, whether
dependent or independent; this renders the model estimation easier. Other
examples of dealing with non-linearity have been given in Section 3.2.3.

The multiplicative relationship between exposure and casualties, and between
exposure and fatalities, is generally accepted. It is worth recalling here, as an
example, that the first aggregate model at a country’s level, proposed by Smeed
(1949), relates the number of road injuries to the number of motorised vehicles
and to the corresponding population (i.e. D, M and P respectively)in a
multiplicative manner :

TR |
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1

D=c(MP?)? (3.3.12)

Other transformations may also be chosen, preferably to the Log-
transformation, and applied to the observed data. Let’'s mention the three-level
explanatory model constructed on a monthly basis, the DRAG-model (Demand
for Road use, Accidents and their Gravity) proposed by Gaudry(1984), which
relies on a multiple regression structure with auto correlated and
heteroscedastic errors, and takes account for a type of non-linearity. The fact
that numerous explanatory variables are introduced allows the trend and the
seasonal component to be modelled, which thus do not need to be filtered. The
use of the Box-Cox transformation allows a more flexible form (linear form,
logarithmic form or a compromise) of the link between the endogenous variable
and each of the exogenous variables.

The generic model is written as follows:

K

(Ay)  _ (Axy)
Y = Y B X

k=1

Vi exp(z 5m2,;2m>J (3.3.13a)

D
Z Py Ve + W,
=

U,

Vi

with: Y, the endogenous variable to be modelled,
X, k=110 K, the exogenous (or explanatory) variables,
u, the first residual, and v, the final residual,
w, a white noise.

and the Box-Cox transformation defined as a power transformation, of
parameter A, on any positive real variable V, by:

V=& V-1

Vr(O)

if %0
Log V,

(3.3.13b)

In that general formulation, the Box-Cox parameters A4,,4,,. A, are

estimated in addition to the other parameters g,, J,, and p,, for k=1 to K, m=1
to Mand |=1 to L.
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3.3.4 Conclusion

In this introduction to dedicated time series models applied to road safety
research, different types of models were defined. The need for a systemic,
comprehensive approach - and the related methodological framework - are
recalled. The major examples of aggregate time series modelling and analysis
are given, and commented.

As it has been seen, different kinds and different classes of time series models
have been selected for modelling aggregate risk indicators, at a country’s level
in Europe. The main difference between the models is the use of many versus
few explanatory variables, but an important feature is their nature, whether
deterministic or stochastic. The choice for a specific model is often governed by
the purpose of the analysis, and unfortunately, often also by the availability of
data.

The following sections of the methodology address mainly ARMA-type models
and state space models. Nevertheless, it will be demonstrated on real road
safety examples that the fact that a model belongs to one of the classes, or to
one of the categories referred to in this chapter, is not exclusive.

" Transport
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3.4 ARMA-type models
Ruth Bergel and Mohamed Cherfi(INRETS)

3.4.1 Introduction

As it has already been emphasised, the dependencies over time of a stochastic,
theoretical process (Y,), for t being 1,2,3,...., can be modelled in different manners.

In a very special case of dependency over time - where the process in question
(v;) is stationary®- | it is very practical to use the class of ARMA (autoregressive

moving average) models, which enables us to describe the dynamics of the
process and to extrapolate it in the future, without any call on additional variables,
and with the only assumption that the process dynamics will stay unchanged at the
forecast’s horizon (see 2.2.1).

Nevertheless, the processes with dependencies over time usually are not
stationary, because of the presence of a cycle, of a trend, or of a seasonal
component: the sample of observationsY =(y,, y,.....y,), can rarely be considered

as a sample of realisations of a stationary process. In that general case, it will be
assumed that another stationary process exists, derived from Y, by means of

filtering, or by means of modelling before correcting for them, the non-stationary
components of Y, with the help of additional variables. It is this other stationary

process, derived from Y,, that will be modelled with an ARMA representation. In all

cases, ARMA-type models will be used, which includes all the following cases:
ARIMA models in the non-stationary case, ARMAX models in the case exogenous
variables are used, and ARIMAX models in the non-stationary case and
exogenous variables being used.

In all these cases, a stationary process, derived fromY,, will be considered, and its

dynamics estimated with the sample of observations at hand; as in the traditional
ARIMA case, the model will constitute a tool for monitoring and for forecasting as
well, if the exogenous variables used can also be forecasted or if scenarios for
their development in the future can be established.

This section dedicated to ARMA-type models is structured as follows.

In Section 3.4.2, several ARMA models, fitted on simulated stationary data
samples, are described. The interest of this preliminary section is that the structure
of these simple models is very similar to the structure of the more elaborated
models that will be fitted in the following sections on real road safety data, as far
as handling their stationary part is required.

In Section 3.4.3, an ARIMA model is fitted on the annual number of road traffic
fatalities observed in Norway for the period 1970-2003, as already described in
Section 1.1.2 of the general introduction.

%% its mean, variance and covariance structure are constant over time (see a precise definition in
Section 2.2.4.3.1.)
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In the two following Sections 3.4.4 and 3.4.5, ARIMA models are fitted on
seasonal monthly data, with very similar structures in the sense that in both cases
independent variables are used. The first dataset consists of the monthly number
of drivers Killed or seriously injured on the road in UK, for the period January 1969
- December 1984, and the second one consists of the monthly number of fatalities
registered in France, for the period January 1975 - December 2001. In both cases,
the effects of several risk factors, of road safety measures and of special events
were taken into account, and the related significant parameters were interpreted.

In the last and concluding Section 3.4.6, a summary of the models results as
obtained on the real road safety data of the chapter is given: the estimated
parameters are interpreted and the goodness of fit commented.

3.4.2 ARMA-models for stationary series (simulated data)

3.4.2.1. Objective of the technique

An ARMA-model is constructed for descriptive and forecasting purposes. It aims at
giving account for the dynamics of a stationary process Y,, when having a sample

of observations Y = (y,,»,,....y,) at hand.

3.4.2.2. Model definition and assumption

A process(Y,)te Z, of second order® is (weakly) stationary if its mean, variance
and covariance structure do not depend on time:

E(Y,)=u
var(Y,) = o (3.4.1)
cov(Y,, Yy, ) =cov(Y, Vi)

The fist equation defines the fist order stationarity, and the two following equations
define the second order stationarity.

The constant covariance structure allows separating Y, in two parts: the one
related to the past at time t, and the part that is new at time t, which has a white
noise property. This latter part of Y, that is not correlated to its past is called
« innovation » - as it is what is new to the process at time t -, and more precisely
“‘innovation white noise” - as it is a white noise, due to the stationarity of Y,.

There are different ARMA equivalent representations which could be retained for
modelling a stationary process. Therefore, the “canonical” form, which is unique, is
currently retained as the simpler manner for expressing Y, as a linear combination

** Having a finite mean and a finite variance
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of a small number (p) of its past values, and of a small number (q) of the past
errors (or disturbances, as it will be explained later on).

The canonical ARMA (p,q) representation:
P q
Y, :Z¢iyt—i+ut+zejut—j (3.4.2)
i=1 j=1

is usually written in the following way:
P(B)Y, =0(B)u,, (3.4.3)

with: ®(B)and ©(B) two polynomials® of the delay operator B, of degrees p and

oF
and u, the « innovation » white noise.

The backshift operator B used in the previous representation is an operator on an
element of a time series, that produces the previous element in time of that time
series: BY, =Y.

Note that B?Y, = B(BY,)=BY,, =Y, ,, and so on. In particular, for a monthly time
series, B?Y,=B-B-...-BY,=...=B-BY, ,, =BY,,,=Y,,, yields the observation
exactly one year before.

Similar to classical polynomials, a polynomial of order p in B can be written as:
®(B)=¢, +¢B+...+9,B",

and, in the case ¢, is 1, we have the unitary polynomial in B:
O(B)Y, =1, +¢BY, +..+9,B°Y, =Y, +4Y, , +..+9,Y,_ .

Please note that the polynomial representation described above is a convenient
notation for specifying ARMA models - rather than higher mathematics. In the case
of the canonical ARMA (p,q) representation, two unitary polynomials in B,
®(B)and ©(B)of orders p and q, are used: the first one is applied to the process

Y, , and the second one to the innovation white noise u,.

The few examples that are given now will help understand this representation.

%® Conditions are required from the polynomials of the canonical representation: to be unitary, with
no common root, the roots of @ (strictly) outside the unit circle, and the roots of ® outside the
unit circle, see( Box, Jenkins, 1976).
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3.4.2.3. Research problem and dataset

Four stationary datasets have been simulated with the help of the following
formulas, in which a Gaussian “white noise” (a, are independently normally

distributed with mean 0 and variance 1 (N (0,1)) and t = 1,..., 1000) was
generated:

Y,=0.8Y,_,+4a,+3 (3.4.5a)
Y,=0.5Y,,+0.3Y,,+a,+3 (3.4.5b)
Y,=a,-0.6a,_,+5 (3.4.5¢)
Y,-0.5Y,,-0.3Y,,=a -0.6a,,+8 (3.4.5d)

The four fsample processes are, as constructed:
- two autoregressive of order 1 and 2 processes,
- a moving average of order 1 process,
- an autoregressive and moving average of orders 2 and 12 process.

Figures 3.4.1 to 3.4.4 describe the development over time of the 200 hundred first
values of the sample processes.
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T TTT T T T
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Figure 3.4.1: Plot of the simulated AR (1) process with parameter 0.8
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Figure 3.4.2: Plot of the simulated AR(2) process with parameters 0.5 and 0.3
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Figure 3.4.3: Plot of the simulated MA(1) process with parameter 0.6
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Figure 3.4.4: Plot of the simulated ARMA(2,12) process with parameter 0.5, 0.3 and 0.8

The property of stationarity can be briefly described by the fact that, whatever the
initial values of a process are, the values it takes will rapidly reach a certain level
(its mean) and stay around it, and vary constantly around that mean. This can be
observed in Figures 3.4.1 to 3.4.4.

3.4.2.4. Model fit

3.4.2.4.1. Identification

The model identification (choice of the two integers p and q) is performed by
examining both the autocorrelation function (ACF)) and the partial autocorrelation
function (PACF) plots (see Box and Jenkins, see also Section 3.2.1).

The model identification is classically performed in two stages:
- First by fitting a pure AR (of order po), and a pure MA model (of order qp).

- Second, by fitting the parsimonious canonical ARMA(p,q) as satisfying the
condition: (p<=po,g<=Qo)-

The first stage is the difficult part of the identification, as theoretical properties are
tested for determining the orders of the pure AR and MA specifications.

Autoregressive processes of order py have exponentially (or sinusoidal) decaying
AC values, and their PAC values of order larger than py are zero. Moving average
of order qo have exponentially (or sinusoidal) decaying PAC values, and their AC
values of order larger than geare zero.
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In practice, the hypothesis of nullity of an AC (or PAC) is rejected when the 95%
level confidence interval, centered on the estimated AC (or PAC) value, does not
include zero. But the risk of rejecting the nullity hypothesis, and thus of considering
as significant an AC (or PAC) value which should not be considered as significant,
leads to over parameterised and mis-specificated models. Therefore, the decision
of rejecting the nullity hypothesis should be taken cautiously, and the test
confidence level should preferably be lowered in practise.

The related ACF and PACF plots, used for identifying the four models which will
be fitted on the simulated datasets, are summarised in Figure 3.4.5.

In the three first cases of Figure 3.4.5, the classical patterns of two autoregressive
processes and of a moving average process are found, indicating that there is no
need for further identification. The exponential (or sinusoidal) decay appears to be
more or less obvious, but the relevant information has to be taken where it
appears to be highly significant, whether from the ACF plot or from the PACF plot.

™ Transport
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Figure 3.4.5:

ACF and PACF plots of the simulated samples (Summary),

Note that in the particular case of a seasonal process of period s, the seasonal
part of the model is often separated from the non-seasonal part, in a multiplicative
manner. In that case, the four integers of the seasonal part (P and Q) and of the
non-seasonal part (p and q) have to be determined. In the last case of Figure
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3.4.5, the seasonal pattern and the non-seasonal (short term) pattern are to be
visually considered separately.

3.4.2.4.2. Estimation

For each model, the p+q +1 (the p ¢, and q &, , for i=1 to p and j=1 to g, and in
addition the variance of the residuals) parameters are then estimated by means of
maximising the log likelihood function, which comes to minimize the sum of the
squares of the residuals.

The estimation results are given in the following Table 3.4.1, and will be

commented in 3.4.2.5.2.
For efficiency reasons, the initial values of each simulated sample have been

excluded from the sample on which the model was fitted..

Estimate SE t Sig.

Y-Model_1 Y Simulated AR(1) sample Constant 15,058 172 87,751 ,000
AR Lag1 ,809 ,019 42,690 ,000

Estimate SE t Sig.

Y-Model_1 Y Simulated AR(2) sample Constant 15,066 ,169 89,408 ,000
AR Lag1 ,543 ,031 17,407  ,000

Lag 2 ,263 ,031 8,426 ,000

Estimate SE t Sig.

Y-Model_1 Y Simulated MA(1) sample Constant 5,006 ,013 373,354 ,000
MA lagi ,586 ,026 22,715 ,000

Estimate SE t Sig.
Y-Model_1 Y Simulated ARMA Constant 39,996 ,039  1035,172 ,000
(2,12) sample AR Lagi  ,540 031 17,271,000
Lag 2 ,259 ,031 8,265 ,000
MA, Lag 1 772 ,021 35,904 ,000

Seasonal
Table 3.4.1: Estimation results - Models fitted on the simulated samples.

At that point, two relevant outputs are available: the ” estimated” series on the one
hand - also called” fitted” , “adjusted” or “predicted” series -, and the ‘“residual”
series on the other hand, over the estimation period. Note that the first one is
made of the one step ahead predictions; whereas the second one, which is the
difference between the sample series and the adjusted series, is the best
estimation of the innovation white noise, the part of the process Y, which is not

correlated to the past of Y, at time t.

i Transport
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Figures 3.4.6 and 3.4.7 describe the development of these two series, in the case
of the ARMA(2,12) sample.

—"
Predicted_%_Model_1
44—
II
42— q [ |
(l
R | | | | 1 [ |
I YU e P
40— | ol il | | | U |
o | | | | il
| ! | : I
|
[ | I
i | i b
35— I .
36—
34—
32—
TT T T T T T T A T T A T T T A T T T T T A P T T T T T T T T oo
18 1122334455688 77a88488991111 11111 11111111111
18 1614616168161 61616 0011223 34455684677 aaa39a
18 168 1616161616 161616
Sequence number

Figure 3.4.6: Plot of the simulated ARMA(2,12) process, and of the adjusted series
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Figure 3.4.7: Plot of the estimated innovation white noise.

3.4.2.5. Model diagnostics

3.4.2.5.1. Validation and empirical performance

Tests are used to validate the model, and criteria to evaluate the model’s empirical
performance. These tests and criteria will be exposed first, and then the results
related to the application case.

Tests are used for validating the model

A difference is to be made between the tests related to the residuals, and the test
used for validating each parameter (Student’s test).




3.4 ARMA-type models

The test related to the residuals consist in testing the « white noise » property - ie
mainly the non-correlation property (Ljung-Box’s test, for instance) — and the
Gaussian property (Shapiro-Wilk’s or Kolmogorov-Smirnov’s test) of the error term
of the model. Among these properties, non-correlation is fundamental. If the
assumption of normality is violated, the log likelihood computation can be
compromised, but the estimators may nevertheless have good asymptotic
convergence properties. However, it is fundamental that the assumption of non
correlation of the residual is tested, because if it is rejected the model’s
specification has to be changed

In practice, all tests related to the residuals are not performed: the non correlation
and the Gaussian property are tested, and in case they are not rejected, the
independence of the residuals is assumed.

Criteria® are used for evaluating the model’s empirical performance.

They relate to the model’s adjustment, or forecasting power. Let’s mention in the
first group the proportion of explained variance (R-squared or stationary R-
squared), as well as the different criteria which enable to evaluate the estimation
fit: the root mean square error (RMSE), and the widely used mean absolute
percentage error (MAPE), and in the second group the Bayesian information
criterium (BIC) or the Akaike information criterium (AIC), and the Bayesian
criterium of Schwarz (SBC).

Several models proposed for the same sample of data will be compared after the
test and criteria, mentioned above, have been performed. Two nested models will
be compared by using a likelihood ratio test, which can lead to a reduction in the
number of parameters in an over-parameterised model.

A practical question finally is, after the model has been validated, whether the
model is stable over time. The parameters’ stability will be discussed by comparing
estimations obtained from different samples of data covering different time
intervals. The responses to the validation tests and empirical performance criteria
might also differ with each new sample of data.

3.4.2.5.2. Application cases

In the example cases, the Student’s tests lead to conclude that all parameters
were significant (the null hypothesis is rejected at the 95% confidence level).

As for the tests performed on the model residuals, the hypothesis of non-
correlation, at each order, is accepted, as shown in Figure 3.4.8, and the
hypothesis of global uncorrelation (from order 1 to 18) is also accepted, as shown
in Table 3.4.2.

% Whereas the R-squared, the RMSE and the MAPE are currently computed by all softwares, it is
not allways the case for all information criteria (see the manual).

|

Project co-financed by the European Commission, Directorate-General Transport and Energy

Page 2517



Chapter 3 — Time Series Analysis

Model Ljung-Box Q(18)
Statistics DF Sig.
AR(1) 24,768 17 ,100
AR(2) 23,066 16 112
MA(1) 25,423 17 ,086
ARMA(2,12) 24,731 15 ,054

Table 3.4.2: Ljung-Box statistics (Summary)

Note that no additional normality test was performed on the residuals, as the white
noise used for simulating the datasets was generated as Gaussian.

Finally, some criteria enabling to evaluate the model’'s empirical performance are
given in Table 3.4.3. The model's performance is lower in the case of the MA
model, as the R-squared is at the lowest, around 25%, and the absolute error
made on the estimation period, measured in mean and in percentage, takes its
highest value, around 19%. The best performance is obtained for the ARMA
model, with a R-squared value around 69%, and an average error around 2%.

Fit Statistic AR (1) AR (2) MA (1) ARMA (2,12)
R-squared ,655 574 ,249 ,685
MAPE 5,531 5,513 18,592 2,052
Normalized BIC ,053 ,061 ,049 ,071

Table 3.4.3: Goodness of fit criteria (Summary)

3.4.2.6. Model interpretation

The small number of parameters of the autoregressive and moving average
polynomials of the ARMA(p,q) canonical representation - three at the most, in the
example given - enables to define the past of the process, and to determine its
future. In this parsimonious expression, the (one step ahead) forecasted value of
the process is determined with the only knowledge of a small number of past
values and a small number of past (one step ahead) forecast errors. In the
example given, the memory of the process is taken into account with the help of
the two parameters 0.5 and 0.3, and the link with the past error with the help of the
parameter 0.8.
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Figure 3.4.8: ACF plots of the models residuals (Summary).

3.4.2.7. Conclusion

In this section, ARMA models were fitted on four simulated stationary datasets of
1000 observations from which, for efficiency reasons in the estimation stage, the
first values where excluded. In each case, the model identification was described,
the model estimation results were validated with the help of tests, and the model’s
empirical performance evaluated with the help of criteria. The goodness of fit
statistics showed very important differences among the datasets: the worse
performance was obtained with the MA(1) model and the best one with the
ARMA(2,12) model.

It is worth mentioning that the estimated (dynamics) parameters were in all case
significant, and very near to the real - and, in these cases, known - values.
However, in practice, the fact that every parameter is subject to estimation errors
and that a model is generally estimated with numerous parameters on a dataset of
smaller size, may lead to lower the confidence level of significance tests.

In the following Sections 3.4.3 to 3.4.5, the ARMA structure of the models that will
be fitted on real road safety datasets is similar to the one described in Section
3.4.2.

