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 Executive Summary 
 
The SafetyNet project is set up to build a European Road Safety Observatory. 
The data assembled or gathered for the observatory consist of the Community 
database on Accidents on the Roads in Europe (CARE); data on road safety 
risk indicators; data on road safety performance indicators and in-depth 
accident data. Potential users will link data from different data-sets, consider 
different levels of aggregation jointly, and analyse the development over time.  
Work package 7 (WP7) is set up to deal with statistical and conceptual issues 
that come into play when analysing such complex data structures.  
 
One of WP7’s main objectives is to develop a best practice advice for the 
analysis of data structures that require more than the standard statistical tools. 
This best practice consists of D7.4 “Multilevel modelling and time series 
analysis in traffic research – A methodology” and D7.5 “Multilevel modelling and 
time series analysis in traffic research – The manual”.    
 
The main goal is to enable the reader to deal with complex data-structures that 
show dependencies in space (nested data) or in time (time series data). At first 
it is demonstrated how such dependencies can compromise the applicability of 
standard methods of statistical inferences, because they can lead to an 
underestimation of the standard error and consequently of the error in statistical 
tests. 
 
As a solution to this problem, two families of statistical techniques are presented 
to deal with these dependencies. Multilevel Modelling is dedicated to the 
analysis of data that are structured hierarchically. It offers the possibility to 
include hierarchical structures into the model of analysis. In road-safety 
research, multilevel analyses allow for the introduction of exposure data and of 
safety performance indicators, even if those are not specified at the same level 
of disaggregation as the accident data themselves. In this way, multilevel 
analyses allow a global and detailed approach simultaneously. Time series 
analyses are employed to overcome dependency issues in time-related data. 
They allow describing the development over time, relating the accident-
occurrences to explanatory factors such as exposure measures or safety-
performance indicators (e.g., speeding, seatbelt-use, alcohol, etc), and 
forecasting the development into the near future. 
 
Deliverable D7.4 gives the theoretical background for these two families of 
analyses. For each technique the objectives, detailed model formulation, and 
assumptions are described and subsequently the technique is illustrated with an 
empirical example relevant to traffic safety research. 



   

Chapter 1 - Introduction  
(Heike Martensen and Emmanuelle Dupont, IBSR)

 1
 

 
This deliverable has been produced in Workpackage 7 (WP7) of the SafetyNet 
project, an Integrated Project that brings together the most experienced road 
safety organisations within the EU to assemble a co-ordinated set of data 
resources that together will meet the EC needs for policy support. The goal of 
the project is to set up a Road Safety Observatory that will enable the European 
Commission to monitor progress towards targets, identify best practises, and 
ensure that new regulatory and other safety actions will result in the maximum 
casualty reduction.  
 
The data assembled or gathered within the SafetyNet project consist of the 
Community database on Accidents on the Roads in Europe (CARE); road 
safety risk exposure data; data on road safety performance indicators and in-
depth accident data. The data will be available to the entire road safety 
community and will serve to answer a broad variety of questions. 
 
Road traffic data is structured in space and in time. For example, accident 
numbers can be disaggregated to countries, regions, and counties, as well as to 
years, months, weeks and days. In many cases, data at different levels of 
aggregation will be considered jointly, and the development over time will be 
analysed.  WP7 is set up to deal with statistical and conceptual issues that 
come into play when analysing such complex data structures. One of its main 
objectives is the development of a best practice for the analysis of data 
structures that require more than the standard statistical tools.  
 
In Section 1.1 of this introduction the linear regression model that forms the 
basis for the majority of all analyses is introduced shortly. It will then be 
explained why the basic model is not sufficient for many road-safety analyses 
and demonstrated that additional requirements for the analysis of complex data 
structures are mainly related to recognizing and dealing with dependencies in 
space and time. In Subsection 1.2 two families of sophisticated analysis 
techniques are introduced that allow road-safety researchers to deal with these 
dependencies: multilevel modelling and time series analysis. Based on several 
empirical traffic-safety examples it is illustrated that both are very valuable to 
traffic safety research. The use of those techniques in the field of traffic safety is 
advocated. At the end of this introductory Section (1.3) an overview of two WP7 
deliverables (7.4 & 7.5) will be given that form together the best-practice advice 
for the analysis of complex data structures.  
 