™ Transpert
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3.4.3 ARIMA models for non seasonal series (Norway fatalities)

3.4.3.1. Objective of the technique

An ARIMA-model is, as in the preceding subsection, constructed for descriptive
and forecasting purposes. It aims at giving account for the dynamics of a non
stationary process Y,, when having a sample of observations Y = (y,, y,,...,5,) -

In this section, the general case of an ARIMA model will be considered, without
any consideration of seasonality.

3.4.3.2. Model definition and assumptions

In the general case where Y, is not stationary, it is possible to apply a filter of
differences to the process, in such a way that the transformed process Y, defined
as:

F(B)Y;,

with F(B) = (/- B)? , Bthe delay operator and d a positive value,

becomes stationary, and then model this transformed process F(B)Y, with an
ARMA(p,q) model.

In such a case, we shall have an ARIMA (p,d,q) representation for the non-
stationary process Y, :

d(B)F(B)Y, = ©(B)u, (3.4.62)

Note that for d being 1, (1-B)Y, =1Y,-BY,=Y,-Y,,, so the approach above

would in one turn change a linear trend into a stationary series. The integer d is
often taken as 1, and is rarely larger than 2. Differencing twice would for instance
turn a quadratic development into a stationary one.

3.4.3.3. Research problem and dataset

The dataset consists of the annual number of road traffic fatalities observed in
Norway for the period 1970-2003%, as already described in Section 1.2.2. of the
general introduction The research problem consists in determining a time series
model both for descriptive and forecasting purposes. In this particular case, the
explanatory capacity of the model will not be addressed, as no additional
independent variable will be used for modelling the sample observations.

" More precisely, the log of the annual number of fatalities will be the modelled
data - and not the absolute annual number.
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3.4.3.4. Model fit

In the case of ARIMA models without any exogenous variables, the well known
following stages are succeedingly considered: stabilisation, identification,
estimation and validation, as described for instance in ( Box and Jenkins, 1976).
The three last stages dedicated to stationary time series have already been
described in 3.4.2. The first stabilisation stage is necessary every time the sample
dataset is not a stationary one. An easy manner for doing this consists® in
applying a difference filter to the initial dataset, in such a way that the filtered
dataset can be considered as stationary

In the application case, one difference was applied to the initial log transformed
data, and no presence of non stationarity could be detected in the ACF plot®®,
which led to accept the hypothesis that the one difference filtered data were a
sample of a stationary process.

The observation of both the ACF and PACF plot then led to retain a moving
average model of order 1 to fit the filtered data. Finally, the model fitted on the log
Norwegian fatalities is an ARIMA (0,1,1) model.

3.4.3.5. Model diagnostics

As indicated in Table 3.4.4, the moving average parameter (6,) was estimated at

0,432 and the constant term at -0,020. In both cases, the result of the student test
was that the hypothesis of nullity of these two (theoretical and unknown)
parameters had to be rejected, at the usual 95% confidence level).

As for the residuals, the hypothesis of nullity of each autocorrelation, from order 1
to order 24, was to be accepted, as shown in Figure 3.4.9.

Moreover, the hypothesis of global non correlation of the residuals was also
tested. The Ljung-Box statistic provides an indication of whether the model is
correctly specified, in the sense it allows testing the global nullity of the
autocorrelation of the residual (from order 1 up to order 18). The hypothesis was
accepted, as the 0,510 value of the Ljung-Box statistic is more than 0.05, as
indicated in Table 3.4.5.

The normality of the residuals was graphically tested with the help of the histogram
and of the QQ-plot, shown in Figures 3.4.10 and 3.4.11.

Moreover, the non-parametric Kolmogorov-test was also performed on the
residuals.

%8 There are several manners for deriving a stationary dataset from the initial one: extracting the
trend as a function of time, for instance, is currently performed.

% The property of stationarity can not be checked visually, because the sample length is generally
too short to give the right overview of the dynamics of the process. Nevertheless, the presence of
non stationarity can be detected visually: in the case of a stationary dataset, the autocorrelations
should decrease exponentially after a certain order.
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In the case the Kolmogorov-Smirnov test is significant, the normal distribution of
the residual hypothesis is to be rejected. This hypothesis was accepted, as the
0,713 value of the Asymp. Sig. (2-tailed) is more than 0.05 (at the usual 95%
confidence level), as indicated in Table 4.3.6. Therefore, the hypothesis of
independence of the residuals is also accepted.

The model's empirical performance was evaluated by computation of different
kinds of goodness of fit statistics, given in Table 3.4.7; but this evaluation really
makes sense in the case several (nested) models have been fitted on the same
data, and their empirical performance can thus be compared

Due to the presence of the trend, the stationary R-squared is only 16,7% ( the
model explains 16,7% of the variance of the filtered data, compared to a
regression model), and much smaller than the R-square which is 78,9% (the
model explains 78,9% of the variance of the initial data).

As for the usual measure of the error made: the mean absolute percentage error
(MAPE) is 1,36%, whereas its highest value observed on the estimation period is
3,915%,

At last, the normalized BIC, which is -4,413, is a goodness of fit measure that
takes account of the parsimony of the model. Note that, as it is the case for the R-
squared, its interest lies in comparisons between several models, and not in its
absolute value.

3.4.3.6. Model interpretation

In the case the initial data are filtered, to interpret the model’'s parameters is not
easy as the formulation is slightly more complicated. However, the same global
interpretation can be given as in the preceding section, in the sense that the fitted
value is a function of a small number of the past values of the process, and of a
small number of the past forecast errors.

However, this ARIMA(0,1,1) representation has an equivalent local level
representation, which will be described in Section 3.6 dedicated to state space
methods. As such, the local level fitted on this dataset will be interpreted in Section
3.6.1.

As demonstrated in (Harvey, 1989), the relationship between the parameter 6, of
2
an ARIMA(0,1,1) and the parameter qza%z of the local level model, is the

£

following one:
6, = %((J? +4q)-(g+2)) (3.4.7)

The two noise variances of the local level were estimated by using Ox/SsfPack,
which led to q=0;0047026/0.00326838 and thus &, was calculated to be -

0,32070152; this value is very close to the one estimated by SPSS, which is given
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in Table 3.4.8 in the case of the ARIMA(0,1,1) model without constant term, and
which is precisely 6,=0,32069194.

Estimate  SE t Sig.
LNorv-Model_1 LNorw  Norwegian Fatalities Difference 1
MA Lag1 ,321 ,170 1,888 ,068

Table 3.4.8: Estimation results for the ARIMA(0,1,1) model without constant term

3.4.3.7. Conclusion

In this section, an ARIMA (0,1,1) model was fitted on the log-transformed annual
number of road traffic fatalities observed in Norway for the period 1970-2003.

The models diagnostics were satisfactory, in the sense that all parameters were
significant, and that the residuals could be considered as independent.

At last, it was shown in this example that the ARIMA(0,1,1) representation is
equivalent to a local level representation, of the class of state space presented in
Section 3.6.
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Estimate = SE t Sig.
LNorv-Model_1 LNorw Norwegian Fatalities Constant -,020 ,010 -1,969 ,058
Difference 1
MA Lag 1 ,432 ,164 2,636 ,013
Table 3.4.4: Estimation results for the ARIMA(0,1,1) model
Model Ljung-Box Q(18)
Statistics DF Sig.
LNorv-Model_1 16,199 17 ,510

Table 3.4.5: Ljung-Box statistic for the residuals of the ARIMA(0,1,1) model

Noise residual from
LNorw-Model_1

N 33
Normal Parameters(a,b) Mean -,0009
Std. Deviation ,09744

Most Extreme Differences Absolute 122
Positive ,122

Negative -,078

Kolmogorov-Smirnov Z ,699
,713

Asymp. Sig. (2-tailed)
Table 3.4.6: Kolmogorov-Smirnov statistic for the residuals of the ARIMA(0,1,1) model

Fit Statistic
Stationary R-squared ,167
R-squared ,789
RMSE ,099
MAPE 1,362
MaxAPE 3,915
MAE ,080
MaxAE ,230
Normalized BIC -4,413

Table 3.4.7: Goodness of fit criteria for the ARIMA(0,1,1)
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Figure 3.4.9: The ACF plot of the residuals and their confidence interval.
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3.4 ARMA-type models

3.4.4 ARIMA models for seasonal series (UK-KSI drivers)

3.4.4.1. Objective of the technique

In this subsection, an ARIMA-model with exogenous variables is constructed for
descriptive, explanatory and forecasting purposes. It aims at giving account for
both the dynamics of a non stationary process Y, and the influence of exogenous
factors, when having a sample of observations Y =(y,, y,.....,y,) at hand.

In this section, seasonality of the process is considered, and treated in a
multiplicative manner.

3.4.4.2. Model definition and assumptions

In the general case where Y, is not stationary and has a seasonal (periodic)

component, the ARIMA (p,d,q) representation defined in (3.34a) can be extended
to the more general ARIMA (p,d,q)(P,D,Q)s representation, in which the seasonal
and non seasonal parts of the dynamics can be separated in a multiplicative
manner :

D(B)D,(B°)F(B)Y, -0(B)®_(B*)u,, (3.4.6b)

with F(B) = (I-B)(/- B*)?, B the delay operator, d and D two positive values
and s the periodicity of the seasonal process.

In other words, first the seasonal pattern is removed, and then the remaining
trend. Note that, In the case of this multiplicative ARIMA representation, 4
polynomials in B will be estimated instead of 2.

Moreover, when independent variables are introduced in the model, there are
different manners of taking account of them. The following form is retained for
commodity reasons, if the data corrected for the exogenous effects are stationary:

<1><B>{Y, —ﬁdx(B)z,-t} —e(BW, (3.4.7)

i=1

with: Y the endogenous variable to be modelled (eventually filtered with a
difference filter F(B)),
Zj the K exogenous variables (eventually filtered with difference filters F;j

(B)),

W a white noise not correlated with the past Y and of the Zj ,
and & @:; e polynomials in B.
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Figure 3.4.11: The monthly number of UK-KSI driver, for the period January 1969 -
December 1984.

In this specification, the endogenous variable and the K exogenous variables are if
required filtered with difference filters F(B) and Fj (B), but it may as well not be
necessary, if the exogenous variables help to correct for the trend and the
seasonality of the process (Y,) .

The main assumption is the stationary of the data, corrected for the exogenous
effects, as written in the general specification (3.4.7).

This hypothesis of stationarity is tested on the residual of the model, which is a
white noise if this hypothesis is valid.

3.4.4.3. Research problem and dataset

The example retained in this section is the one described in (Harvey, Durbin,
1986).

The dataset consists of the monthly number of drivers, killed or seriously injured in
the UK, for the period January 1969 - December 1984 (UK-KSI drivers), described
in figure 3.4.11. Three exogenous variables (an intervention variable and two
explanatory variables) will be introduced in the model in two successive steps.

The intervention analysis takes account for the obligation, from February 1983
onwards, for motor vehicle drivers and front seat passengers to wear a seat belt:
thus, an intervention variable, equal to 1 from February 1983 onwards, and equal
to 0 before, was constructed.

The two explanatory variable are: the monthly car traffic index (more precisely the
monthly number of vehicle-kilometres driven by cars in the UK), and the monthly
prices of petrol in UK; for the period January 1969 - December 1984.

Note that this dataset is the one used in Section 3.6.3. for fitting a local linear trend
plus seasonal model of the class of state space models.
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3.4.4.4. Model fit

When exogenous variables Z; are introduced into ARIMA models, it is not feasible
to consider the usual stages (stabilisation, identification, estimation, validation)
before the functional form between Y and each exogenous variable Z; has been
established, because a preliminary estimation of the exogenous effects has to be
obtained, so that the stationarity of the process, corrected for the exogenous
effects, can be evaluated.

In practise, an econometric specification is retained, all parameters are estimated
together, whether related to the endogenous or exogenous variables; and the
diagnostic tests, carried out after the model has been estimated, replace the two
first stages (stabilisation and identification) which could not be considered before.

The results obtained after estimating the model (3.4.8) are given in Table 3.4.9.

/
d(B)(/- Bt 2){Iog Y, - Za,.LogZ,’t - Step,} = u+0(B)a, (3.4.8)

i=1

with: Y the number of UK-KSI drivers,
Z, ., the car traffic index and the petrol price,

1

Step, a dummy variable equal to 1 starting February 1983 and to 0

before,
®(B)and ©(B), two polynomials of the delay operator B,

and a, a white noise.

3.4.4.5. Model diagnostics

The hypothesis of nullity of the model parameters is rejected (at the 95%
confidence level), except for the log of the traffic index variable parameter: Thus,
all parameters related to the dynamics are to be considered as different from zero,
and the petrol price parameter and the intervention parameter too.

Note that, in case the confidence level is lowered to 70% for instance (t-value
between 1 and 2), the parameter related to the traffic index variable would also be
considered as different from zero.

The hypothesis of global non-autocorrelation of the residuals is accepted, and the
hypothesis of normality of the residuals is accepted too, as can be seen from
Tables 3.4.10 and 3.4.11, which therefore enables to accept the independence
hypothesis.

Regarding the model fit criteria given in Table 3.4.12, the stationary R-squared is
only 59,0% ( the model explains 59,0% of the variance of the filtered data,
compared to a regression model), whereas the R-square is 80,2% (the model
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explains 80,2% of the variance of the initial data); the mean absolute percentage
error is 0,902% %, its highest value observed being 3,841%,

3.4.4.6. Model interpretation

The dynamics estimated is related to the corrected for exogenous effects process,
the one that is assumed to be stationary. It is worth noting here that, at the
difference of the well-known *“airline model” structure proposed by Box and
Jenkins®, for which the filter (/- B)(/-B12) was applied to the log transformed

data, the simple filter (/- B12) in (3.4.8).

As for the exogenous part, it's natural to try to interpreter the relationship®’
between the exogenous variables Z,, i=1 to k and the endogenous variableY,

regardless of the dynamics.

In the application case, a special effort is to be paid to the three exogenous effects
parameters. As this dataset has already been used for fitting state space models,
estimations for these three parameters were already given (Harvey, Durbin, 1986).

Thus, since the intervention parameter is estimated at -0,163, and due to the
relation exp (-0,163) =0,85, the reduction in the number of drivers killed and
seriously injured in the UK February 1983 onwards is estimated at 15%.

The two other parameters are (constant) elasticity values : the elasticity value of
the number of drivers killed and seriously injured with respect to the traffic volume
index is estimated at 0,134 (at the 70% confidence level), whereas the elasticity
value of the same indicator with respect to the petrol price is estimated at -0,297
(at the usual 95% confidence level). In the case the traffic index is not kept in the
model, this later elasticity value is estimated at -0,323, which is not very different
from the preceding estimation, whereas the other parameters vary very little.

% This model was fitted on the monthly number of international airline passengers in thousands, for
1949- 1960, series G in (Box, Jenkins, 1976)

%" Apart from commenting on the value of the parameter 3, of the variable Zi , the interest often

d(LogY
goes to the related elasticity function, given by: M .

d(LogZ;)
For small variations ofZ,, at a given time, the following formulation for the elasticity of the
endogenous variable Y with respect to an exogenous variable Z i ,is used:

AY
LM
Y/Zi_AZk -

Vz

In the very special case where both variables have been log transformed, the parameter 3 ; indeed

represents the elasticity of Y with respect to Zi , which is then constant. But it is important to note
that one does generally comment an « apparent elasticity » of Y to Zi , because the condition of
mutual orthogonality of the exogenous variables Z i+, 1=110 K, is rarely valid.
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With a state space model fitted on the same dataset, Harvey and Durbin estimated
at 23% the reduction in the number of drivers killed and seriously injured in the UK
February 1983 onwards and at -0,31 the elasticity value of the number of drivers
KSI in the UK with respect to the petrol price - whereas the traffic index effect
appeared to be non significant, far beyond the 70% confidence level.

3.4.4.7. Conclusion

In this section, a multiplicative ARIMA (2,0,0)(0,1,1)12 model was fitted on the log
transformed monthly number of drivers killed and seriously injured in the UK, for
the period January 1969 - December 1984 (UK-KSI drivers).

The effect of the obligation of wearing a seat belt in the UK, from February 1983
onwards, for motor vehicle drivers, was investigated by the call of an intervention
variable. The effects of the risk exposure and the petrol price variations, were also
investigated by the call to two other additional variables: the monthly car traffic
index (more precisely the monthly number of vehicle-kilometres driven by cars in
the UK), and the monthly prices of petrol in UK.

The models diagnostics were satisfactory, in the sense that all parameters were
significant, and that the residuals could be considered as independent. One
exception is to be made for one exogenous effect parameter, related to the traffic
index variable, which could only be considered as significant at the 70% lower
confidence level. Thus, a 15% reduction in the number of UK-KSI February 1983
ownwards was observed, and an elasticity of -0.32 of the number of UK-KSI with
regard to the petrol price was obtained.

The model's empirical performance was evaluated by computation of different
kinds of goodness of fit measures, and the model’s performance increased about
5% with the introduction of all exogenous variables, as indicated in Table 3.4.18.
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Estimate  SE t Sig.
LDRIVERS- LDRIVERS UK-KSI drivers Constant -,015 ,006 -2,463 ,015
Model 1 AR lag 283 ,075 3800 000
1
Lag ,235 ,077 3,072,002
2
Seasonal Difference 1
MA, Lag ,857 ,078 10,930 ,000
Seasonal 1
LPPRICE Traffic volume Numerator Lag -,297 ,095  -3,132 ,002
0
Seasonal Difference 1
LTRKM Petrol price Numerator Lag ,210 134 1,561 ,120
0
Seasonal Difference 1
interv Seat belt law Numerator Lag -,163 ,037 -4,464 ,000

Introduction

0
Seasonal Difference

1

Table 3.4.9: Estimation results for the ARIMA(2,0,0)(0,1,1):;2 model

Model

LDRIVERS-Model_1

Ljung-Box Q(18)

Statistics

23,289

DF Sig.

15 ,078

Table 3.4.10: Ljung-Box statistic for the residuals of the ARIMA(2,0,0)(0,1,1):2) model

Noise residual
from LDRIVERS-Model_1

N 180
Normal Parameters(a,b) Mean ,0048
Std. Deviation ,07727
Most Extreme Differences Absolute ,050
Positive ,042
Negative -,050
Kolmogorov-Smirnov Z ,670
Asymp. Sig. (2-tailed) ,761

Table 3.4.11: Kolmogorov-Smirnov statistic for the residuals of the ARIMA(2,0,0)(0,1,1);2 model

Fit Statistic

Stationary R-squared
R-squared

RMSE

MAPE

MaxAPE

MAE

MaxAE

Normalized BIC

,590
,802
,079
,860
2,336
,064
A77
-4,881

Table 3.4.12: Goodness of fit criteria for the ARIMA(2,0,0)(0,1,1);> model
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Figure 3.4.12: The ACF plot of the residuals and their confidence interval.
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Figure 3.4.13 : The distribution of the residuals
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3.4.5 ARIMA models for seasonal series (French injury accident
and fatalities)

3.4.5.1. Objective of the technique
As in Section 3.4.4.1.

3.4.5.2. Model definition and assumptions
As in Section 3.4.4.2.

3.4.5.3. Research problem and dataset

1800 -

1600 -

1400 1

1200 -

1000 A

800 -

600 -

400

200

0 T T T T T
janv-75 janv-80 janv-85 janv-90 janv-95 janv-00

Figure 3.4.15: The aggregate number of fatalities in France, for 1975-2001.

In the road safety field in France, as already mentioned in Section 3.3, ARMA-type
models were very often used on monthly aggregate data for assessing road safety
measures (Lassare and al., 1993). We shall now describe an application of
another ARMA-type model, based on monthly data over a period of 25 years,
implemented to analyse the development of the aggregate number of fatalities in
France. The purpose is to determine whether a relationship can be established
between the amnesty of driving faults that traditionally accompanies the
presidential election in France and the road safety level. The analysis presented
here is limited to the statistics of fatalities, and to the two elections of 1988 and
1995 - for which the information was carried by the media.

The dataset is the monthly number of fatalities in France, for the period January
1975-December 2001, as presented in Figure 3.4.15.



3.4 ARMA-type models

Oil sales (gasoline and diesel) as a proxy for risk exposure (the total number of
vehicle-kilometres is not measured on a monthly basis, in France), the car fuel
price, and a small number of weather variables that take account for transitory
effects (the highest temperature of the day, the rainfall height and the occurrence
of frost, averaged or aggregated on the month) were used as exogenous variables
in an ARIMA model.

Because of the purpose described above, three intervention variables were also
constructed and the form of their intervention function then determined. This will
be described precisely in more detail in the next-coming paragraphs.

3.4.5.4. Model fit

Regarding the application case, an intervention analysis is carried out, in order to
determine whether the perspectives of the presidential amnesty of 1998, and of
1995, eventually had an effect on the development of the monthly number of
fatalities.

This can be achieved in two stages:

- First by determining a period during which the perspectives of the
presidential amnesty eventually had an impact on the drivers and
policemen behaviour,

- Second by identifying the form of intensity of that impact with an
intervention function.

The even nature of the presidential amnesty leads to delimit its impact in time
(transitory effect). The two first intervention periods are, in a first approach, fixed
as November 1987 - July 1988 and September 1994 — July 1995 (month of first
announcement, last month before the amnesty law is voted). The form of the
intervention function is then determined depending on the values of the monthly
impacts of the dummy variables defined on the period (Box,Tiao,
1975),(Gourieroux and Monfort, 1990).

In addition, particularly low values of the number of fatalities were detected,
between February 1987 and October 1987: the media effect of the Anne Cellier
case (a young woman died in an accident, whereas the person responsible for the
accident was drunk driving, and was only lightly condemned) followed by the
introduction of a new law related to drink driving, certainly contributed to diminish
accidents’ gravity in France. Because of its proximity to the election of 1988, the
“Cellier effect” was also modelled, and the period April - October 1987 also
retained as a third intervention period, with here again the hypothesis of a limited
effect in time.

In sum, three intervention variables were constructed, and for three predefined
periods. In each of the three cases, the form of the intervention function still has to
be determined.
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The form of the three intervention functions has been established using the
following model:

My

I J
D(B) (/- B12)[IogY, —ZaiLogZ,’t _ZIB/‘ZN - 5,’kPT°*k (t=1)|=u+0(B)a, (3.4
=1

3
j=1 k=1 =0
.9)
with:

Y the number of fatalities,

X, . the | variables measuring risk exposure and the economic factors,
Z; .y the J variables measuring the transitory factors,

P"*, k=1 to 3, three dummy variables given by P™*(t)=1int=T,, and 0
elsewhere, T, the first month of the intervention period n°Kk,

Nk +1 the number of months of the intervention period n°Kk,
®(B)and ©(B), two polynomials of the delay operator B,

and a, a white noise.

The forms suggested by the autoregressive polynomial Zk:é,’kPT” (t—1) is a step®
1=0

in all the three cases. The initial model (3.4.9) has therefore been simplified by
using three variables representing steps:

I J 3
®(B)(I-B12)/logY; - zaiLOgZi,t - Zﬂjzj,t - Z 7:Step,, | = u+0(B)a,
P = =
(3.4.10)

with:  Step,,, k=1 to 3, three dummy variables equal to 1 in [7,,,T,, +n,] and O
elsewhere.

Finally, the model was still adjusted by allowing the beginning and the end of the
two intervention periods corresponding to the presidential amnesties to vary, in
order to maximise the likelihood of the model. As a consequence the second
period was restricted to December 1994 - June 1995, while the first one remained
unchanged.

The results obtained by estimating model (3.4.10) are given in Table 3.4.13.

3.4.5.5. Model diagnostics

All parameters related to the exogenous variables were kept in the model if
significant at the 70% confidence level (T-ratio larger than 1).

%®In all three cases, the intervention effect was assumed to be the constant every month inside the
intervention period, and zero outside.
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As for the dynamics’ parameters, they were kept if significant at the usual 95%
confidence level (T-ratio larger than 2).

The reason for keeping less significant variables, is that the best model - in terms
of adjustment - , is obtained when all exogenous variables are kept, whether
significant or not. This is equivalent to considering that each variable’s contribution
must be taken account for, in order to estimate in the best manner the effects of
the perspectives of presidential amnesties, which remains the main objective. The
main argument for reducing the number of exogenous variables to the most
significant ones is to aim at the best model - in terms of forecasting -, which is not
the objective here.

The values of the Ljung-Box and Kolmogorov-Smirnov statistics, given in Tables
3.4.14 and 3.4.15 lead to accept the non-correlation and normality of the residuals,
which can therefore be considered as independent.

As for the model fit criteria given in Table 3.4.16, the stationary R-squared is
59,0% whereas the R-square reaches 91,6%; the mean absolute percentage error
is only 0,75% , its highest value observed being 3,33 1% aver the 25 years,

3.4.5.6. Model interpretation

The parameters related to explanatory variables given in Table 3.4.13 appear to
be acceptable.

Those related to climate are consistent with other results (Bergel, Depire, 2004).
Rainfall height is linked, positively, to the total number of fatalities: an increase of
100 mm in the average rainfall height leads to an increase of 0,3% in this
indicator. Temperature is also linked, positively, to the total number of fatalities: an
increase of one degree in the average temperature in the month leads to an
increase of 1% in the summer and 2% in the winter of the number of fatalities. On
the contrary, no link was found between the occurrence of frost and the number of
fatalities.

Only the elasticity value of the number of fatalities with respect to oil sales is small,
around 0.1, and this is probably due to the presence of the other explanatory
variables, correlated to oil sales.

The following comments focus on the intervention step variables.

Succeeding to a “Cellier effect” of -5,4 % per month (average decrease of 5,4 %
in the number of fatalities between April and October 1987), the effect of the
amnesty’s perspectives of 1988 is estimated at +7,1% per month (average
increase in the number of fatalities of 7,1% between November1987 and
July1988), and the effect of 1995 is estimated at +4,2% per month (average
increase of 4,2% in the number of fatalities per month between December 1994
and June 1995).
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Measured in absolute number of deaths, the effects of both perspectives of
amnesty are estimated at 565 and 202 additional fatalities respectively. The
associated confidence levels are 0.036 and 0.215 respectively, which confirms
that the effects of the first amnesty is the only significant one at the usual
confidence level.



3.4 ARMA-type models

Estimate SE t Sig.
LTUEFE- LTUEFE French Fatalities Constant -,026 ,002 - ,000
Model 1 10,799

AR Lag 1 ,149 ,059 2,536 ,012

Lag 2 ,191 ,059 3,248 ,001

Lag 3 ,231 ,060 3,822 ,000
Seasonal Difference 1

MA, Seasonal Lag 1 ,883 ,045 19,477 ,000

LCARBUB Oil Sales Numerator Lag 0 ,096 ,080 1,210 227
Seasonal Difference 1

LICARB Petrol price Numerator Lag 0 -,012 ,084 -,138 ,890
Seasonal Difference 1

TE Summer Numerator Lag 0 ,001 ,000 3,960 ,000
temperature Seasonal Difference 1

TH Winter temperature Numerator Lag 0 ,002 ,000 4,600 ,000
Seasonal Difference 1

HPLUI Rainfall Numerator Lag0 2,81E-005 1,29E- 2,176  ,030

005

Seasonal Difference 1

NGEL Frost Numerator Lag 0 ,000 ,002 -,208 ,836
Seasonal Difference 1

Step0 Cellier effect Numerator Lag 0 -,054 ,035 -1,535 ,126
Seasonal Difference 1

Step1 1988 Amnisty Numerator Lag 0 ,071 ,033 2,106  ,036
Seasonal Difference 1

Step2 1995 Amnisty Numerator Lag 0 ,042 ,033 1,243 215
Seasonal Difference 1

Table 3.4.13: Estimation results for the ARIMA(3,0,0)(0,1,1),» model
Model Ljung-Box Q(18)
Statistics DF Sig.
LTUEFE-Model 1 31,570 14 ,005

Table 3.4.14: Ljung-Box statistic for the residuals of the ARIMA(3,0,0)(0,1,1);2) model

Noise residual from LTUEFE-

Model_1
N 300
Normal Parameters(a,b) Mean ,0024
Std. Deviation ,06353
Most Extreme Differences Absolute ,030
Positive ,024
Negative -,030
Kolmogorov-Smirnov Z ,519
Asymp. Sig. (2-tailed) ,950

Table 3.4.15: Kolmogorov-Smirnov statistic for the residuals of the ARIMA(3,0,0)(0,1,1);2 model

i Transport
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Fit Statistic

Stationary R-squared ,595
R-squared 916
RMSE ,065
MAPE , 750
MaxAPE 3,331
MAE ,050
MaxAE ,206
Normalized BIC -5,201

Table 3.4.16: Goodness of fit criteria for the ARIMA(3,0,0)(0,1,1);2 model
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Figure 3.4.16: The ACF plot of the residuals and their confidence interval.
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Figure 3.4.17 : The distribution of the residuals
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Mormal Q-Q Plot of Noise residual from LTUEFE-Model_1
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Figure 3.4.18: TheQQ-plot

3.4.5.7. Conclusion and similar results

In this application case, it was demonstrated that an ARIMA model with
exogenous (explanatory and intervention) variables is an efficient tool for
analysing the development of the aggregate number of injury accidents and
fatalities in France, by taking account for risk exposure (measured with oil sales as
a proxy of risk exposure) and transitory factors of climatic nature. The possible
effects of two presidential amnesties of driving faults, in 1988 and in 1995, on the
number of fatalities in France were questioned by the means of an intervention
analysis.

The amplitude of the effects of the perspectives of amnesty of 1988 is larger (over
500°® additional fatalities, between September 1987 and July 1988) than

% The annual number of fatalities in France was around a thousand in the years 1990.
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Figure 3.4.19: The number of injury accidents in France, on A-level roads and motorways, for
1975-2001.
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Figure 3.4.20: The number of fatalities in France, on A-level roads and motorways, for 1975-2001.

it is in for the amnesty of 1995 (around 200 additional fatalities, between
December 1994 and June 1995).

The increase related to the presidential election of 1988 is the only one that is
statistically significant, at the usual level - i.e. 565 additional fatalities, with a
confidence level of 0,04.

This approach was extended and applied to other risk indicators, such as the
number of injury accidents and fatalities, on A-level roads and on motorways (see

£ Transport
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Figures 3.4.19 and 3.4.20). Similar results, given in Table 3.4.17, were obtained
and confirmed the previous parameters’ interpretations.

Thus, to the exception of one case, the elasticity value of the risk indicators with
respect to the traffic volume is smaller than 1 (between 0,5 and 0,8) but much
superior that the estimated elasticity value of the number of fatalities with respect
to oil sales, given in 3.4.5.6.

The climate parameters are consistent with those estimated previously, and
appear to be even larger. Thus, the rainfall height influence is generally larger on
the disaggregate risk indicators, whereas the temperature effect is about the
same. Note that the occurrence of frost comes out to be very significant in two
cases, with a positive link between the number of days of frost in the month and
the risk indicators.

As for the intervention step variables’ parameters, a general result is that the effect
of the perspectives of amnesty of 1988 is significant at the 70% confidence level,
whatever the risk indicator, and is estimated at 5,9% and 8,2% per month
regarding the number of injury accidents on A-level roads and motorways, and at
9% and 14% per month regarding the number of fatalities on A-level roads and
motorways, between November1987 and July1988. These increase levels are
higher than the increase level of the number of fatalities estimated on the whole
territory, and the highest values are found on motorways.

3.4.6 Conclusion on ARMA-type models

As a general conclusion of the chapter, it will be recalled that ARMA-type models
are very widely used for purposes of road safety research. The so-defined ARMA-
type models include all the following cases: ARMA models in the stationary case,
ARIMA models in the non-stationary case, ARMAX models in the case exogenous
variables are used, and ARIMAX models in the non-stationary case and
exogenous variables being used.

The use of transformations applied to the initial data, and the call to exogenous
variables (whether pure explanatory variables or intervention variables) allows
another process, derived from the initial one and corrected from exogenous
effects, to be modelled with an ARMA model, as fulfilling the hypothesis of
stationarity.

Two relevant features in all these models, related to the additional independent

variables, are to be highlighted in this general conclusion: the higher capacity for
the the model interpretation, and the gain in the model-fit.

3.4.6.1. Model interpretation

A summary of all parameters estimated with ARMA-type models fitted on real
data, and described in this section, given in Tables 3.4.17a & b, enables to
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conclude that, in addition to the dynamics-parameters, numerous exogenous
effects - parameters appeared to be highly significant .

Whereas all parameters related to the dynamics were only kept if significant at the
usual confidence level, the other parameters were kept even if significant at the
70% confidence level (t-value larger than 1).

The main results are the following:

- the risk exposure indicator was the most significant when measured with the
number of vehicle-kilometers on disaggregated networks (the French motorways
and A-level roads),

- the (petrol) price was the only price indicator which was found to be significant (in
the case of the UK-KSI drivers),

- the climatic variables, happened to have distinct effects, at the aggregate level
and on disaggregated networks (in the case of the French fatalities)

- the intervention variables, which were significant at an aggregate level in both
cases of the UK-KSI drivers and French fatalities) were less significant on
disaggregated networks (the French motorways and A-level roads).

3.4.6.2. Model fit

Second, a summary of the goodness of fit criteria, given in Table 3.4.18, leads to
conclude that the introduction of exogenous variables in the pure ARIMA models
enabled the part of variance explained by the model to increase significantly
(between 2,1% and 24% according to the indicator) and the absolute error made,
measured in mean over the period and in percentage, to decrease significantly
(between 4,4% and 11,9% respectively). Nevertheless, the normalized BIC
decreased less significantly, and even happened to increase (varying between -
0,5% and +1,3%), and this is due to the fact that this criteria is meant to take
account of the parsimony of the model.

Project co-financed hy the European Commission, Directorate-General Transport and _EI]BI‘E\I
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Traffic Price Summer Winter temp Rainfall Occurrence Interv. Interv. Interv.
volume temp height of Frost Var. 1 Var.2 Var.3
Norwegian fatalities
UK-KSI drivers
-0,184
(***)
0,21 _0,297 -0,163
(**) (***) (***)
French fatalities
0,096 -0,012 0,001 0,002 2,81E-05 0 -0,054 0,071 0,042
(**) (*) (***) (***) (***) (*) (**) (***) (**)
French injury accidents on motorways
0,765 0,002 0,001 8,76E-05 0,007 -0,025 0,078 -0,039
(***) (***) (**) (***) (***) (*) (**) (*)
French injury accidents on A-level roads
0,526 0 -4,19E-05 6,07E-05 -0,001 -0,036 0,057 0,007
™) ") (") ") ") *") (*") (")
French fatalities on motorways
1,788 0,001 0,002 1,73E-05 0,012 -0,044 0,145 -0,105
™) (") ") ") (™) (") (*") ")
French fatalities on A-level roads
0,598 0,001 0,001 8,38E-05 0,004 -0,054 0,09 0,086

(***) (**) (**)

(***)

(")

()

)

)

Tables 3.4.17a & b : The exogenous and dynamics parameters - Summary
(*) T-value smaller than 1, (**) T-value between 1 and 2, (***) T-value larger than 1.




phi1 phi2 phi3 Thetal Theta12 Mu

Norwegian fatalities

-0,432 -0,02
(***) (**)
UK-KSI drivers
0,429 0,298 -0,898 -0,018
(***) (***) (***) (***)
0,378 0,279 -0,889 -0,01
(***) (***) (***) (***)
0,283 0,235 -857 -0,015
(***) (***) (***) (***)
French fatalities
0,264 0,187 0,064 -0,907 -0,022
(***) (***) (**) (***) (***)
0,149 0,191 0,231 -0,883 -0,026
(***) (***) (***) (***) (***)
French injury accidents on motorways
0,328 0,262 -0,841 0,023
(***) (***) (***) (***)
0,339 0,259 -0,845 -0,023
(***) (***) (***) (***)
French injury accidents on A-level roads
0,337 0,192 -0,831 -0,036
(***) (***) (***) (***)
0,341 0,225 -0,837 -0,046
(***) (***) (***) (***)
French fatalities on motorways
-0,794 0,01
(***) (***)
-0,932 -0,096
(***) (***)
French fatalities on A-level roads
0,158 0,226 0,146 -0,917 -0,03
(***) (***) (***) (***) (***)
0,103 0,274 0,212 -0,94 -0,042

s Transport
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3.4 ARMA-type models

R2 BIC MAPE
Norwegian fatalities
ARIMA model 0,789 -4,413 1,362
UK-KSI drivers
ARIMA model 0,77 -4,85 0,9
with intervention variables 0,788 -4,886 0,887
with intervention and explanatory variables 0,802 -4,881 0,86
Gain in the model fit 4,2% -0,6% -4,4%
French fatalities
ARIMA model 0,891 -5,145 0,795
with intervention and explanatory variables 0,916 -5,201 0,75
Gain in the model fit 2,8% -1,1% -5,7%
French injury accidents on motorways
ARIMA model 0,813 -4,557 1,311
with intervention and explanatory variables 0,849 -4,591 1,155
Gain in the model fit 4,4% -0,7% -11,9%
French injury accidents on A-level roads
ARIMA model 0,95 -5,319 0,745
with intervention and explanatory variables 0,96 -5,344 0,668
Gain in the model fit 1,1% -0,5% -10,3%
French fatalities on motorways
ARIMA model 0,375 -2,595 5,982
with intervention and explanatory variables 0,465 -2,568 5,486
Gain in the model fit 24,0% 1,1% -8,3%
French fatalities on A-level roads
ARIMA model 0,846 -4,326 1,63
with intervention and explanatory variables 0,864 -4,269 1,534
Gain in the model fit 2,1% 1,3% -5,9%

Table 3.4.18: Goodness of fit criteria - Summary

i Transport
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Ruth Bergel (INRETS)

In this section, we address the three-level explanatory model constructed on a
monthly basis, proposed by Gaudry (1984), the DRAG-model (Demand for Road
use, Accidents and their Gravity). As it will be seen now, that ARMA-type model
constitutes in itself an application to the road safety field. Apart from the strict
statistical aspects, the technique cannot be described without referring to the road
safety methodological framework, described in 3.2.1.

3.5.1 Objective of the technique

The main objective of the DRAG approach is to model, altogether and at an
aggregate level, several levels of risk, as described in 3.2.1.

As the model is meant to be a comprehensive (explanatory) model, it aims at
taking account for numerous risk factors, and at measuring their influence on pre-
defined risk indicators.

The advantage of the technique, compared to a multiple linear regression, is that
the use of the Box-Cox transformation for all data allows for a more flexible form
(linear form, logarithmic form or a compromise) of the link between the
endogenous variable and each of the exogenous variables.

3.5.2 Model definition and assumptions

3.5.2.1. Economic formulation

Summarising the preceding description of the technique, a DRAG-model can
shortly be defined on the basis of the following three criteria:

- to model (at least) the three following levels : road demand, risk’s accident
and accident’s gravity,

- to be explanatory,

- to rely on a flexible functional form.

The general and precise framework of the DRAG approach is well defined in
(Gaudry, Lassarre, 2000). In this framework, one demand level (the exposure to
risk) and two risk levels (the risk of accident and the risk of being victim in an
accident) are defined, as well as indicators and factors at each of these levels.

Numerous explanatory variables are introduced, related to exposure, economic
factors, transitory factors, behavioural factors and road safety measures. By
modelling road demand (exposure to risk), and the two risk levels with the same
explanatory factors, it is possible to quantify the direct and indirect effects - via the
traffic volume - on the two types of risk indicators.

It is worth noting here that the human behaviour, measured with the practised
speed, is also modelled as an additional level in the TAG-1 model for France, but
this four-level approach is not generalized within the DRAG-family models yet.