                                            
1
 An earlier version of the introduction was written by Ward Vanlaar. Where relevant, quotes or 

references to Vanlaar’s work have been inserted in the present version.” 
 
. 
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1.1 Best practice for the analysis of complex data-
structures 

1.1.1 What is a statistical model 

Many, if not all, road-safety questions require that different quantities or 
categories are linked to one another and seek at establishing whether there is a 
relation between them.  
 
Examples are questions like the following: Is there a relation between the 
number of speed controls and the number of people killed in a traffic accident? 
Does the number of errors a driver makes depend on the number of years 
he/she has been driving? Did the number of people killed in accidents decrease 
after the introduction of the seat-belt law? 
 
Statistically these questions are expressed as relations between variables. An 
observed or dependent or endogenous variable2 yi (e.g., the number of driving 
errors person i makes) is predicted by one or more explanatory or independent 

or exogenous variables 1x , 2x .. (e.g., the number of years of driving experience 

person i has, his or her age, gender, etc.). Such a relation is modelled by 
Equation 1.1.1, where e is the error term, also called the disturbance term and 
i=1…n, with n the number of persons.  
.  
 

 
iiii exbxbby ++++= ...22110
 (1.1.1) 

 
In principle, the number of explanatory variables is not limited, but for simplicity 
reasons the model here considered as an example includes only one 
independent variable. The number of errors of driver i is predicted by his/her 
number of years driving experience3. This relation is modelled in 1.1.2   
 

 iii eerienceyearsbberrorsdriving ++= exp__ 10  (1.1.2) 

 
 

The parameters or coefficients (here 0b , and 1b ) quantify the relation between 

the independent and the dependent variable. The intercept 0b  indicates the 

average value of the dependent variable when all independent variables are 
zero. Here the intercept is the number of errors at 0 years experience, i.e. 

during the year following receiving one’s driving licence. The coefficient 1b  

                                            
2
 Different research traditions (e.g., multilevel and time series modelling) have generated 

different terms for the same concepts. They are listed next to each other here to enable the 
reader to make the link. 
3
 The relation between experience and the number of errors is not linear. In practice this could 

be solved by transforming one of both variables or applying nonlinear models (see, e.g. section 
3.2.3). For simplicity sake the nonlinearity will be ignored at this point. 
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indicates how much the average number of errors decreases with each year of 
driving experience.   
 
A statistical model determines an expected value for each observation on the 
basis of the independent variables. However, in practice the independent 
variables can never perfectly predict the value of the dependent one; the 
observations always depart from the values predicted. Every useful statistical 
model therefore has a fixed or deterministic or structural part -- the variation in 
the dependent variable that can be predicted by the independent variables -- 
and a random or stochastic part -- the variance that cannot be predicted, the 
error or disturbance. 

1.1.2 Assumptions of statistical models and their violations 

Defining the relation between variables in equations is called “modelling” 
because the equations do not describe the true relation between these 
variables; they rather give a simplified model of it. The common linear 
regression model described so far contains a number of restrictions, most 
notably the following:  
 
1. The dependent variable (y) has to follow the normal distribution.  
2. The dependent variable (y) can be expressed as a linear combination of the 

independent ones (b0+b1x1+b2x2…) 
3. The errors ei (the part in the dependent variable that cannot be explained by 

this linear function) are independently distributed across all observations. 
 
In reality, these assumptions seldom hold. Violations of the first two 
assumptions can often be dealt with in the Generalized Linear Model (GLM) 
described in sections 2.3.1 and 3.2.2 of this document. The GLM allows 
modelling observations that do not follow the normal distribution (e.g. discrete 
responses). In nonlinear models, described in section 3.2.3, relations between 
dependent and independent variables are analyzed that do not need to have 
the linear form (they can follow the exponential function, for example).  
 