3.5 DRAG model

3.5.2.2. Econometric specification

Let us first recall that the Box-Cox transformation, which is used in the
econometric specification of the DRAG-model, is defined as a power
transformation, of parameter A, on any positive real variable V, by:

ﬂ_
V, -V YW1t 120

Ve = LogV,

(3.38)

The DRAG-model relies on a multiple regression structure with auto correlated
and heteroscedastic errors, and takes account for a type of non-linearity. The fact
that many explanatory variables are introduced allows the trend and the seasonal
component to be modelled, which thus do not need to be filtered. The use of the
Box-Cox transformation allows a more flexible form (linear form, logarithmic form
or a compromise) of the link between the endogenous variable and each of the
exogenous variables.

The model is written as follows:

K
YtMY) — Zﬂk th(/lxk) +u,
k=1
" (3.39)
u = v lexp| Y. 8,2
P
Vi = Zp/ Vi W,
=]

with: Y, the endogenous variable to be modelled,
X, k=110 K, the exogenous (or explanatory) variables,
u, the first residual, and v, the final residual,
w, a white noise.

In that general formulation, the Box-Cox parameters 4, ,4, ,.. 4, are estimated

in addition to the other parameters g,, J,, and p,, for k=1 to K, m=1 to M and I=1
to L.

In practice, all parameters are not estimated, and some of them may be fixed to 0
or to 1, for specific reasons. Two well-known particular cases are obtained when
the parameter A is identically equal to 0 (we then have the log-log specification),
or to 1 (we then have the linear specification).

3.5.2.3. Assumptions

The main assumption is that the endogenous variable is supposed to be Gaussian
(as the observed data are aggregate, their frequency is easily larger than 30).
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The assumption of stationarity of the processY, is not required. The explanatory

variables take account for trend and seasonality of the transformed process Y;*",
whereas heteroscedasticity on the first residual v, is also modelled separately, in
such a way that the final residual V, is supposed to be stationary.

3.5.3 Research problem and data set

Six DRAG models have already been constructed on aggregate data, whether at a
national (Germany, Norway, France), regional (Quebec, California) or at an urban
(Stockholm) level. Their latest versions available are the following ones (Gaudry,
Lassarre, 2000):

The DRAG-2 model for Quebec

The SNUS 2-5 model for Germany

The TRULS-1 model for Norway

The STOCKHOLM-2 model for the city of Stockholm
The TAG-1 model for France

The TRACS-CA model for California

No condition is required from the data, but the constitution of a voluminous
database covering a long-time period requires time and financial support.

Nevertheless, a major difficulty of the DRAG approach lies in modelling the first
level of road demand - the monthly number of vehicle-kilometres driven on the
defined aggregate network. The monthly data to be modelled may not be
available over a long time period or may not be measured at all, and therefore
need to be estimated first. This can be achieved by means of modelling, or by
other means (Yannis et al., 2005). This preliminary step - estimating unknown
numbers of vehicle-kilometres, on a monthly basis and over a long-time period - is
a source of additional error in the global model.

On French data for instance, a DRAG-type model was applied to the French main
road network (A-level roads and motorways, the two networks on which the
number of vehicle-kilometres driven are measured on a monthly basis).

3.5.4 Model fit and diagnostics

The model fit is performed with the TRIO program, all the parameters - linear and
non-linear - being estimated simultaneously; the usual statistical tests and criteria
being also computed by the program. It is worth mentioning that no other existing
softwares, the SAS system for instance, allow estimating the parameters of the
linear and non-linear parts of the DRAG-model simultaneously.

3.5.5 Model interpretation

3.5.5.1. Multicolinearity

Multicolinearity between the numerous explanatory variables is a source of
difficulties in interpreting the estimated parameters related to the explanatory
variables.
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3.5.5.2. Box-Cox parameters

In some cases, the Box-Cox parameters may not be stable and interpretable
either®®, and the model’s specification seems to be over-parameterised. A general
important question is to determine whether the estimated values of the Box-Cox
parameters significantly differ from 0 and from 1. If it is not the case, the related
Box-Cox parameter should be fixed to 0 or to 1 instead of being estimated, which
may lead to diminish the total number of parameters of the model in an important
manner.

3.5.5.3. Elasticity values

Most of the estimated parameters are not interpreted directly: elasticity values are
computed, of the endogenous variables with respect to the exogenous variables -
that is to say of risk indicators with respect to risk factors. These elasticity values,
calculated at a country’s level independently of the units of measure of risk
indicators and risk factors, are used for international comparisons.

3.5.5.4. International comparisons

Detailed interpretations of elasticity values of risk indicators with respect to risk
factors, as well as evaluations of the major road safety measures that appear to be
significant at an aggregate level, can be found in (Gaudry, Lassarre, 2000).

3.5.6 Conclusion

Because of the need of a voluminous database for estimating a DRAG model, the
DRAG approach can not be achieved without enough time and financial support,
and it would not be feasible to apply it to European data within the SafetyNet
project.

In some cases where the monthly number of vehicle-kilometres is not available on
the defined aggregate network and over a long period, the constitution of the first
level model - the road demand model - may be the real difficulty.

% In the case of the RES Model, an analysis of the advantage of the Box-Cox transformation was
produced for this application (Bergel, Depire, 2004). The Box-Cox transformation was retained for
the main exogenous variable, whereas the logarithmic transformation was retained for the
endogenous variable. Tests of comparison of the initial specification with two particular cases were
carried out. No significant difference could be found between the model with the Box-Cox
transformation on the main exogenous variable and the model with the logarithmic transformation
on the main exogenous variable, which indicates that the second specification, widely used, can be
preferred for reasons of parsimony. Nevertheless, the use of the optimal functional form permits to
relax the hypothesis of a constant elasticity to the traffic, and to take account for certain saturation
effects with regard to the traffic.
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Nevertheless, the underlying theoretical framework is powerful, and is used for
time series analysis in road safety research purposes far beyond the application of
the DRAG-approach itself.



3.6 State space models
Jacques Commandeur and Chris de Blois (SWOYV)

This section presents the subclass of state space methods collectively known in
the literature as structural time series models or unobserved components models.
Important references in this field are Harvey (1989), and Durbin and Koopman
(2001). In structural time series models, an observed time series is typically
decomposed into a number of components. The state of a structural time series
model may consist of several components, which will be introduced one by one in
the following sections.

First, in Sections 3.6.1, 3.6.2, and 3.6.3, those components are addressed that are
useful for obtaining an adequate description of an observed time series. These
components are the level, the slope and the seasonal. Then, in Sections 3.6.4 and
3.6.5, components of the state are presented that are helpful in finding
explanations for the observed development in the series. These components are
intervention and explanatory variables. A third important application of structural
time series models is the ability to predict or forecast further developments of a
series into the (unknown) future. This aspect of structural time series models is
presented in Section 3.6.6. Finally, throughout these models will be compared with
their equivalent in terms of classical linear regression models. These comparisons
are particularly easy to make because, as will become clear below, classical
regression models are easily fitted in the framework of structural time series
analysis, and are in fact just a subclass of these models.

All the analyses presented below were performed with SsfPack (Koopman,
Shepard and Doornik (1999)), which is a set of C routines collected in a library that
can be linked to the Ox matrix programming language of Doornik (2001). The next
section starts the presentation of models with the most simple structural time
series model: the local level model.
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3.6.1 Local level model

3.6.1.1. Objective of the technique

The objective of the local level model is to establish whether an observed time
series can be adequately described with a time-varying level component.

3.6.1.2. Model definition and assumptions

The local level model is defined as

Vi =My + & e ~ NID(0,62)

(3.6.1)
U1 = Mt + St & ~ NID(0,c%)
for t =1, ..., n, where u,is the unobserved level at time t, &, is the observation

error or disturbance at time t, and &; is the level error or disturbance at time t. In
the literature on state space models, the observation disturbances ¢; are also

referred to as the irregular component. The first equation in (3.40) is called the
observation or measurement equation, while the second equation is called the
state equation.

The level u; in model (3.6.1) can be conceived of as the equivalent of the

intercept a in classical linear regression (see Section 3.3.1). Just as the intercept
of a regression line determines the “height” or level of the regression line, so does
the level determine the “height” of the state in state space modelling. The
important difference is that the “height” of a regression line is fixed (i.e. constant
over time), whereas the “height” of the state in the local level model is allowed to
change from time point to time point.

As the measurement equation in (3.6.1) shows, with this model the observed time
series is effectively decomposed into two components: the level component ;,

and the irregular component &;.

In definition (3.6.1) the assumptions of the local level model are given algebraically
by & ~NID(0,6Z) and & ~ NID(0,0%), where NID is a short-hand for Normally

and Independently Distributed. The observation and level disturbances ¢; and &;
are therefore all assumed to be mutually independent, and normally distributed

with zero means, and variances equal to 0'3 and O'E, respectively.

3.6.1.3. Dataset and research problem

In general, the dataset in an analysis with the local level model simply consists of
only one variable: a time series y; consisting of observations made sequentially
through time points t=1, ..., n.
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The remaining part of this section first discusses and illustrates what happens
when the level disturbances ¢&; in (3.6.1) are all fixed on zero, and then shows the

effect of letting the level vary over time. In both cases, the same time series will be
used as already presented in Section 1.2.2: the log of the annual number of road
fatalities as observed in Norway for the period 1970-2003. As already mentioned
in Section 1.2.2, the reason that the analysis is applied to the log of the fatalities is
that the numbers of fatalities themselves are non-negative count data, meaning
that the predicted values obtained with a time series analysis should also be non-
negative. This is achieved by analysing count data in their logarithm, and parallels
the use of the log link for count data in generalised linear models (see Section
3.3.2).

The research problem addressed with the local level model is how to obtain an
adequate description of the log of the observed annual number of road fatalities in
Norway in the period 1970-2003.

3.6.1.4. Model fit, diagnostics, and interpretation of results
If the level disturbances ¢&; in (3.6.2) are all fixed on zero (or, equivalently, the

level disturbance variance 0'4% is fixed on zero), then it is not very difficult to show
that the local level model simplifies into

Vi =M +er, £ ~ NID(0,0%) (3.6.2)

for t=1, ..., n. Therefore, in this special situation everything hinges on the value of
41, which is the value of the level right at the beginning of the time series. Once

this value is established, it remains constant throughout the remainder of the
series. In this situation the level is said to be treated deterministically. When the
level is allowed to vary over time, on the other hand, it is said to be treated
stochastically.

Generally, in state space models the value of the unobserved state at the
beginning of the time series (i.e., at t = 1) is unknown. There are two ways to deal
with this problem. Either the researcher provides the first value, based on
theoretical considerations, or some previous research, for example. Or this very
first value is estimated by the very same procedure that is used to fit the state
space model at hand. Since nothing is usually known about the initial value of the
state, the second approach is most often followed in practice, and will be used in
all further structural time series analyses discussed in the present report. In state
space modelling, the second approach is called diffuse initialisation.

It can be proved that the best estimates for x4 and 03 in model (3.6.2) are

_ 12
a=y=—2y (3.6.3)
S
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and

62 =52 = (3.6.4)

respectively. This extremely simple structural time series model thus actually
computes the mean and variance of the observed time series, and the best fitting
model for (3.6.2) is simply

A

5 =y+0, 7). (3.6.5)

Applying deterministic level model (3.6.2) to the log of the annual number of road
traffic fatalities in Norway for the period 1970 through 2003, yields

Y = 5.9323 + Et,s

with 62 =0.0485829. Thus the mean of this series is 5.9323, and its variance

equals 0.0485829. For these parameter estimates, the value of the log-likelihood
function that is maximised in state space methods equals 0.038701012.

The level for model (3.6.2) is displayed at the top of Figure 3.6.1, together with the
observed time series. As the figure illustrates, the deterministic level is indeed a
constant, which does not vary over time.

The bottom graph in Figure 3.6.1 contains a plot of the observation disturbances
&, corresponding to the deterministic level model. As the latter graph shows, the
disturbances ¢; of the deterministic level model are not independently distributed

at all, but follow a very systematic pattern. In fact, the irregular component in
Figure 3.6.1 simply consists of the deviations of the observed time series from its
mean, as already implied by (3.6.5).



3.6 State space models
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Figure 3.6.1: Deterministic level and irregular component for the log of Norwegian
fatalities.

Diagnostic tests for the assumptions of independence, homoscedasticity, and
normality of the residuals of the analysis are presented in Table 3.6.1. For the
exact definition, computation and interpretation of these diagnostic tests the reader
is referred to Section 3.3.1.

The value of the autocorrelation at lag 1, which is (1) = 0.588, exceeds the 95%
confidence limits of +2/-/n =+2/./34 =+0.343 for this time series. The high

amount of dependency between the residuals is also confirmed by the very large
value of the Q-test in Table 3.16. Since Q(10) = 29.259 and because this value is

much larger than the critical value of X(210-0.05) =16.92 (see Table 3.6.1), evaluated

as a whole the first ten autocorrelations significantly deviate from zero, meaning
that the null hypothesis of independence of the residuals must be rejected.

The two-tailed H-statistic in Table 3.6.1 shows that the variance of the first 11
elements of the residuals is unequal to the variance of the last 11 elements of the
residuals, because H(11) = 3.661 is larger than the critical value of
Fi11110.025) =3.28. This means that the assumption of homoscedasticity of the

residuals is also not satisfied in the present analysis.
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statistic value critical value assumption

satisfied

independence Q(10) 29.259 16.92 -
r(1) 0.588 0.34 -

r(4) 0.178 0.34 +

homoscedasticity H(11) 3.661 3.28 -
normality N 1.241 5.99 +

Table 3.6.1: Diagnostic tests for deterministic level model and log of Norwegian fatalities.

Finally, since N = 1.241 is smaller than the critical value of X(22_0‘05) =5.99 (see
Table 3.16), the null hypothesis of normally distributed residuals is not rejected.

Summarising, for the log of Norwegian fatalities series the residuals of the
deterministic level model neither satisfy the assumption of independence nor that
of homoscedasticity; only the least important assumption of normality is not
violated.

In order to compare the different state space models, throughout Section 3.6 the
Akaike Information Criterion (AIC) will be used:

AIC :l[— 2nlogLy +2(q+w)], (3.6.6)
n

where n is the number of observations in the time series, logL, is the value of the

diffuse log-likelihood function that is maximised in state space modelling, q is the
number of initial values in the state, and w is the total number of disturbance
variances estimated in the analysis. When comparing different models with the
AIC, the following rule holds: smaller values denote better fitting models than
larger ones. Compared with the more simple maximum log-likelihood criterion, a
very useful property of the AIC criterion is that it compensates for the number of
estimated parameters in a model, thus allowing for a fair comparison between
models involving different numbers of parameters.

In the deterministic level model (3.6.2) only one variance is estimated (052) and
one initial value (). Therefore, the Akaike information criterion for the analysis of

the log of the number of Norwegian fatalities with the deterministic level model
equals

AIC = 314[— 2(34)0.038701012) + 2(1+1)] = 0.040245.

Below, this value will be used for purposes of comparison with other state space
models.

On the other hand, when the level in (3.6.1) is allowed to vary over time the
following results are obtained. For the log of the annual number of Norwegian
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fatalities series, the maximum likelihood estimates of the disturbance variances
are 03 =0.00326838 and O‘é% =0.0047026, respectively. For these parameter
estimates, the value of the log-likelihood function equals 0.84686222.

6.25 i ‘ log fataliim in Norway stochastic level
6.00 - —
575
Lo
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:
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Figure 3.6.2: Stochastic level and irregular component for the log of Norwegian fatalities.

The local level for model (3.6.1) is illustrated at the top of Figure 3.6.2, together
with the observed time series. As can be seen in Figure 3.6.2, when the level is
allowed to vary over time, the observed time series is recovered quite well.

statistic Value critical value assumption

satisfied

independence Q(10) 6.228 16.92 +
r(1) -0.127 0.34 +

r(4) -0.105 0.34 +

homoscedasticity 1/H(11) 1.746 3.28 +
normality N 1.191 5.99 +

Table 3.6.2: Diagnostic tests for local level model and Norwegian fatalities

The irregular component of the local level model applied to the log of Norwegian
fatalities is displayed at the bottom of Figure 3.6.2. The diagnostic tests for these
observation disturbances are given in Table 3.6.2. In contrast with the
deterministic level model, the observation disturbances of the local level model
satisfy all of the distributional assumptions for this model: independence,
homoscedasticity, and normality.
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The disturbance variances of a state space model are often called hyper-
parameters. Since the local level model requires the estimation of two hyper-

parameters (032 and a?), and of one initial value (), the Akaike information
criterion for this analysis equals

AIC = 314 [-2(34)(0.8468622)+ 2(1+ 2)| = -1.51725.

which is a clear improvement upon the deterministic level model applied to these
data, since the AIC value for the latter model was 0.040245. It may be noted that
the addition of a slope component (see Section 3.6.2) to model (3.6.1) does not
improve the description of the time series, since this results in an AIC value of only
-1.28035.

A time varying level suffices to provide a good description of the development in
the log of the annual road traffic fatalities in Norway for the period 1970 through
2003, yielding residuals that satisfy all the model assumptions.

3.6.1.5. Conclusion on the technique

The analysis of a time series with the deterministic level model is identical to a
classical regression analysis with only an intercept in the regression equation. In
fact, it is simply a horizontal line through the mean value of a series. As the
analysis in this section showed, making the level component stochastic can be
sufficient to adequately describe a time series.
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3.6.2 Local linear trend model

This section discusses the effects of adding a new component to the local level
model, called the slope component.

3.6.2.1. Objective of the technique

The objective of the local linear trend model is to establish whether an observed
time series can be described with a trend consisting of a time-varying level and a
time-varying slope component.

3.6.2.2. Model definition and assumptions

The local linear trend model is obtained by adding a slope component v; to the
local level model, and is defined as follows:

Yt =Mt + &, & ~ NID(0,6%)
B = My +ve+&r, & ~ NID(0,c§) (36.7)
Vit =Ve+ 5t ~ NID(0.0%)

fort=1, ..., n. The local linear trend model therefore contains two state equations:

one for modelling the level, and one for modelling the slope. The slope v; in
(3.6.7) can be conceived of as the equivalent of the regression coefficient b in the
simple classical regression model of y; on time (see also Section 2.2.3.1). Just as
the value of b determines the angle of the regression line with the x-axis, so does
the slope determine the angle of the trend with the x-axis in state space modelling.
Again, the important difference is that the regression coefficient or weight b is fixed
in classical regression, whereas the slope in (3.6.7) is allowed to change over
time.

The assumptions of the local linear trend model (3.6.7) are that the observation,
level, and slope disturbances &;, &, and ¢, are all mutually independent, and
normally distributed with zero means, and variances equal to 062, o'g, and a?,
respectively.

3.6.2.3. Dataset and research problem

In general, the dataset in an analysis with the local linear trend model again simply
consists of only one variable: a time series y; consisting of observations made
sequentially through time points t=1, ..., n.

The remaining part of this section will first discuss and illustrate the effect of fixing
all state disturbances ¢&; and ¢; in (3.6.7) on zero, and then present the effect of

allowing the level and slope components to vary over time. In both cases, the
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model will be applied to the log of the number of fatalities as observed in Finland
for the period 1970 through 20083.

The research problem addressed with this model is how to obtain an appropriate
description of the log of the observed number of fatalities in Finland during the
period 1970-2003.

3.6.2.4. Model fit, diagnostics, and interpretation of results

Fixing all state disturbances ¢&; and ¢; in (3.6.7) on zero, that is, not allowing the

level and slope component to vary over time, it is not too difficult to verify that the
linear trend model simplifies into

Vi =py+vi(t-1)+g;, &¢ ~ NID(0,02) (3.6.8)

fort=1, ..., n, where the independent or predictor variable (t-1) =0, 1, ..., n-1is
time itself, and w4 and v¢ are the initial values of the level and the slope
components, respectively.

Applying the deterministic level and slope model (3.6.8) to the log of the logarithm
of the annual number of road traffic fatalities in Finland for the period 1970 through
20083, it is found that 4, =6.8717, v, =-0.028733, and therefore

V¢ =6.8717-0.028733(t - 1) + &

with 62 =0.0213603. For these maximum likelihood estimates, the value of the

log-likelihood function is 0.3036367. The latter regression equation can also be
written as

Y =6.8717-0.028733¢t + 0.028733 + £; = 6.9004 - 0.028733t + &; .

This is exactly the same result as a classical linear regression of the log of the
Finnish fatalities on time t = 1, ..., n. Thus, treating the level and the slope
components of the local linear trend model deterministically is the same as
performing a linear regression of the dependent variable on time.
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Figure 3.6.3: Deterministic trend (top), deterministic slope (middle), and irregular
component for the log of the number of Finnish fatalities.

The best fitting regression line obtained with the deterministic linear trend model is
shown at the top of Figure 3.6.3, while the bottom of Figure 3.6.3 contains the
graph of the residuals of this classical regression analysis. Just a visual inspection
of these residuals already reveals that they are not independent of one another.

statistic value critical value assumption

satisfied

independence Q(10) 73.199 16.92 -
r(1) 0.767 0.34 -

r(4) 0.271 0.34 +

homoscedasticity 1/H(11) 1.783 3.28 +
normality N 2.226 5.99 +

Table 3.6.3: Diagnostic tests of residuals deterministic level and slope model for log
Finnish fatalities.

This is confirmed by the results of the diagnostic tests for the residuals given in
Table 3.6.3. The tests for homoscedasticity and normality are satisfactory, but the
most important assumption of independence is clearly violated. The value of the
AIC for this analysis is

AIC = 314 [-2(34)(0.3036367 )+ 2(2 + 1)] = -0.430803.
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Allowing both the level and the slope to vary over time in model (3.6.7), on the
other hand, at convergence the value of the log-likelihood function equals
0.7864746. The value of the AIC for this analysis is therefore

AIC = 314 [ 2(34)(0.7864746) + 2(2 + 3)] = -1.27883. (3.6.9)

The maximum likelihood estimates of the variances corresponding to the irregular,
level, and slope components are 03 =0.00320083, o-é% =9.69606E 26, and

62 =0.00153314, respectively.

Since the variance of the level disturbances a? is, for all practical purposes, equal

to zero, the analysis is repeated with a deterministic level component, yielding the
following results.

At convergence the value of the log-likelihood function equals 0.7864746. The
maximum likelihood estimates of the variances of the observation and slope

disturbances are ¢7 =0.00320083, and 67 =0.00153314, respectively. The

maximum likelihood estimates of the values of the level and the slope right at the
start of the series are f; =7.0133and v; =0.0068482.

The trend (consisting of a deterministic level and a stochastic slope) of this
analysis is displayed at the top of Figure 3.6.4, while the stochastic slope is shown
separately in the middle of the figure. Since the time varying slope component in
Figure 3.6.4 models the rate of change in the series, it can be interpreted as
follows. When the slope component is positive, the trend in the series is
increasing. Thus, log of the number of fatalities in Finland was increasing in the
years 1970, 1982, 1984 through 1988, and in 1998 (see Figure 3.6.4). On the
other hand, the trend is decreasing when the slope component is negative. The
log of the number of fatalities in Finland was therefore decreasing in the remaining
years of the series.
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Figure 3.6.4: Trend of deterministic level and stochastic slope model for the log of Finnish
fatalities (top), stochastic slope component (middle), and irregular component (bottom).

Moreover, when the slope is positive and increasing then the increase becomes
more and more pronounced, while the increase becomes less and less
pronounced (i.e., levels off) when the slope is positive but decreasing. Conversely,
when the slope is negative and decreasing then the decrease becomes more and
more pronounced, while the decrease levels off when the slope is negative but
increasing.

The irregular component of this analysis is shown at the bottom of Figure 3.6.4,
and the diagnostic tests for the residuals of the analysis are given in Table 3.6.4.
As the table shows, the assumptions of independence, homoscedasticity, and
normality are all satisfied, indicating that the deterministic level and stochastic
slope model yields an appropriate description of the log of the annual traffic
fatalities in Finland.

statistic value critical value assumption

satisfied

independence Q(10) 7.044 16.92 +
r(1) -0.028 0.34 +

r(4) -0.094 0.34 +

homoscedasticity 1/H(11) 1.348 3.28 +
normality N 0.644 5.99 +

Table 3.6.4: Diagnostic tests for deterministic level and stochastic slope model, and log
Finnish fatalities.
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The Akaike information criterion for the deterministic level and stochastic slope
model equals

AIC = 314 [- 2(34)(0.7864746) + 2(2 + 2)| = -1.33766.

Thus, the fit of this model is slightly better than the fit of a model with stochastic
level and stochastic slope. Since the log-likelihood values are identical for the two
models, the improved fit of the second model can be completely attributed to its
greater parsimony. The model with a deterministic level and stochastic slope is
also called the smooth trend model, reflecting the fact that the trend of such a
model is relatively smooth compared to a trend with a level disturbance variance
unequal to zero.

Concluding, a smooth trend model with a constant level and a time-varying slope
component yields a good description of the log of the annual road traffic fatalities
in Finland for the period 1970 through 2003.

3.6.2.5. Conclusion on the technique

As the present section illustrates, the deterministic linear trend model actually
performs a classical linear regression analysis of the dependent variable on the
predictor variable time. This is an important and very useful result. By way of the
Akaike information criterion, and of the residual tests for independence,
homoscedasticity, and normality, this allows for a straightforward, fair and
quantitative assessment of the relative merits of state space methods and
classical regression models when it comes to the analysis of time series data. The
reverse is also true: the state space models discussed in Section 3.6 are
regression models in which the parameters (intercept and regression
coefficient(s)) are allowed to vary over time.

In the following section, the effects of adding yet another component to the state
are discussed: the seasonal.
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3.6.3 Local linear trend plus seasonal model

Whenever a time series consists of hourly, daily, monthly, or quarterly
observations with respective periodicity of 24 (hours), 7 (days), 12 (months), or 4
(quarters), one should always be on the alert for a special type of recurring
pattern, called a seasonal. As an example, consider the plot of the log of the
monthly number of drivers killed or seriously injured (KSI) in the United Kingdom
(UK) for the period January 1969 through December 1984 in Figure 3.6.5. In the
figure, vertical lines have been added through each year in the observed time
series.

79
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Figure 3.6.5: Log of monthly number of UK drivers KSI with time lines for years.

Inspecting the monthly development for each year in Figure 3.6.5, the following
regularity emerges: in every year in this series more drivers are killed or seriously
injured at the end of the year than during the rest of the year.

3.6.3.1. Objective of the technique

The objective of the local linear trend and seasonal model is to establish whether
an observed time series containing a seasonal pattern can be described with a
trend consisting of a time-varying level and a time-varying slope component, and a
time-varying seasonal component.

3.6.3.2. Model definition and assumptions
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In state space methods, a seasonal can be modelled by adding it either to the
local level model or to the local linear trend model. Temporarily assuming quarterly
data, adding a seasonal to the local linear trend model takes the following form:

i = He + Vet Er g ~ NID(0,07)
2

Hep) = My +V + &4, & ~ NID(0,0%)

Viel =Vi+ & S ~NID(O,G§)

(3.6.10)
Nit+1 =Nt~ V2t~ V3 T, w; ~ NID(O,O'CZ,))

V2,641 =Vt

Vi, t+1 =725

fort=1, ..., n, where y,;, denotes the seasonal component. The disturbances «;
in (3.6.10) allow the seasonal to change over time.

In contrast with the level and slope components, which each only require one state
equation, the modelling of a seasonal generally requires (s-1) state equations,
where s is the periodicity of the seasonal. For quarterly data (where s = 4), for
example, three state equations are needed, as is shown in (3.6.10). Irrespective of
its periodicity, the seasonal always satisfies

S
12171,1' =0, (3.6.11)
j:

thus ensuring that the seasonal is not confounded with the other components of
the model. The type of seasonal that is modelled in (3.6.10) is called a dummy
seasonal. There are other ways in which the seasonal component can be
specified, one of them being the trigonometric seasonal. For the latter and other
specifications of the seasonal the reader is referred to Durbin and Koopman
(2001), as these specifications are beyond the scope of the present report.

The assumptions of the local linear trend and seasonal model (3.6.10) are that the
observation, level, slope, and seasonal disturbances ¢;, &, ¢;, and w; are all

mutually independent, and normally distributed with zero means, and variances

equal to 0'82, 0'4%, af, and 0'02,, respectively.

3.6.3.3. Dataset and research problem

In general, the dataset in an analysis with the local linear trend plus seasonal
model consists of only one variable: a time series y; consisting of observations
made sequentially through time points t=1, ..., n.
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As before, the remaining part of this section will first discuss and illustrate the
effect of fixing all state disturbances &;, ¢;, and @; in (3.6.10) on zero, and then

present the effect of letting the level, slope, and seasonal components vary over
time. In both cases, the model will be applied to the log of the monthly number of
drivers killed or seriously injured (KSI) in the United Kingdom (UK) for the period
January 1969 through December 1984, as presented in Figure 3.6.5.

The research problem addressed in this section is how to obtain an appropriate
description of an observed time series with a seasonal pattern, i.e. the log of the
monthly number of drivers KSI in the UK, January 1969 — December 1984.

3.6.3.4. Model fit, diagnostics, and interpretation of results

When the state disturbances ¢, ¢;, and «; in (3.6.10) are all fixed on zero, the
model reduces to the following deterministic model:

s—1
Vo=l AV E-D = 3 ¥, €, & = NID0,02). (3.6.12)

i=1

Applying the latter model to the series shown in Figure 3.24 (with eleven instead of
four state equations for the seasonal, since the UK series consists of monthly
instead of quarterly data) the following results are obtained. The maximum

likelihood estimate of 0'3 equals 0.00981585, and the value of the log-likelihood

function is 0.69830186. The values of 4, and v, are 7.5540 and -0.00155,
respectively. Thus, for these data the following holds:

s—1
¢ =7.5540-0.00155(t—1)= > 741 +¢&¢,

i=1
which can also be written as
s-1
y+ =7.5556 -0.00155¢ — Z Yit-1+ &
i=1

The estimates for the eleven initial values of the dummy seasonal are not
mentioned here because these are not very informative in the present context.
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Figure 3.6.6: Deterministic trend (top left), deterministic slope (top right), deterministic
seasonal (bottom left), and irregular component (bottom right) of deterministic trend and
seasonal model for log UK drivers KSI.

The deterministic trend (which is the part equal to 7.5556-0.00155¢ in the just
mentioned equation) of the analysis is shown at the top left of Figure 3.6.6, which
also contains plots of the deterministic slope (top right), the deterministic seasonal
(bottom left), and the irregular component (bottom right). The diagnostic tests in
Table 3.6.5 of the irregular component in Figure 3.6.6 indicate that the residuals of
this completely deterministic model neither satisfy the assumption of
independence nor that of normality.

statistic value critical value assumption

satisfied

independence Q(15) 180.100 25.00 -
r(1) 0.504 0.14 -

r(12) 0.158 0.14 -

homoscedasticity 1/H(60) 1.008 1.67 +
normality N 7.655 5.99 -

Table 3.6.5: Diagnostic tests for deterministic trend and seasonal model for log UK drivers
KSI.

Since only one hyper-parameter was estimated (ag), and a total of thirteen initial
values for the state (i.e., one for the level, one for the slope, and eleven for the
seasonal component), the Akaike information criterion for the completely
deterministic trend and seasonal model equals
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AIC = 1;2 [-2(192)(0.69830186)+2(13 + 1) = -1.25077.

In the previous sections, it was found that deterministic state space models are
identical to some form of classical regression analysis. This suggests that the
deterministic level, slope, and seasonal model must also have its counterpart in
classical regression analysis. This is indeed the case. Results identical to those of
the deterministic level, slope, and seasonal model presented above are obtained
by performing the following classical multiple regression analysis.

Eleven dummy variables are constructed as follows. The first dummy variable is
coded eleven (i.e., s-1) whenever an observation in the time series falls in the
month of January, and minus one for all the other months of the year. The second
dummy variable is coded eleven whenever an observation in the time series falls
in the month of February and minus one elsewhere. And so on, until the eleventh
and last dummy variable, which is coded eleven for the month of November and
minus one elsewhere. A classical multiple regression analysis with the log of UK
drivers KSI as dependent variable, and time t and these eleven dummy variables
as independent variables yields the same results as those in Figure 3.6.6: the sum
of the eleven dummy variables weighted by their respective regression coefficients
is identical to the seasonal shown at the bottom left of Figure 3.6.6. The estimates
for the intercept and for the regression coefficient for the independent variable time
t are 7.5556 and —0.00155, respectively, meaning that the linear trend is identical
to the linear trend in the top left of the figure. The residuals, finally, are therefore
identical to those shown at the bottom right of Figure 3.6.6.

Allowing the level, slope and seasonal components in (3.6.10) all to vary over
time, on the other hand, the following results are obtained. The algorithm
converges to a log-likelihood value of 0.95650011, with disturbance variances

07 =0.00346783, oF =0.00100094, 67 =6.74681E52, and oy, =7.28648E 025.

The values of g2, and v; are 7.4133 and -0.00090532, respectively. Since the

analysis requires the estimation of four hyper-parameters (i.e., disturbance
variances), the Akaike information criterion now equals

AIC = 1;2 [~ 2(192)(0.95650011)+2(13 + 4)] = -1.73592,

which is a big improvement upon the deterministic trend and seasonal model
discussed above.

Since the slope and seasonal disturbance variances ag and 002, are found to be

extremely small in the last analysis, these two components probably may as well
be treated deterministically. This is confirmed by performing an analysis where the
slope and seasonal disturbances ¢; and @; in (3.6.10) are all fixed on zero. At
convergence the value of the log-likelihood function is still 0.95650011, as before,
while the maximum likelihood estimates of the disturbance variances are now
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6z =0.00346757 and ¢ =0.0010011. The values of 2, and v; are now 7.4133

and -0.00090531, respectively. For this model, the Akaike information criterion
equals

AIC = 1;2 [~ 2(192)(0.95650011)+2(13 + 2)| = -1.75675,

which is a slight improvement upon the previous model. Since the values of the
log-likelihood functions are for the two models are identical, this slight
improvement can completely be attributed to the greater parsimony of the last
model.

Finally, since the slope component is not only found to be best treated
deterministically, but also obtains the fixed very small value of -0.00090531, it is
allowed to consider completely dropping the slope component from the structural
time series analysis of the log of the UK drivers KSI series. This yields the
following results. Treating the level component stochastically and the dummy
seasonal component deterministically, at convergence the value of the log-
likelihood function equals 0.98299654. The value of g is 7.4118, and the

maximum likelihood estimate of the variance of the irregular component is
0'3 =0.00351385, and that of the level component equals 0‘% =0.000945723 . This
implies that the Akaike information criterion now equals

AIC = 1;2 [~ 2(192)(0.98299654 ) + 2(12 + 2)] = -1.82016.

The latter value of the AIC for the local level and deterministic dummy seasonal
model is the smallest of all the seasonal models discussed so far, which is the
reason why this model can be considered as the best model for describing the log
of the UK drivers KSI series.

The three components of the latter analysis are all displayed in Figure 3.6.7.
Moreover, the figure also contains a blown-up version of the dummy seasonal for
the first year of the series, clearly indicating that April is the safest month for
drivers in the UK, while December is the most dangerous month. Since the
seasonal was treated deterministically in this analysis, this pattern is identical for
all the other years in the series.

Finally, the diagnostic tests in Table 3.6.6 indicate that the residuals of this best
fitting model satisfy all of the assumptions of the model, although the test for
normality seems somewhat close to the critical value.

Concluding, a stochastic level and deterministic seasonal model yields the best
description of the log of the monthly number of UK drivers killed or seriously
injured for the period 1969 through 1984.
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Figure 3.6.7: Stochastic level (top left), deterministic seasonal (top right), the seasonal for
1969 (bottom left), and irregular component (bottom right) for stochastic level and
deterministic seasonal analysis of log of UK drivers KSI.

statistic value critical value assumption

satisfied

independence Q(15) 14.370 23.68 +
r(1) 0.040 0.14 +

r(12) 0.033 0.14 +

homoscedasticity H(60) 1.093 1.67 +
normality N 5.157 5.99 +

Table 3.6.6: Diagnostic tests for stochastic level and deterministic dummy seasonal
analysis of log of UK drivers KSI.

3.6.3.5. Conclusion on the technique

The seasonal component in state space models facilitates the analysis of within-
year patterns of quarterly, monthly, weekly, or even daily data.

So far, state components have been discussed that are useful for obtaining an
adequate description of a time series. In the next two sections those components
are presented that can be used to also obtain explanations for the observed
developments in a time series.
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3.6.4 Intervention variables

Apart from the diagnostic tools discussed in the previous sections for testing the
assumptions of independence, homoscedasticity, and normality of the residuals in
time series analysis, a second important diagnostic tool for determining the
appropriateness of a model is provided by the inspection of its so-called auxiliary
residuals. These auxiliary residuals are standardised versions of the observation
disturbances &; and of the state disturbances ¢&;, ¢;, @, etc. Inspection of the

standardised observation disturbances allows for the detection of possible outlier
observations, while the inspection of the standardised state disturbances makes it
possible to detect structural breaks in the underlying development of a time series.

For the stochastic level and deterministic dummy seasonal model applied to the
log of the UK drivers KSI series (see Section 3.6.3) for example, the standardised
level disturbances of the analysis are presented at the top of Figure 3.6.7, while
the standardised observation disturbances are shown at the bottom of the same
figure.

Each of the auxiliary residuals at the top of Figure 3.6.7 can be considered as a t-
test for the null hypothesis that there was no structural break in the level of the
observed time series. The usual 95% confidence limits of £1.96 for a two-tailed t-
test are shown in the figure as two parallel horizontal lines. The auxiliary residuals
exceed these limits at five time points, which is less than the n/20 = 192/20 = 10
that would be expected purely based on chance for this series. Still, the value of
the residual for January 1983 particularly stands out as being very extreme.

Similarly, each of the auxiliary residuals at the bottom of Figure 3.6.8 can be
considered as a ttest for the null hypothesis that the corresponding observation is
not an outlier. Only seven out of the 192 observations exceed the 95% confidence
limits of £1.96, which is less than the ten that would be expected according to
chance. Since, moreover, none of these are very extreme the conclusion is that
the series does not contain outlier observations.

Summarising, inspection of the auxiliary residuals of the stochastic level and
deterministic seasonal model applied to the log of the UK drivers KSI series
suggests that there was a shift in the level in January 1983. This coincides with an
actual event in the United Kingdom, which was the obligation from February 1983
onwards for motor vehicle drivers and front seat passengers to wear a seat belt.
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Figure 3.6.8: Auxiliary residuals for the stochastic level and deterministic seasonal model
applied to the log of the UK drivers KSI series.

The effect of the introduction of this seat belt law can be investigated by adding an
intervention variable to the model at hand. There are several ways in which an
intervention can affect the development of a time series. One possible effect is that
of a level shift, where the level of the time series suddenly changes and this level
change continues after the intervention. A second possible effect is that of a shift
in the slope component, where the value of the slope shows a continuous change
after the intervention. A third possible effect is that of a pulse, where the value of a
state component suddenly changes at the moment of the intervention, but then
returns back to its previous value, in which case the effect is only temporary.

Since the auxiliary residuals in Figure 3.6.8 suggest a break in the level of the log
of the UK drivers KSI, a level shift intervention variable will be added to the level
and seasonal model discussed in the previous section.

3.6.4.1. Objective of the technique

The objective of the local level and seasonal model with an intervention variable is
to establish the type, size and significance of the effect of the intervention variable
on the development of an observed time series containing a seasonal pattern.