The focus of the present document, however, is on the third assumption, the 
assumption of independence. A statistical model determines an expected value 
for each observation. In this way the dependency of the observed data is 
modelled in the structural part with exogenously measured factors (the 
explanatory variables). Nevertheless, the observations spread around their 
expected value. The “independence assumption” refers to this random part of 
the model. By saying that the observations must be independent, we mean that 
the deviation of any one observation from its expected value must not be linked 
to the deviation of another. 4  
 
We will present two examples showing that this assumption of independence 
can be unrealistic in road safety research. Generally, two types of commonly 

                                            
4
 In practice this means that the prediction error e is uncorrelated with x and the error 

associated with one value of y has no effect on the errors associated with other values, i.e. all 
observed autocorrelations of the errors are 0. 
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occurring dependencies in data can be distinguished: hierarchically dependent 
data and time dependent data. We will describe why these dependent data are 
problematic for the traditional statistical methods and present a variety of 
techniques allowing to deal with these problems.  
 

1.1.2.1. Hierarchically dependent data (nested data) 

In a Belgian study on speeding, cameras were set up at a large number of 
randomly selected road sites and the speed of all cars passing through was 
registered. Speeds at the same road-site are usually more similar to each other 
than data coming from different clusters. For example, if the first car recorded 
drove 30 km/h, the probability of the next car passing through with 110 km/h is 
much smaller than if the first car recorded had driven 120 km/h. As mentioned 
above, this dependency can be modelled in the structural or fixed part of the 
model, by including explanatory factors that predict the differences between 
cars at different road-sites. In our example, the speed-limit would come to mind. 
However, other characteristics of the location (e.g. quality of road, traffic count, 
… and probably some characteristics the researcher is not aware of) affect the 
driving speed as well. So it will never be possible to perfectly model the 
differences between the road-sites in the structural part of the model, which 
means that the errors will not be independent from each other, as required by 
the assumptions for linear regression. The next section describes how this 
problem can be more efficiently and elegantly dealt with by including the road-
sites into the random part of the model5. 

1.1.2.2. Time dependent data (time-series) 

For many questions in road-safety research, the annual or monthly numbers of 
road traffic accidents are considered. Again the assumption for traditional 
statistical methods would be that the numbers at each point in time show an 
independent deviation from some expected value (e.g. the overall average). 
Like in the example of road sites above (where local variations in conditions 
should be considered), the possibility should be considered that temporal 
variation in conditions stretching over multiple observations could increase or 
decrease the expected number of accidents in addition to what would otherwise 
be expected.  
 
Identifying the fact that these variations exist in a particular series of data and 
quantifying these variations over time allows the researcher to enhance 
inference and prognosis.  
 
 

                                            
5
Another source of dependency are cohort effects. Cars that follow each other closely will be 

more similar in speed than to other, more remote cars, because their speed is dictated by the 
slowest car driving in front. Again this could partly be captured by taking up traffic concentration 
in the fixed part of the model but it could be modelled more elegantly by including the cohort 
structure into the random part of the model. 
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1.1.3 What to do with dependent observations? 

In regression models the variance of a dependent variable y1, … , yn is split up 
in two parts: That part of the variance that can be predicted by a combination of 
independent variables (the fixed or structural part) and the error, the part of the 
variance that cannot be predicted (the random part). In traditional regression 
models the random part consists of only one variable (ei in equations 1.1 and 
1.2), reflecting the idea that there is only one source of random variation, the 
individual unit of measurements. 
 