3.6.4.2. Model definition and assumptions

The level, the seasonal, and the level shift intervention variable for the introduction
of the seat belt law in February 1983 are combined into the following state space
model:
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Yt =M+ + AW + &, g ~ NID(0,6%)
M1 =Mt +St, & ~ NID(0,0%)

Pite1 ==t~ Y2t~ Vet + @, @~ NID(O,c5)

(3.6.13)
2,t+1 = Nt
V3,t41 =72t
A1 =4+ Pt pt ~ NID(0,63)
for t =1, ..., n, where w; is a dummy variable consisting of zeroes at all time

points before the introduction of the seat belt law in February 1983, and ones at
time points at and after the introduction in February 1983. To keep the number of
state equations low, model (3.6.13) is presented as if dealing with quarterly data.
In reality, however, there are thirteen state equations involved: one for the level,
one for the regression coefficient 4, of the intervention variable, and eleven for the

seasonal. It may be noted that, although it would be technically possible to treat
the regression component in the last state equation of (3.6.13) stochastically, in
practice this is never done when dealing with intervention variables.

The assumptions of the local level and seasonal model (3.6.13) are that the
observation, level, seasonal, and intervention disturbances &;, &, @;, and p; are

all mutually independent, and normally distributed with zero means, and variances

equal to 062, O'g, 002,, and 012,, respectively.

3.6.4.3. Dataset and research problem

In general, the dataset in a state space analysis with one intervention contains two
variables: a dependent variable y: which is a time series as before, and an
independent intervention variable which is denoted by w;.

The remaining part of this section will first discuss and illustrate the effect of fixing
all state disturbances &;, @, and p; in (3.51) on zero and then present the effect

of letting the level component vary over time. In both cases, the local linear trend
plus seasonal model from Section 3.6.3 extended with one intervention, i.e. the
introduction of the seat belt law, will be applied to the log of the monthly number of
drivers killed or seriously injured (KSl) in the United Kingdom (UK) for the period
January 1969 through December 1984 (see Figure 3.6.5).

The research problem addressed in this section is how to assess the effect of the
introduction of the seat belt law in February 1983 on the log of the number of
drivers KSI in the UK, January 1969 — December 1984.
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3.6.4.4. Model fit, diagnostics, and interpretation of results

Treating all the state components in (3.6.13) deterministically, it is not very difficult
to prove that the model simplifies into the following classical regression model:

s—1
Yt=HM— ,21 Vit +Mwe+er, & ~NID(0,62). (3.6.14)
i=

Estimating model (3.6.14) by fixing all the state disturbances in (3.6.13) on zero,
the value of the log-likelihood function equals 0.71553091. The optimal values of
uy and 4y are 7.4373 and -0.26075, respectively, and the maximum likelihood

estimate of the irregular variance is 0'3 =0.0100188. The best fitting classical
regression model can therefore be written as

1
Yt =74373-"% 7;4_1-0.26075w; +&;.
i=1 "

The effect of the intervention variable on the deterministic level of the model is
clearly seen in the top graph in Figure 3.6.9. The level which is equal to 7.4373
until January 1983 suddenly shifts down to the value of 7.4373 - 0.26075 =
7.17655 in February 1983. Since the dependent variable is analysed in its
logarithm, the following formula must be used to re-express the level change in a
percentage change in the absolute numbers of drivers KSI:

oM _1=¢7026075 _1__0 2095

meaning that -according to this model- the introduction of the seat belt law resulted
in a change of (100)(-0.2295) = -23% in the number of drivers KSI.
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Figure 3.6.9: Deterministic level plus intervention variable (top), deterministic seasonal
(middle), and irregular component (bottom) for the log of the UK drivers KSI series .

The value of the Akaike information criterion for this model equals

AIC = 1;2 [-2(192)(0.71553091) + 2(13 + 1)] = -1.28523.

The latter value of the AIC indicates that the deterministic level and dummy
seasonal model with intervention variable yields a much better fit than the
deterministic level and dummy seasonal model without intervention variable, which
results in an AIC value of only -0.792879.

statistic value critical value assumption

satisfied

independence Q(15) 524.110 23.68 -
r(1) 0.604 0.14 -

r(12) 0.402 0.14 -

homoscedasticity 1/H(60) 1.475 1.67 +
normality N 3.604 5.99 +

Table 3.6.7: Diagnostic tests for deterministic level and seasonal analysis of log of UK
drivers KSI, including intervention variable.

The standard ttest for establishing whether the regression coefficient
A =-0.26075 deviates from zero yields
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. 0.2607515908
0.02227747268

=-11.70472049, (3.6.15)

which is very significant. In order to investigate whether this test is reliable, it must
be checked whether the model satisfies the assumptions of independence,
homoscedasticity and normality of the residuals. However, as Table 3.6.7
indicates, the residuals do not satisfy the most important assumption of
independence, meaning that the value of the just mentioned t-test (and especially
the value of the standard error in the denominator) can not be trusted, and is
probably much too large (since the first autocorrelation r(1) is positive).

If the level component in model (3.6.13) is allowed to vary over time, on the other
hand, at convergence the value of the log-likelihood function equals 1.0168174.
The maximum likelihood estimates of g and A4, are 7.4108 and -0.23981,

respectively, and the maximum likelihood estimates of the irregular and level
variances are 0'3 =0.00378397 and 0'4% =0.000473516 , respectively.

The estimated effect of the seat belt law re-expressed in the percentage change in
the absolute numbers of drivers KSI is now

oM Z1=7 023981 _1_ 02132,

meaning that -according to this model- the introduction of the seat belt law resulted
in a change of (100)(-0.2132) = -21.3% in the number of UK drivers KSI.

The Akaike information criterion for this model equals

AIC = 1;2[— 2(192)1.0168174)+2(13 +2)| = -1.87738.

The latter value of the AIC for the local level and deterministic dummy seasonal
model including a level shift intervention for the introduction of the seat belt law is
smaller than that for the same model without intervention variable which is
-1.82016 (see the previous section). This means that the intervention variable for
the seat belt law improves the fit.

Whether the contribution of the intervention variable is significant can again be
tested with the standard t-test for the regression coefficient 4; =-0.23981, yielding

_ -0.239806756 _
0.05307021883

-4.5187. (3.6.16)

The value of the latter ttest is still very significant, but in absolute terms it is much
smaller than the value of the t-test (3.6.15) in the previous completely deterministic
model.
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Figure 3.6.10: Stochastic level plus intervention variable (top), deterministic seasonal
(middle), and irregular component (bottom) for the log of the UK drivers KSI series.

The stochastic level plus intervention variable is shown in Figure 3.6.10, together
with the deterministic dummy seasonal, and the irregular component. The
diagnostic tests for the model assumptions are given in Table 3.6.8. Since all three
assumptions are satisfied in the present analysis, now it is assured that the t-test
in (3.54) is a reliable test.

statistic value critical value assumption

satisfied

Independence Q(15) 17.928 23.68 +
r(1) 0.080 0.14 +

r(12) 0.085 0.14 +

homoscedasticity 1/H(60) 1.639 1.67 +
normality N 2.928 5.99 +

Table 3.6.8: Diagnostic tests for stochastic level and dummy seasonal analysis of log of
UK drivers KSI, including intervention variable.

As Figure 3.6.8, Figure 3.6.11 plots the auxiliary residuals of the local level and
deterministic seasonal model applied to the log of the UK drivers KSI, but now
including the intervention variable for the introduction of the seat belt law. It is
interesting to note that the large extreme value that was previously found in
January 1983 for the standardised level disturbances (see Figure 3.6.8) has now
completely disappeared. This is the effect of adding the intervention variable to the
model.
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Figure 3.6.11: Auxiliary residuals for the stochastic level and deterministic seasonal model
applied to the log of the UK drivers KSI series, including a level shift intervention variable
for the introduction of the seat belt law.

Concluding, the fit of the stochastic level and deterministic seasonal model that
yields the best description of the log of the monthly number of UK drivers killed or
seriously injured for the period 1969 through 1984 can significantly be improved by
adding a level shift intervention variable to the model, where the level shift is
applied to February 1983 in the series, the month that the seat belt law for drivers
and front seat passengers was introduced in the UK. Moreover, the analysis
suggests that the introduction of the seat belt law resulted in a 21.3% reduction in
the number of UK drivers KSI.

Finally, when comparing the value of the t-test for the regression coefficient of the
intervention variable in a completely deterministic (i.e. classical regression) model
with that in the stochastic level model, it can be seen that the former test is
seriously flawed due to the remaining dependencies in the residuals of the
classical regression analysis. In fact, compared to the t-test of the stochastic
model the absolute value of the test in the classical regression analysis is 11.7/4.5
= 2.6 times too large.

3.6.4.5. Conclusion on the technique

In state space modelling, the auxiliary residuals are a helpful tool in detecting
outlier observations and structural breaks in the level, slope, and seasonal
components. As this section demonstrated, a structural break in the level
component is an indication of an intervention which suddenly and radically
changed the level and, as such, it can be removed by including an intervention
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variable. Structural breaks in the slope and seasonal components and outlier
observations can be dealt with in a similar way.

Furthermore, the analysis results in this section show that the ttest for the
regression coefficient in a classical linear regression model can be seriously
flawed due to dependencies in the residuals.
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3.6.5 Explanatory variables

3.6.5.1. Objective of the technique

The objective of the local level and seasonal model with an intervention variable
and a continuous explanatory variable is to establish the type, size and
significance of the effects of both the intervention variable and the explanatory
variable on the development of an observed time series containing a seasonal
pattern.

3.6.5.2. Model definition and assumptions

Just like intervention variables, explanatory variables can simply be added to the
measurement equation of any of the state space models discussed so far. If they
are added to the local level and seasonal model with an intervention variable, for
example, then the measurement equation is:

K
Ye=Ht+ N+ LW+ _21,3th11 +et, (3.6.17)
j:

where the x; are k continuous explanatory variables (j= 1, ..., k), and the ,Bj are
unknown regression weights or coefficients.

We will illustrate the effect of explanatory variables by adding one continuous
explanatory variable to the time series analysis of the log of the UK drivers KSI
series shown in Figure 3.24. This continuous variable consists of the log of the
monthly prices of petrol in the UK in the period 1969 through 1984. The idea is that
higher petrol prices may have induced UK car drivers to circulate less in traffic,
thus reducing the number of traffic accidents. The model includes the same
intervention variable that was used in the previous section, i.e. the introduction of
the seat belt law in February 1983 in the United Kingdom.

The level, the dummy seasonal, the introduction of the seat belt law, and the log of
petrol price are combined into the following state space model:

Vi =My + N+ Awr + Brx + €4, & ~ NID(O,dg)

Hist =ty +&r, & ~ NID(0,0%)

Mo+l ==V = V2,0 = V3, + s @, ~ NID(0,0)

V2,041 =Nyt > (3.6.18)
V3,041 = V2,15
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A1 =X +pr, p; ~ NID(0,67)
Biv1 =0 +1;, 7, ~ NID(O0, 0'12-)
for t=1, ..., n, where w; again contains zeroes at all time points before February

1983, and ones at time points at and after February 1983, and x; is the
continuous predictor variable “log petrol price”. Again, the model (3.6.18) is
presented as if dealing with quarterly data. In reality, however, there are fourteen
state equations involved: one for the level, two for the regression coefficients 4;
and p;of the intervention and explanatory variables w; and x;, respectively, and
eleven for the seasonal. It may be noted that state space methods allow for a
stochastic treatment of the regression component in the last state equation of

(3.6.18), thus allowing the regression coefficient to vary over time. Here, however,
only deterministic regression components are considered.

The assumptions of model (3.6.18) are that the observation, level, seasonal,
intervention, and explanatory disturbances ¢;, &, @y, pt, and 7; are all mutually

independent, and normally distributed with zero means, and variances equal to

0'3, ag, 0'5,, 0'/2,, and 0'72, respectively.

3.6.5.3. Dataset and research problem

The dataset in a state space analysis with intervention and explanatory variables
consists of the dependent variable y; which is a time series as before, an
independent intervention variable w;, and the k continuous independent variables

X which are all time series as well.

The remaining part of this section will first discuss and illustrate the effect of fixing
all state disturbances ¢&;, @, pt, and 7; in (3.6.18) on zero and then present the
effect of letting the level component vary over time. In both cases, the local linear
trend with seasonal model with the added seat belt law intervention (see Section
3.6.4) and extended with the explanatory variable log petrol price will be applied to
the log UK drivers KSI dataset from Figure 3.6.5.

The research problem addressed in the present section is to investigate the effects
of a continuous explanatory variable, i.e. log petrol price on the development of a
time series, i.e. the log of the number of drivers KSI in the UK, January 1969 —
December 1984 .

3.6.5.4. Model fit, diagnostics, and interpretation of results

Treating all the state components deterministically, the value of the log-likelihood
function equals 0.84903819. The maximum likelihood estimates of x4, 41, and p;

are 6.4016, -0.19714, and -0.45213, respectively, and the maximum likelihood
estimate of the irregular variance is 0'3 =0.00740223.
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The model therefore reduces to a classical regression model with regression
equation

1
Yt =6.4016 =S 7, 1_1 —0.19714w, —0.45213 x; + £;.
i=1

9.50 - - —
L ‘ — log UK drivers KSI ‘A deterministic level + beta*log(PETROL PRICE) + lambda*(SEAT BELT LAW)‘
925
900 {7 W
875+
I I . . . . I . . . . I . . . . I
1970 1975 1980 1985
0.2 ; ‘ — ﬂetermirﬁstic seaﬁonal‘
0.1+
0.0
. I . . . . I . . . . I . . . . I
1970 1975 1980 1985
021
0.1+~
0.0
-0.1 -
I . . . . I . . . . I . . . . I
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Figure 3.6.12: Deterministic level plus intervention and explanatory variable (top),
deterministic seasonal (middle), and irregular component (bottom) for the log of the UK
drivers KSI series .

The plot of the deterministic level plus intervention and explanatory variables is
shown in Figure 3.6.12, together with the fixed dummy seasonal and the irregular
component.

Since exp(-0.19714) — 1 = -0.1789, according to the present analysis the seat belt
law resulted in a 17.9% reduction in the number of drivers KSI. Since the variables
“number of drivers KSI” and “petrol price” are both analysed in their logarithms, the
regression coefficient £ may be interpreted as a so-called elasticity, meaning that
a 1% change in the petrol price is associated with a f;% change in the number of
drivers KSI. If the present analysis were correct, therefore, the conclusion would
be that a 1% raise in the price of petrol was associated with a 0.45% reduction
(since B, is negative) in the number of drivers KSI. A nice property of analysing
both the number of drivers KSI and the price of petrol in their logarithms is that the
value of the elasticity f; remains unchanged when the number of drivers KSI is
multiplied with a positive number and/or when the price of petrol is multiplied with
a positive number.
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The value of the Akaike information criterion for this model equals

AIC = 1;2[— 2(192)(0.84903819)+2(14 +1)] = -1.54183,

which is a clear improvement upon the completely deterministic model without “log
petrol price”.

The standard ttest for establishing whether the regression coefficient
A1 =-0.19714 for the intervention variable deviates from zero yields

_ —0.1971394716 _ o o io0oannn
0.02072756003

which is very significant. The standard ttest for establishing whether the
regression coefficient 3, =-0.45213 for the continuous variable “log petrol price”
deviates from zero yields

fo —-0.452130127

= =-8.017046017,
0.05639609976

which is also very significant.
statistic value critical value assumption
satisfied
Independence Q(15) 147.020 23.68 -
R(1) 0.426 0.14 -
r(12) 0.198 0.14 -
homoscedasticity 1/H(59) 1.110 1.67 +
Normality N 0.560 5.99 +

Table 3.6.9: Diagnostic tests for deterministic level and dummy seasonal analysis of log of
UK drivers KSI, including variables seat belt law and log petrol price.

However, before drawing any conclusions it must be checked whether the
residuals satisfy the model assumptions. As Table 3.6.9 indicates, the most
important assumption of independence is clearly violated in this classical
regression model, meaning that the values of the just mentioned ttests are
seriously inflated since r(1) is positive.

Allowing the level component to vary over time, at convergence the value of the
log-likelihood function equals 1.0265254. The estimates for x4, 4, and py are

6.7814, -0.23759, and -0.27674, respectively. The maximum likelihood estimate of
the irregular variance is 052:0.00403394, and that of the level variance is

o*é% =0.000268082 . Thus, the measurement equation can be written as
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1
Vi =t —% i1 —0.23759w, —0.27674x; + ;.
i=1 "

Graphs of the components of the analysis are shown in Figure 3.6.13.

The percent change in the number of drivers KSI due to the seat belt law is now
estimated to be equal to (100)(ex(-0.23759) - 1) = -21.1%, while a 1% raise in the
petrol price is now associated with a 0.28% reduction in the number of drivers KSI.

9.50

L ‘ — log UK drivers KSI ‘A stochastic level + beta*log(PETROL PRICE) + lambda*(SEAT BELT LAW) ‘
9.25 -

9.00 - T

875
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0.1

0.0+t

i : i H
| . L . . | . . . . | . i . . |
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Figure 3.6.13: Stochastic level plus intervention and explanatory variables (top),
deterministic seasonal (middle), and irregular component (bottom) for the log of the UK
drivers KSI series .

The value of the Akaike information criterion for this model equals

AlG= 1 [- 2(192)1.0265254 )+ 2(14 + 2)| = -1.88638,,

192

meaning that this is the best fitting of all the models that were used to analyse the
log of the UK drivers KSI series.

The standard ttest for establishing whether the regression coefficient

~

A, =-0.23759 deviates from zero yields

—-0.2375871946

= =-5.115353857,
0.04644589627

{: Tran sport
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which is significant. The standard ttest for establishing whether the regression
coefficient 3, = -0.45213 deviates from zero yields

—-0.276740442

= =-2.812212405,
0.09840666428

which is also significant.
statistic value critical value assumption
satisfied
Independence Q(15) 18.676 23.68 +
r(1) 0.078 0.14 +
r(12) 0.068 0.14 +
homoscedasticity 1/H(59) 1.025 1.67 +
Normality N 1.444 5.99 +

Table 3.6.10: Diagnostic tests for stochastic level and dummy seasonal analysis of log of
UK drivers KSI, including variables seat belt law and log petrol price.

As Table 3.6.10 shows, all the model assumptions are satisfied in the present
analysis, meaning that the ttests for the regression coefficients are no longer
flawed in this case.

Concluding, adding the continuous explanatory variable “log petrol price” to the
stochastic level and deterministic seasonal model with a level shift intervention
variable also helps in explaining the observed development in the log of the
monthly number of UK drivers KSI series.

As before, keeping the intercept (i.e. the level) fixed over time results in residuals
that do not satisfy the assumption of independence, and therefore in inflated t
tests for the regression coefficients. Allowing the intercept to vary over time, on the
other hand, all model assumptions are satisfied, and the ttests are now reliable.
The comparison of the t-tests in the model with a fixed intercept with those in the
model with a time-varying intercept shows that — in absolute value - the test for the
regression coefficient of the intervention variable is almost two times too large,
while that for regression coefficient of the log of petrol price is almost three times
too large.

In the appropriate model, the values of the regression coefficients indicate that the
seat belt law resulted in a 21.1% reduction in the number of UK drivers KSI, while
a 1% raise in the price of petrol was associated with a 0.28% reduction in the
number of drivers KSI. Finally, it is noted that the estimated effect of a 21.1%
reduction as a result of the seat belt law in the present analysis is almost identical
to the value of 21.3% found with the model without the explanatory variable “log
petrol price” (see the previous section).

3.6.5.5. Conclusion on the technique
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Explanatory variables can be added to the state space model and their
contribution to the dependent variable can be tested reliably. As was shown in this
section, in fully deterministic, classical linear regression models the reliability of the
t-tests for the regression coefficients is not guaranteed, which can lead to incorrect
conclusions regarding the significance of those regression coefficients.

Until now, the focus was on the descriptive and explanatory aspects of state space
methods. The next section will discuss the issue of forecasting with structural time
series models.
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3.6.6 Forecasting

For a proper understanding of forecasting in state space methods, it is useful to
mention that the state components of state space models can be estimated in a
number of ways. All the previous sections on the theory of state space methods
presented the estimate of the state that is known as the smoothed state. The
smoothed state at time t is typically based on all available observations in the time
series, therefore including those observations y41, ..., y, that occurred after time
point t.