With highly structured data, as we often deal with in road-safety research, this 
assumption is not realistic. Each data point must in fact be considered to be 
sampled from different populations at the same time. For nested data structures 
these populations correspond to the levels of the data hierarchy. For example 
the registered speed depends on which car had been randomly selected, but 
also on the cohort the car arrives in and also on which road-site had been 
randomly selected from the population of all road-sites in Belgium. This means 
that the prediction for this particular car contains a random effect, which is 
shared by all cars that arrived in the same cohort and another that is shared by 
all cars at a particular site. These random effects allow those cars that share it 
to deviate in similar way from the average car in the study. 
 
For time series the resulting situation is similar in that a specific structure is 
imposed on the random term, for instance by also introducing additional random 
terms. 
 
While the traditional regression models described above assume that there is 
only one source of random variation, it is important to structure the random part 
of a statistical model according to the nature of the statistical units. Multilevel 
models therefore introduce random variation at each level of the data hierarchy 
and time series models introduce random variation that is specific to the 
transition from one point in time to another.  
 
Ignoring the structure of the random variation and thus the dependence of 
residuals generally causes standard errors to be either over- or underestimated 
(see for example Rasbash et al., 2004, for a discussion focused on multilevel 
models where usually underestimation is observed), which will in turn distort the 
estimated probability of having observed a particular effect on a purely 
coincidental basis. Both consequences, (1) accepting as significant a result that 
is actually not so, and (2) rejecting a result as due to chance that is in fact not 
due to chance, can occur in sometimes unpredictable ways. 



   

1.2 The added value of Multilevel and Time Series 
Analysis 

For the development of a best practice for the analysis of complex data, it is 
necessary to give an overview of methods to deal in one way or another with 
dependencies in data. In the following the added value for road safety research 
for two families of analysis will be described separately: Multilevel modelling 
that is dedicated to data with hierarchical dependencies and time series 
analyses that are dedicated to time-dependent data.  
 

1.2.1 Multilevel models 

Heike Martensen and Emmanuelle Dupont (IBSR) 

 

1.2.1.1. Definition and conceptual issues 

There are several introductory books on multilevel analysis are available (e.g., 
Goldstein, 2003; Heck and Thomas, 2000; Hox, 2002; Kreft and de Leeuw, 
2002; Leyland and Goldstein, 2001; Snijders and Bosker, 1999) and each of 
those defines them in a specific way. However, these definitions share one 
concept, namely the concept of hierarchies or nested data structures. There are 
individuals and variables describing these individuals, but there are also larger 
units the individuals are grouped into and variables that describe these larger 
units (Raudenbush and Bryk, 2002). 
  
Multilevel models as they are presented here have mostly been developed in 
educational and social research (e.g., Aitkin & Longford, 1986, Kreft, 1994, Kreft 
et al.,1995), where many objects of investigation are hierarchically structured. 
(e.g.: pupils in classes; classes in schools; employees in departments, 
departments in firms; suspects in courts; offspring within families). However, 
structurally identical methods are commonly used in other disciplines. In bio-
medical sciences these models are often referred to as mixed-effects or 
random-effects models (Bates & Pinheiro, 1995) and are used for growth curve 
analyses, (Lindsey, 1993), survival analyses (Sargent, 1998), and 
epidemiological analyses (Diez-Roux, 2002, Carrière & Bouyer, 2002) among 
others. In econometrics the same models are known as random-coefficient 
regression models (e.g. Longford, 1993) and are, for instance, used for 
analysing risk-return tradeoffs (Lee, et al., 2006) and panel data (Swamy, 1971; 
Hsiao & Pesaran, 2004). Although the first multilevel models concerned linear 
models, they have been extended for the use of binary and count data (Lee & 
Nelder, 2001) and nonlinear analyses (Pinheiro & Bates, 1995).  
 