A second type of estimate is the so-called filtered state. The filtered state at time t
is the estimate of the state only based on all past observations yi, ..., ¥, and on
the current observation ;.

The third type of estimate is the so-called predicted state. The predicted state at
time tis the estimate of the state purely based on all past observations yj, ..., yt1.
This last type of estimate typically yields forecasts as they are obtained with state
space methods. It is interesting to note that forecasts in structural time series
analysis are actually obtained by treating the future observations in a series as
missing.

This section will present three examples of forecasting: one with the local level
model, one with the local linear trend model, and one with the local level and
seasonal model with an explanatory and intervention variable.

As discussed in Section 3.6.1 the log of the annual number of Norwegian fatalities
in the period 1970-2003 can be adequately described with the local level model.
The local level model was therefore also used to obtain forecasts for this series in
the period 2004-2010. The filtered level and the forecasts obtained with the local
level model for the years 2004 through 2010 are shown in Figure 3.6.14, together
with their 90% confidence limits.

As the latter figure shows, forecasts of the local level model are always located on
a straight horizontal line whose level is equal to the filtered level at time point n+1.
The values of the forecasts in Figure 3.6.14 are all equal to 5.6627. According this
analysis therefore the future number of road traffic fatalities in Norway will remain
at a constant level of exp(5.6627) = 288 fatalities per year.

In state space methods, all estimates of the components of the state also have
associated estimation error variances. This is true irrespective whether the
estimate is the smoothed, the filtered or the predicted state. Under the assumption
of normality, these estimation error variances allow the construction of confidence
intervals for each of the state components, thus making it possible to assess the
(un)certainty in the estimates of the state. Letting Var( ;) denote the estimation

error variance of the level u; of the local level model, therefore, the 90%
confidence limits are computed with the well-known formula

U, £1.64. Var(u, ), (3.6.19)
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where +1.64 and —1.64 are the z-scores corresponding to the 90% interval around
the mean of a normal distribution.

6.4 I ‘ > log fatalities in Norway — filtered level and forecasts
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Figure 3.6.14.: Filtered level, and seven years forecasts for log of Norwegian fatalities
including their 90% confidence limits.

The thus computed 90% interval for the filtered and predicted level of the local
level model is displayed in Figure 3.6.14. As the figure shows, the estimation error
variance for the predicted level, and therefore its uncertainty, becomes larger and
larger as the forecasts are located further into the future.

The analysis of the log of the annual number of traffic fatalities in Finland with the
smooth trend model (see Section 3.6.2) was also used to obtain forecasts using a
so-called lead time of seven years. The observations of the series are shown in
Figure 3.6.15, together with the filtered state for the years 1970 through 2003, and
the predicted state (i.e., the forecasts from the smoothed trend model) for the
years 2004 through 2010. As the figure shows, forecasts of the local linear trend
model are always located on a straight line with constant level and slope. Again,
the estimation error variance for the predicted trend, and therefore its uncertainty,
becomes larger and larger as the forecasts are located further into the future.
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filtered trend and forecasts

r ‘ — log fatalities in Finland

6.5

551

50

1970

1975

1980

1985

1990

1995

2000

2005

2010

Figure 3.6.15: Filtered trend, and seven year forecasts for Finnish fatalities, including their
90% confidence limits.

As a last example, the log of the UK drivers KSI series was re-analysed (see
Sections 3.6.3, 3.6.4, and 3.6.5) with a local level and deterministic dummy
seasonal model, including the log of the petrol price and the introduction of the
seat belt law as independent variables. In contrast with the analysis discussed in
Section 3.6.5, however, the last six observations in the dependent and
independent variables for July through December 1984 were treated as missing.
The results of this analysis are very similar to those discussed in Section 3.6.5.

Next, based on the results of the latter analysis forecasts were computed for the
six missing months July through December 1984. In the calculation of these
forecasts the observations for the petrol price and for the seatbelt law intervention
were taken into account, but not the numbers of drivers KSI.
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Figure 3.6.16: Filtered signal, and six months forecasts for the log of UK drivers KSI,
including their 90% confidence limits.

The results are shown in Figure 3.6.16, which only contains the last four years in
the series. Amongst others, the figure displays the filtered signal of the analysis
(where the signal is the sum of the filtered state components) as well as the
observation forecasts for the months July through December 1984 and the actual
observations for the latter six months. Again, the 90% confidence limits become
larger and larger as the forecasts are located further into the future. The figure
also shows that the actual observations fall within the 90% confidence limits of the
estimated forecasts, which is a good sign.

Finally, it is noted that there are a number of diagnostics that can be used to
establish the goodness of fit of the predicted values to the observations. The mean
squared error and the mean absolute percentage error of the forecasts obtained
with the deterministic level and seasonal model are 0.0080695 and 0.010684,
respectively; those obtained with the stochastic level and deterministic seasonal
model are 0.0062978 and 0.00946457, respectively.

3.6.7 Conclusion on the state space technique

The examples from this section show that the state space analysis technique is
appropriate for the purpose of descriptive analysis as well as explanatory analysis
and forecasting in the framework of EU road safety research. As the other
techniques described in this chapter, state space analysis assumes independent,
homoscedastic, and normally distributed residuals. In state space modelling,
stationarity of the data is not required; trend and seasonal are explicitly modelled.
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State space analysis can easily handle missing data, which is very practical in
road safety research. Furthermore, with a particular parameter setting state space
analysis transforms into classical linear regression, which is a useful property with
respect to explaining the technique and state space analysis results.

As was shown in this section, in fully deterministic, classical linear regression
models the reliability of the t-tests for the regression coefficients is not guaranteed
due to the fact that they do not take into account the time dependencies of the
residuals. This can lead to incorrect conclusions about the significance of those
regression coefficients. State space models do take into account the time
dependencies, thus improving the reliability of the computed confidence and
prediction intervals.

In this section, only univariate state space models, i.e. models with one dependent
variable, have been discussed. The state space technique enables the modelling
of multivariate time series problems. For example, it can be valuable to analyse
the three important road safety components, i.e. exposure, accidents, and
accident severity, in one model. In state space analysis this is possible; the
components can be modelled simultaneously. Examples of multivariate state
space models in the area of road safety can be found in Durbin and Koopman
(2001), Commandeur and Koopman (in press), Bijleveld et al. (2005), De Blois et
al. (in press), and Goldenbeld et al. (in press).
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Jacques Commandeur (SWOYV) and Ruth Bergel (INRETS)
1.1.1 Introduction

At first sight it may seem that the ARMA-type models and the state space models
presented in Sections 3.4 and 3.6 are very different conceptually. When being
fitted with ARMA models, time series that do not satisfy stationarity need to be first
transformed into a stationary time series. In ARIMA models, a filter of differences
is used as preliminary transformation of the original dataset: the trend and
seasonal components are first eliminated by differencing before the actual analysis
is performed. In state space methods, on the other hand, these two components
are explicitly modelled.

However, as pointed out in Harvey (1989) and Durbin and Koopman (2001) ARMA
and ARIMA models on the one hand and state space models on the other hand
also have much in common. In this section we will focus on the similarities
between the two approaches.

It is worth noting that, from a theoretical point of view, any ARMA representation of
a stationary process has an equivalent state space representation. Nevertheless,
due to the fact that stationary observations are usually not found in the road safety
field, we will focus on the equivalencies between ARIMA models and state space
models, and discuss them for two particular types of models described in Sections
3.4 and 3.6. For more equivalencies between ARIMA and structural time series
models we refer to Appendix 1 in Harvey (1989).

1.1.2 The case of the local level model

As mentioned in Durbin and Koopman (2001), the local level model is equivalent
to an ARIMA(0,1,1) model without constant:

Ay, =(1+6B)n;,

where B is the backshift operator defined by Bn: = n:1, A is the first-difference
operator defined by Ay; = y: - y1, 0 is the unknown parameter, and n; is a random

process. Further, let 0'3 and 0'§ denote the disturbance variances of the irregular
and level components of a local level model, respectively (see Section 3.6.1), and
let ¢= O's% /0'3. Then the equivalence between the parameters of the
ARIMA(0,1,1) model and the local level model is given by

9:;[ (q2+4q)—(q+2)] (3.7.1)

and

op=-0710, (3.7.2)
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where a,% is the error variance of the ARIMA(0,1,1) model.

Applying these formulas to the results obtained in the analyses of the log of the
annual number of Norwegian road traffic fatalities series discussed in Sections

3.4.3 and 3.6.1, for example, and since 0'3 =0.00326838 and 0'§ =0.0047026 in
that case, we find that

q =0.0047026/0.00326838 =1.438816784,

and

6= ;H (1.438816784% + (4)(1.438816784)) — (1.438816784 + 2)} =-0.3207071305.

Within rounding errors this value is equal to the parameter estimate 6 =
-0.32069194 obtained by applying the ARIMA(0,1,1) model without constant to the
same data in SPSS (see Section 3.4.3). Also,

a,% = —02 /6 =-0.00326838/-0.3207071305 = 0.01019 ,

which value is - again within rounding errors - equal to the residual variance
0',? =0.01050984 obtained by applying the ARIMA(0,1,1) model without constant to
the data in SPSS. Moreover, as a consequence, the forecasts obtained with an
ARIMA(0,1,1) model are equal to those obtained with the local level model.

1.1.3 The case of the local linear trend with seasonal model

Letting s denote the periodicity of the seasonal, the local linear trend with seasonal
model is equivalent to an ARIMA(0,1,1)(0,1,1)s model (also known as the “airline
model”®®)

AAsyz‘ =({1+6B)1+ gsBs)nt )

when 6, =-1 and the disturbance variances for the slope and seasonal

components of the local linear trend with seasonal model satisfy 02 =02 =0,

respectively. In that case, formulas (3.7.1) and (3.7.2) again apply. For example,
the variances for the observation and level disturbances of the local linear trend
plus seasonal model with deterministic slope and seasonal applied to the log of

® The so-called “airline model’ was fitted on the monthly number of international airline
passengers in thousands, for 1949-1960, series in Box & Jenkins, 1976).
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the UK drivers KSI series are found to be equal to o2 =0.00346757 and

0'4% =0.0010011, respectively (see Section 3.6.3). The value of g therefore equals

q =0.001011/0.00346757 = 0.2887036167 ,

and substitution of this value in (3.7.1) yields

6= ;H (028870361677 + (4)(0.2887036167)) — (0.2887036167 + 2)}

=-0.5879876639.
Applying the airline model without constant to the same time series in SPSS yields

AApyy, =(1+6B)(1+6,,B> )y, = (1—0.58796298 B)(1— 0.89666905B,)7; ,

and the value of the latter parameter 6 is indeed remarkably close to the one
obtained with (3.7.1), even though parameter 64, is -0.9 instead of -1. Moreover,

a,% =02 /6 =-0.00346757 /- 0.5879876639 = 0.005897

which value is quite similar to the residual variance a,% =0.006434 obtained by
applying the ARIMA(0,1,1)(0,1,1)12 model without constant to the series in SPSS.

1.1.4 Conclusion and discussion

In this section, two examples of equivalencies between ARIMA models and state
space models, already described in Sections 3.4 and 3.6, were discussed. The
necessary relationships between the model parameters were checked on the
basis of their estimations provided by STAMP (for the state space models) and
SPSS (for the ARIMA models).

It should be noted that, as these equivalencies only hold between well-defined
specifications, other close specifications may in practice be retained. With the first
example, it was demonstrated that the log of the annual number of Norwegian
road traffic fatalities could equally be modelled with a local level model or with an
ARIMA(0,1,1) model without constant; nevertheless, in practice, an ARIMA(0,1,1)
with constant was retained in Section 3.4.3. With the second example, it was
demonstrated that the log of the monthly number of UK drivers KSI could equally
be modelled with a local linear trend with seasonal model or with an
ARIMA(0,1,1)(0,1,1)12 model without constant; nevertheless, in practice, an
ARIMA(2,0,0)(0,1,1)12 model was retained in Section 3.4.4.

It is also worth mentioning that not all ARIMA models have an equivalent in the
subclass of state space methods which are collectively known as structural time
series models. However, all ARIMA models can be put in state space form (see
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Durbin and Koopman, 2001), thus making all the techniques that have been
developed for state space models (like diffuse initialisation and the handling of
missing values) available for ARIMA models also. Conversely, if required
autoregressive components can be added to the structural time series models
discussed in Section 3.6.



3.8 Conclusion time series analysis
Chris de Blois and Jaques Commandeur (SWOV)

Main concerns of EU road safety research are to improve insight in the
development of road safety in the past and its underlying factors and to make
forecasts of road safety in the future. Therefore, through the years much data on
exposure, accident frequency and injury severity, as well as several characteristics
of road users, vehicles and their use, roads, and accident management have been
collected and as such various time series have been created.

Road safety data is voluminous and varied in the sense that several types of data
and several dimensions are involved. The frequency of measurement of the road
safety data varies: road safety data is mostly measured annually or monthly and
sometimes weekly or even daily. Furthermore, the data comprises both national
totals and disaggregated data for regions, for sections of the population (e.g. age
classes, males, females, etc.), for vehicle types, or for road types among others.
Between countries, but also between periods for the same country and between
different types of data, there may exist large differences with respect to the
availability, the periodicity, and reliability of (disaggregated) data.

The above-mentioned characteristics of the data and the different needs for
analysing the several time series and their interrelations - i.e. monitoring,
explaining, and forecasting - make road safety analyses complex and not
straightforward. Furthermore, it appears that the time dependence structure of
road safety developments often does not allow for the application of cross-
sectional statistical techniques. As such, the application of dedicated state-of-the-
art time series analysis techniques is advocated.

3.8.1 Summary of methods for time series analysis

In this chapter, several techniques used for the analysis of time series are
reviewed. Below their main characteristics and their use for time series analysis in
general or for road safety analysis in particular will be summarised.

Classical linear regression is a standard technique, which is frequently used for
the analysis of time series because of its straightforwardness and efficiency.
However, this technique does not properly consider the time dependencies
between consecutive observations, nor does it consider alternatives for some
other assumptions. Therefore, the residuals obtained with this technique do
usually not satisfy the most important model assumptions, f.i. the assumption of
independence. The latter problem may lead to statistical test results which are
overoptimistic or too pessimistic about the relations between variables and also to
poor forecasts, among others.

Generalised linear models can be used to overcome part of the restrictions of
classical linear regression. This technique is more flexible than classical linear
regression in the sense that it allows for all error distributions within the
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exponential family of distributions. Among others, this family includes the normal
distribution, which is the one assumed in classical linear regression, the Poisson
distribution and the negative binomial distribution. Another extension in
comparison with classical linear regression is that what is known as a link function
can be defined to impose restrictions to the model output, which can be useful, for
example, when the log-transformation is used to enforce positive forecasts.

By using nonlinear models even more restrictions of classical linear regression can
be overcome. The biggest advantage of this technique over the previously
mentioned is the broad range of functions that can be fit. Many processes, as in
road safety, are inherently nonlinear. This flexibility of nonlinear regression is also
a caveat, since similarly good fits can be obtained with very different functional
forms, whereas presumably only one of them represents the real underlying
process in the best manner. These different models can be adequate for
interpolation purposes, but may produce very different predictions when used to
extrapolate, i.e. to predict values outside the scope of the estimation dataset
(forecasting).

Common advantage of the parametric linear and nonlinear regression models is
the efficient use of data. Good estimates of the unknown parameters in the model
can be produced with relatively small data sets. Another shared advantage is a
fairly well-developed theory for computing confidence, prediction and calibration
intervals.

However, for time series analysis the most important drawback of the classical
linear, generalised linear and nonlinear regression models is that they do not
naturally take into account the time dependencies between the consecutive
observations of a time series. To adequately deal with these time dependencies,
dedicated time series analysis techniques, such as ARMA (Auto-Regressive
Moving Average) - type analysis, its special case DRAG (Demand for Road use,
Accidents and their Gravity), and state space analysis, could be employed.

ARMA models (in the case of stationary data) and ARIMA models (in the most
general case of non-stationarity data, which is the current case in road safety)
enable to describe the dynamics of a process time and to extrapolate it in the
future, without any call to additional variables and with the only assumption that
the process dynamics will stay unchanged at the forecast’s horizon. .Explanatory
and intervention variables can also be included in ARMA and ARIMA models, and
the additional corresponding regression coefficients can be estimated and
ineterpreted.

For the analysis of road safety data, a disadvantage of ARIMA modelling may be
its concept: the trend and the seasonal are removed before the modelling itself is
performed on the stationary part of the process.. The emphasis is on describing
the dynamics of this latter process, by means of estimating a small number of
relevant coefficients parameters. This is sufficient for many applications.

The DRAG model is an application of a special case of the ARMA models, the AR
(AutoRegressive) model with explanatory variables, specially designed for road
safety analysis. The DRAG model has (at least) three levels: exposure, accident
risk, and accident severity. The trend and the seasonal component are not
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removed by filtering but are modelled by the introduction of numerous explanatory
variables, whether related to exposure, economic factors, transitory factors,
behavioural factors or road safety measures. The use of a particular non-linear
transformation allows a flexible form of the link between the dependent variable
and the explanatory variables.

The DRAG model has a powerful theoretical framework, but needs voluminous
databases and therefore currently cannot appropriately be applied to EU road
safety data.

In state space models, also known as structural time series models or unobserved
components models, an observed time series is typically decomposed into a
number of components. The level, the slope and the seasonal are assumed to be
random components — effectively meaning that they may gradually change over
time, which may be an important advantage for long time series - , and are
estimated for obtaining an adequate description of an observed time series.
Explanatory and intervention variables also help finding explanations for the
observed development in the series.

Contrary to what is the case in ARIMA models, in state space modelling the trend
and the seasonal are not removed but explicitly modelled. The focus here is on
observing the development over time of the - usually unobserved - components,
and mainly the development of the trend. Contrary to other decomposition
techniques, the randomness of the trend is investigated, and described through its
level and slope.

It should however be considered that the core methods used by the state space
models and those used for the ARMA-type models have a lot in common if not are
identical. As described in Section 3.7, many models have an 'identical twin' in the
other approach, but with other parametrisations. This means that in practice, the
identification process may end up with formally different but statistically
indistinguishable models.

Concluding, EU road safety research requires the monitoring, explaining, and
forecasting of road safety on the basis of often restrictedly available repeated
measurements in time, with a high level of time dependency and possibly different
frequencies of measurement. ARMA-type and state space models can be used for
this purpose, for descriptive analysis as well as explanatory analysis and
forecasting. It should be noted however that in cases f.i. violations of other
assumptions, in particular a hierachical structure, the error distribution or a non-
linear model function, may force the researcher to use balance the gravity of the
violations, and chose other methods than desribed here (for instance non-linear
time series methods).

3.8.2 Recommendations

For the descriptive, explanatory, or forecasting analysis of time series from road
safety research, using dedicated time series analysis techniques such as
ARMALtype and state space modelling is recommended.
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To obtain a 'quick and dirty' insight in the data and the possible interrelations,
classical linear regression but also generalised linear models and nonlinear
regression can be used. However, the user of all these techniques should
continuously be aware of the techniques' limitations and therefore never forget to
test the model assumptions. As such, linear and nonlinear regression models can
be used as a swift, first step in the analysis of road safety time series data, which
should be followed by the application of more dedicated techniques as ARMA-type
or state space analysis to obtain more valuable and reliable results.

In the manual (D7.5), these recommendations are followed by supplying manuals
for classical linear regression (with an emphasis on the test of the model
assumptions), ARMA-type, and state space analysis.
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Heike Martensen and Emmanuelle Dupont (IBSR)

4.1 Analyzing complex data structures

The present document gave guidelines for analyzing complex data structures, as
they commonly occur in traffic safety research. It departed from standard
regression methods that were assumed to be known by the reader and focused on
the assumptions that have to be met for these traditional methods to lead to valid
conclusions. We presented a number of techniques that allow researchers
conducting valid analyses even if the assumptions of the standard methods are
violated. In particular, the document focused on the independence assumption,
which will be recapitulated below.