Although multilevel models are widespread in many scientific disciplines, they 
are relatively new to the field of road-safety research and applied only in a small 
number of studies. This is all the more concerning, as nested data structures 
are the rule rather than the exception in this field. In roadside surveys, like 
speed measurements (section 2.2), seat-belt counts (1.2.1), or alcohol controls 
(2.3.2 and 2.3.3), individual cars are nested within measurement locations. 
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Accident and victim numbers are hierarchically structured according to spatial or 
administrative units like counties and regions. The same is true for statistics 
describing enforcement activities, like the number of speeding infringements or 
alcohol controls. In section 2.3.4 and 2.4 it is described how multilevel modelling 
can be applied in such a structure and it is demonstrated that not only the 
number of accidents varies across regions in Greece, but also the relation 
between accident number and number of enforcement actions. 
 
Accidents show a hierarchical structure because drivers and passengers are 
nested in vehicles, vehicles in accidents, accidents in regions (Jones and 
Jørgensen, 2003). Moreover, multilevel models can be applied to repeated 
measurements of, for instance driving performances, where the performance 
scores are nested within the individuals that produced them (Burns et al. 1999, 
see also section 2.4 in this document). Meta-analyses (e.g., Delhomme et al., 
1999; van Driel et al., 2004) also show a nested data structure, where data 
points are nested within studies. 
 
As an example we will show a how a traditional linear regression model on a 
large sample of accidents can be extended to represent multiple levels of the 
accident. For each accident the severity of injury for each passenger is 
established. (For simplicity, we will assume that there is a quantitative measure 
of injury severity that is approximately normal distributed). Simultaneously 
possible explanatory variables, for example, age of the victim are also 
measured. The severity of injuries will to some extent be explained by the age 
of the victim. In model terms: 
 

 iii eageseverity ++= 10 ββ  (1.2.1) 

 
In the present example, we are dealing with a hierarchical data structure, 
because each injury is not only determined by characteristics of the victim, but 
also by the accident the victim was part of and the vehicle the victim was in. 
Factors such as speed, type of collision, and type of vehicle are characteristics 
of accidents that affect all victims inside a particular vehicle in the same way. As 
a consequence the injury severities of victims that have been in the same 
vehicle will be more similar to each other than to those of other victims.    
 
The solution in multilevel modelling is to assume that random variation not only 
occurs at the level of the basic measurement unit (i.e. occupant), but also at 
higher-level measurement units (e.g. the vehicle). 
 
A very simple multilevel extension of equation (1.2.1) would be to let the 
intercept β0, which indicates the general level of severity, vary across the 
secondary measurement unit j (here the vehicles).  
 

 ijijij exseverity ++= 10 ββ  (1.2.2) 

 

 jj u+= 00 µβ  (1.2.3) 
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In this model there is random variation associated with each measurement at 
the lowest level of the hierarchy (eij, e.g. random variation between victims) but 
also at a second level (uj, e.g., random variation between vehicles). Due to this 
second level variation, there is a different intercept (β0j) for each level-two unit 
(i.e. a different mean injury severity for each vehicle). In this way, multilevel 
models explicitly include a hierarchical structure resembling the one present in 
the data.  
 
The consequences of ignoring a hierarchical structure form two broad 
categories: statistical problems and conceptual problems. The first type of 
problems has been mentioned before. Due to the dependence of the 
observations in hierarchical data structures, there is a risk to underestimate the 
standard errors and therefore to consider as significant a result significant that 
is in fact due to chance (Rasbash et al., 2004). The conceptual problems result 
from the existence of variables affecting different levels in the data hierarchy 
and from their possible interactions. Variables related to higher-order levels are 
also referred to as contextual information. 
 
In the following paragraphs both types of problems (statistical and conceptual) 
will be briefly discussed and illustrated with examples from road-safety studies. 
First, consequences of ignoring dependence of nested observations are 
investigated and data from an observational study on seatbelt use are used as 
an illustration. Then, consequences of impoverished conceptualisation of 
contextual information are discussed. Finally conclusions regarding multilevel 
modelling in traffic safety are drawn. 

1.2.1.2. Consequences of ignoring dependence of nested observations 

In a Belgian study on seatbelt use (Verbeke, Vanlaar, & Silverans, 2005) 
observers were situated at 150 different road-sites. For each car passing, they 
determined the gender of the driver and the front passenger and whether they 
were wearing a seat-belt or not. In total, this information could be determined for 
21.785 cars.  
 