In a classical linear regression model, an observed or dependent or endogenous
variable y; is predicted by one or more explanatory or independent or exogenous
variables x,, x,... Such a relation is modelled by Equation 4.1, where e is the error

term, also called the disturbance term and i=1...n, with n the number of persons.
y=by,+bx +b,x, +..+e (4.1)

It has been shown that this simple regression model contains a number of

restrictions, of which the main ones are

4. The dependent variable (y) has to follow the normal distribution.

5. The dependent variable (y) can be expressed as a linear function of the
independent ones (bg+b1x1+b2xo...)

6. The variance in the dependent variable that cannot be explained by this linear
function (i.e. the error or disturbance term e) is independently distributed
across all observations.

In practice, these assumptions are more often violated than not and we have
demonstrated ways to deal with such violations: The Generalised Linear Model
described in Sections 2.3.1 and 3.2.2 allows modelling observations that do not
follow the normal distribution (e.g. discrete responses). In nonlinear models
(Section 3.2.3), relations between dependent and independent variables are
analysed that do not need to have the linear form (they can follow the exponential
function, for example).

The present document is mainly focused on the third assumption, however, the
assumption of independence of the error term®. It has been demonstrated that
many datasets in traffic safety research tend to violate this independence

® This assumption is tested with the help of the model’s residual, an estimation of the error term of
Equation 4.1, computed once a sample of observations of the observed variable is available. It is
worth mentioning that, in practice, the hypothesis of independence of the residuals is often referred
to in place of the one of independence of the error term.
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assumption and that the consequences of such violations can be particularly
nasty. More specifically, they can lead to either under- or overestimation of the
standard errors of the parameter estimates, which will in turn distort the estimated
probability of having observed a particular effect on a purely coincidental basis.
Both consequences, (1) accepting as significant a result that is actually not so, and
(2) rejecting a result as due to chance that is in fact not due to chance, can occur
in sometimes unpredictable ways, as has been demonstrated in the introduction
(1.2.1 and 1.2.2).

4.2 Multilevel and time series modelling

Dependencies among the error terms occur often when data have a hierarchical
(or nested) structure or are structured in time. Hierarchically structured data (or
nested data) show random variation at more than one level of observation. Each
data point is characterised by the membership to a particular group at each level
of the hierarchy (e.g., passengers can be characterised by the car they were
travelling in, by the road site at which the car was observed, by the area in which
the road site is situated, etc.). Members of the same group tend to be more similar
to each other than members of different groups. If this similarity is not represented
in the analysis model, the errors (i.e. the part that is not explained by the model)
for the members of a particular group also tend to be more similar to each other
than to those from other groups. To avoid this, it is necessary to represent the
hierarchical data structure in the analysis model. In Chapter 2, multilevel modelling
is introduced as way to properly represent these structures and to deal with the
arising dependencies.

Similarly, for data that develop over time (times series), data points can be
characterised by time structures on different scales: decades, years, months,
days. Between consecutive observations there may be a strong relation, and there
can also be repeating patterns, for instance seasonal effects. The form of the
relationship depends on many factors. For example monthly data are often most
similar to data from the respective month a year earlier or later, while data from
adjacent months can be very dissimilar. In almost any case, however, data from
consecutive points in time are not independent. If these structures are not properly
represented by the model, the errors will show the same dependencies as the data
and therefore endanger the conclusion of the analysis. In Chapter 3, a number of
time series analysis techniques have been introduced that allow for a detailed
representation of these structures and therefore overcome the problems
mentioned above.

It should be noted that probably the most important part of the model specification
and assumptions in traffic safety analysis is the validity of the actual model
equation. Misspecifications in the model equation (e.g., a linear model instead of a
non-linear one, the choice of independent variables) can have consequences
much more important than the violation of any of the further assumptions. Omitting
the important explanatory variables may lead to attributing effects to the wrong
variables, by absence of the truly influential variable(s). The validity of models
however is dependent on the subject at hand and a general discussion on such
matters is outside the scope of this document. This document systematically
covers what can technically be done to have a valid model, while questions that
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concern the content of the models are addressed by giving examples of model
building. The application of each technique has been demonstrated on the basis of
an empirical example from traffic research. Sometimes, different types of analysis
have been illustrated for a single data set.

While the specific multilevel and time-series methods presented in Chapters 2 and
3 are summarized and evaluated in the local conclusions -- Sections 2.9 and 3.8. -
- the examples will subsequently be briefly summarized in their order of their first
appearance. The analyses performed on each dataset will be shortly described.
The reader should remain aware however, that these are just examples of
analyses. To safely draw conclusions from the results, more theoretical
background and more information on the procedures underlying data collection
would be necessary. The immediate goal of this description is to demonstrate how
one should go about analysing data of a particular type, and how the results would
be interpreted. The results presented here cannot in any way, however, serve as
definite answer to particular road-safety questions.

4.3 Summary of empirical examples

In the introduction to multilevel modelling (Section 1.2.1), data from a Belgium
roadside survey on seatbelt use were analysed in a single-level and a multilevel
logistic regression analysis. These data were collected at randomly selected road
sites in Belgium: For each passing car, it was determined whether the driver and
(if present) the front passenger were using a seatbelt. The multilevel model was
shown to be more appropriate, because the results showed a significant variation
between road-sites in the probability of wearing a seatbelt. The speed limit could
explain some of this variation (drivers on roads with higher speed limit have a
higher probability of wearing a seatbelt), but not all of it. There was of course also
significant variation among the inhabitants themselves, some of which could be
explained by gender: Women tend to wear seat-belts more often than men.

In the introduction to time series (Section 1.2.2) the yearly number of Norwegian
fatalities between 1970 and 2003 (or more specifically, their logarithm) were
modelled in different versions of state space models. For the simplest version,
which is in fact identical to a classical linear regression, the residuals were not
independent. This problem was handled by allowing the intercept (also called
level) to vary over time (stochastic intercept). The intercept on a time point t was
not constant, but depended on the value of the intercept on the previous time point
(t - 1). In that way the residuals are independent and we found a regression
coefficient of -0.019860, which means that the number of Norwegian fatalities
decreases each year with about 2%. The same dataset was also fitted with a pure
ARIMA model (Section 3.4.3), in which case the assumption of independence of
the error term, tested on the model’s residuals, was accepted. The equivalence of
the ARIMA model without constant term and the regression model with stochastic
intercept described in the introduction, the so-called local level state space model
(Section 3.6.1), was demonstrated on this particular dataset.
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The dataset from a speeding survey in Belgium was used to demonstrate the use
of basic two and three level linear models (Sections 2.2.1 and 2.2.2 respectively).
It consists of a sample of drivers passing by a number of randomly selected road
sites at which cameras were situated. Each driver's speed is measured as a
continuous variable in km/h along with the car’s length when passing by the road
site. The relation between the length of a car and its speed, and the way it is
affected by factors like the traffic count is demonstrated in order to illustrate the
multilevel analysis of the relation between two continuous variables. Comparing a
two and a three level model revealed that the data clearly had two levels: that of
the single car and that of the road-site, while evidence for a third level (regions)
was negligible, suggesting that in Belgium there is no substantial variation in
speed between the different regions.

In a Belgian roadside survey on drink driving, all drivers passing within an hour
were stopped at road-sites that were selected randomly with respect to location
and point in time. Together with a number of potential explanatory variables, it was
established whether the driver's BAC (breath alcohol concentration) was below
0.05 mg per litre (the legal limit), between 0.05 and 0.08 mg, or above. One way to
analyse these data is to dichotomize them by joining the two higher categories and
simply differentiating between blood-alcohol concentrations under or above the
legal limit. These data so aggregated can be analysed by means of a logistic
regression analysis, as illustrated in Section 2.3.2. In Section 2.3.3, it is
demonstrated that one can also analyse the original three response categories
using a multinomial regression model. Both an unordered category-model and an
ordered one were estimated. The results however, provided no reason to question
the ordered nature of the response categories, a case in which the ordered model
is to be preferred given its parsimonious quality. At the test-site level the time of
testing was the most important predictor as drink driving on weekend nights by far
exceeds that at all other time points by far. At the individual level gender and age
were the most notable predictors with men between 40 and 54 having the highest
risk of drink driving.

In a Greek study on the effects of speed infringements and alcohol controls, the
accident and fatality number for each county were collected over a period of 5
years. The yearly data were analysed in multilevel poisson-family regression
models, including poisson, extra-poisson and negative binomial models (Section
2.3.4, with accidents of counties nested into regions at a higher level). It turned out
that both enforcement measures were highly correlated (i.e. counties that
executed many alcohol controls also issued many speeding infringements), and
that they together lead to a significant decrease in fatalities. Moreover, it was
shown that there was significant regional variation in the number of accidents and
in the related effect of the enforcement measures. In particular, it was shown that
the enforcement measures were the most effective in those regions that had the
highest accident rate in the first place.

The same data set was analysed in a multivariate multilevel model (Section 2.5)
allowing investigating the effects of enforcement measures on two road safety
outcomes (fatality and accident numbers) simultaneously. It was shown that the
two outcomes are correlated, and part of their covariance is situated at the
regional level. It was also demonstrated that enforcement had a stronger overall
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effect on the number of fatalities than on the number of accidents as such,
suggesting that the accidents became less severe. Moreover, the significant
regional variation of the effect of enforcement on accidents was confirmed, whilst
the corresponding variation of the effect on accidents was non significant. It can be
said that enforcement has an important overall effect on fatal accidents, which
result from more risky behaviours. This effect is uniform in all regions, because
drivers perceived an increased nationwide presence of the Police and improved
their overall behaviour accordingly; however, the decrease of non-fatal accidents
(which result from less risky behaviours) may be more or less important in different
regions, according to the local enforcement practices.

A dataset of monthly fatalities and severe injuries in Greece were analyzed in
relation to enforcement and vehicle ownership, by means of generalized linear
models (poisson, extra-poisson, negative binomial, Section 3.2.2.). Vehicle
ownership was used as an offset term, in order to model the rates of fatalities and
serious injuries per number of vehicles, rather than the fatalities and serious
injuries counts themselves. An intuitive negative coefficient between the number of
alcohol controls and the number of persons killed and seriously injured in road
accidents was identified. This shows that the intensification of enforcement in
Greece in the examined period brought an important road safety benefit, in terms
of reduction of monthly fatalities and serious injuries, also accounting for the
related exposure.

Using the relationship of driver characteristics and their acceptance of new
technologies in traffic based on data from SARTRE 3, the chapter on structural
equation models (2.6) shows the basic form of such models in the multilevel case,
dealing mainly with assumptions on data. The chapter also discusses the
necessary theoretical concepts of these models.

In the chapter on linear regression models, the decrease in road accident fatalities
in Austria is modelled leading to significant results. However the focus of this
chapter is not on these results but on the underlying assumptions, which are
analyzed in detail. In the examples shown, especially the most important
assumption of randomly distributed errors was clearly violated, implying that the
results of the statistical tests regarding the regression could not be trusted.

Aggregate data on road accidents, vehicle fleet and population of 17 European
countries for the period 1970-2002 were used in a non-linear time series model
(Section 3.2.3). Smeed's original formula on the macroscopic relationship between
accidents, vehicles and population was examined and further developed in two
additional forms: an auto-regressive and a log-transformed. The analysis of the
estimated parameters allowed for a general assessment of the prevailing road
safety patterns in the EU. In particular, the least safe countries among the
countries examined today appear to be Greece and Portugal, while the United
Kingdom and the Netherlands are two of the safest countries in Europe. These
results are in accordance to the general trends evidenced by the literature.

Project co-financed by the European Commission, Directorate-General Transport and Energy

Page 349



Chapter 4 — Conclusion

The monthly number of killed and seriously injured drivers registered in the UK
(UK-KSi drivers) for the period January 1969-December 1984 was fitted with an
ARIMA model, in which the petrol price and an intervention variable for taking
account for the introduction of the seat-belt law (see Harvey, Durbin, 1986)., were
introduced and turned out to be significant The assumption of independence of
the error term tested on the models residuals was accepted, and the model’s
performance increased about 5% with the introduction of the additional variables.
The main objective of the analysis was the assessment of this road safety
measure in the UK, and it was demonstrated that the law caused a reduction of
15% of the number of KSI drivers from February 1983 onwards.

The same data was used as an example for a deterministic seasonal model in the
State Space Section. It was not possible to find a seasonal model that met the
requirements of independence, homoscedasticy and normality of the residuals.
Explanatory variables were added, namely seatbelt law (intervention variable) and
petrol price. The appropriate model was a deterministic seasonal model with a
deterministic level and no slope. The results confirmed those obtained with ARIMA
and showed that the seatbelt law resulted in a 21.1% reduction of the number KSI
in the UK. Moreover a 1% raise in the petrol price was associated with a 0.28%
reduction of the number KSI.

An ARIMA-type analysis, similar to that on the UK drivers was conducted on the
monthly total number of French fatalities collected between 1975 and 2001: it was
shown that next to various seasonal and economic variables, the number of
fatalities is also affected by certain media events. In particular, the presidential
amnesty that is usually given to traffic offenders during the French elections
appeared to be associated to an increase in fatalities. At the same time, the effect
of a fatal accident that received much attention in the media (a young woman,
Anne Cellier, who was killed by a drunk driver) was taken into account. The results
suggested that fatalities increased by 6.4% per month on average during the 10
months preceding the first presidential amnesty in 1988 - and by 3.8% respectively
during the 7 months preceding the second one in 1995. In absolute numbers,
more than 500 deaths could thus have been attributed to the presidential amnesty
in 1988. To the contrary, the attention that the media devoted to the Cellier case
seems to have saved lives: The results suggested that fatalities decreased by
6.1% per month on average during the 7 months following this tragic accident.

The same analysis was extended to the monthly number of injury accidents and
fatalities on French A-level roads and motorways, between 1975 and 2001. Similar
results were obtained, and, as risk exposure is precisely measured on these two
networks, significant results related to risk factors, namely the traffic volume and
specific weather variables measuring temperature, rain and frost, could also be
established.

Similar to the Norwegian fatalities modeled in the introduction (1.2.2) and first part
of the state space chapter (3.6), the annual number of Finnish fatalities was
modeled with a state space model. In contrast with the model for the Norwegian
fatalities, the Finnish fatalities were best modelled with a constant intercept (or
deterministic level) and a stochastic slope. This had been determined by fitting the
data with both stochastic slope and level. The small variance of the level indicated
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that the level could better be deterministic. Model comparison indicated that
indeed the state space model with the deterministic level and stochastic slope
fitted the data the best. The stochastic slope varied between 0.05 and -0.10, which
means that the number of Finnish fatalities changed between 5% and -10% a
year.

All empirical examples given in this document and some of the technical aspects
that they were used to demonstrate are summarized in Tables 4.1 and 4.2. Table
4.1 presents the multilevel modelling examples (chapter 2) and Table 4.2, the
time-series ones (chapter 3).

Statistical method Example Response variable
Basic two-and three level Speeding survey in Belgium Normal
model
Discrete responses Drink-driving survey in Belgium Binary
Discrete responses Drink-driving survey in Belgium Categorical
Discrete responses Effect of enforcement or accidents in Greece Counts
Multivariate model Effect of enforcement on accidents and fatalites Counts
in Greece
Repeated Measurements Driving skills in young drivers (simulated) Normal
Factor analysis Attitudes on driving style and on technical Normal
devices.

Table 4.1: Summary of empirical examples for multilevel analyses

Statistical method Example Response variable
Linear regression Austrian fatalities Normal
GLM Monthly variation of the effect of enforcement on  Counts
road accidents in Greece
Non Linear Macroscopic  relation  between accidents, Normal
population and vehicle fleet in the EU
ARMA-type models Norwagian fatalities Normal

Drivers killed and seriously injured in the UK
French fatalities
State space analysis Norwegian fatalities Normal
Drivers killed and seriously injured in the UK
Finland fatalities

Table 4.2: Summary of empirical examples for time series analyses.

As the trend in traffic-safety research is towards large databases containing data
from several countries and consecutive years, many datasets have the structure of
panel data, in which hierarchical and time-series structures co-occur. For example,
accident-counts can be characterised by the regions and the countries they were
taken in and by the points in time - such as years or months - at which the
accidents happened. As an example, the aggregate yearly Greek fatality data
show a multilevel structure and in Section 2.3.4 it has been shown that the effect
of enforcement measures varies across regions. However, these data also form a
time-series, especially when they are disaggregated over months. Therefore, they
are also analysed as a time-series in a Generalized Linear Model in Section 3.2.2.
In the area of spatial modelling (see Section 2.3.4) there are now first approaches
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to modelling the hierarchical structure and the time-structure simultaneously
(Aguero-Valverde & Jovanis, 2006). We are, however, not aware of existing
models at the time of writing that allow the inclusion of stochastic components for
hierarchical as well as time-structures. Multilevel modelling and time series
analysis are both very active areas of research and development. It is probably
possible already to combine stochastic components for space and time if one uses
flexible software. It will, however, probably take some time before these
combinations become available in standard software packages (see the manual
D7.5 for an overview of multilevel (2.1) and time series analysis (3.1) in various
types of software).

As these examples illustrate, often there is not one correct method to analyse a
particular set of data, with all others being incorrect. Panel data, for instance, are
often modelled with time-series analyses — aggregating over possible hierarchical
structures or with multilevel models — aggregating over several points in time.
Analysing the data in different ways is often a good starting point. In each case
one should be aware of the assumptions that do not hold in the particular model of
analysis. The final choice for one model cannot be prescribed by a general recipe.
One has to carefully weigh the advantages and disadvantages of either procedure
and, depending on the research question and the exact characteristics of the data
set (e.g. the amount of variation between higher-level units and between time
points), a choice has to be made.
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4.4 Outlook

The methods presented in this document will be applied in analyses on
European road safety data, in particular accidents data, exposure data, and
safety performance indicators. The data and the statistical methods will serve
answering questions concerning either macroscopic or microscopic data.

Macroscopic data concern the CARE (Community Road Accident) data-base. In
this database registering accidents from all EU-member since 1990, there is a
clear hierarchical structure (accidents can be characterised by the regions and
the countries they took place in) and also a time-series structures as the
accidents can be characterised by the point in time (e.g., the year, the month) at
which they happened. This data-base offers a wealth of information on each
accident and can therefore be aggregated in very different ways, tailored to the
particular road safety aspect that needs to be addressed (e.g., county, region,
road-type, accident type, vehicle type, participant type, etc.). The research
question can be very broad (e.g. did the fatalities in a particular country
decrease at the same rate as those in other countries?) or very specific (e.g.,
did a particular junction become safer after reconstruction?). Multilevel analyses
allow for the introduction of exposure data and data about safety performance
indicators, even if those are not specified at the same level of disaggregation as
the accident data themselves. In this way, multilevel analyses allow a global
and detailed approach simultaneously. Time series analyses allow describing
the development over time, relating the accident-occurrences to explanatory
factors such as exposure measures or safety-performance indicators (e.g.,
speeding, seatbelt-use, alcohol, etc), and forecasting the development into the
near future.

Microscopic analyses (addressing questions like, did the type of baby-seat
affect the risk of young children being killed in an accident?) require in-depth
accident data and allow detailed analyses of factors that contribute to the
severity of injuries. This type of data involves a high level of detail and is
inherently structured in a hierarchical way describing the accident process
(persons are nested into vehicles; vehicles are nested into accidents, etc.)
Moreover, accidents can be clustered according to geographical or
administrative units. In-depth accident data therefore readily call for detailed
multilevel analysis.

4.5 In sum

Multilevel modelling and time series analyses form two powerful tools that can
help researchers analysing complex data structures that violate the
assumptions posed by traditional analyses. A number of empirical examples
demonstrated that many (if not most) data sets in traffic safety research are
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hierarchically structured and/or form a time-series. Multilevel modelling and time
series analysis allow the proper representation of the hierarchical structure of
data and their development over time. This representation is crucial to answer
questions about these structures themselves, and forms the basis for a proper
investigation of possible other factors, allowing experts in road safety to identify
different kinds of risk factors and to propose effective and objective policy
decisions.
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