Because of the sampling plan, the individual cars were not selected 
independently from each other but in clusters. Due to randomly selecting a 
number of road-sites (the clusters) first, not all Belgian cars (and their inmates) 
had the same probability to be observed. The sampling strategy resulted in a 
hierarchical data-structure. Many factors that possibly affect seat-belt use (e.g. 
design speed of the road, weather, time of the day) are the same for all 
participants observed at the same road site and as a consequence the 
probability of car-inhabitants wearing seat belts will be more similar for cars 
measured at the same road site than for cars recorded at different ones. 6 

                                            
6
 Another possible clustering effect in seatbelt observation studies could be that of occupants of 

the same car. Indeed, it is reasonable to assume that the seatbelt wearing behaviour of one 
person is more similar to occupants of the same car as it is to that of other cars’ occupants. The 
dependence introduced by such a “car effect” does however not apply to the Belgian study 
discussed here, because the road-side observers in this study registered either whether the 
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The problem of dependent observations in complex sampling designs is not a 
new one and for the analysis of such designs elaborate correction procedures 
are available to correct the standard errors (Cochran, 1963; Kish, 1965; Levy 
and Lemeshow, 1999). Addressing this problem with multilevel modelling as 
demonstrated below, has however the advantage that the population structure, 
insofar as it is mirrored in the sampling design, is not only seen as a ‘nuisance 
factor’ but can be used to collect and analyse data about the higher level units 
in the population Goldstein (2003: p. 5). 
 

Single-level logistic model Two-level logistic model Parameter 

Logit 
coefficients 

s.e. P Logit 
coefficients 

s.e. p 

Fixed parameters      
       
Intercept 0.883 0.169 0.000 0.776 0.184 0.000 
Passenger -0.260 0.130 0.046 -0.205 0.132 0.120 
Male -0.663 0.121 0.000 -0.670 0.114 0.000 
Wallonia -0.454 0.158 0.004 -0.510 0.182 0.005 
Brussels -0.583 0.137 0.000 -0.365 0.140 0.009 
50km/h 0.648 0.137 0.000 0.649 0.171 0.000 
70km/h 0.921 0.171 0.000 0.665 0.155 0.000 
90km/h 0.461 0.159 0.004 0.433 0.191 0.023 
120km/h 0.795 0.173 0.000 0.811 0.188 0.000 
Weekday night -0.092 0.214 0.667 0.037 0.156 0.813 
Weekend day -0.091 0.142 0.522 0.151 0.139 0.277 
Weekend night 0.312 0.156 0.046 0.197 0.166 0.235 
       
Random parameters      
       
Level 2 
variance: uΩ  

n.a. n.a.  0.197 0.039  

Level 1 
variance: eΩ  

1.000 0.000  1.000 0.000  

Table 1.2.1: Results from Vanlaar 2005a: Comparison of logit coefficients and s.e. of a 
single-level and a two-level model regarding seatbelt use 

 
To demonstrate how the dependence of observations causes standard errors to 
be underestimated, Vanlaar (2005a) compared results from a single-level model 
that does not take the similarity into account to those from a two level model, 
which explicitly includes road-sites as a source of variation. The results from 
both models are presented in Table 1.2.1. 
 
The coefficients estimated in both models by Vanlaar (2005a) concerned the 
type of occupant (Passenger as opposed to driver), gender (Male as opposed to 
female), the region (Wallonia and Brussels as opposed to Flanders), the speed-

                                                                                                                                
driver wore a seatbelt or whether the front passenger wore a seatbelt but never both for the 
same car. 
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regime (50km/h, 70km/h, and 120km/h as opposed to 30 km/h) and the time of 
testing (Weekday night, Weekend day, and Weekend night as opposed to 
weekday at daytime). Even though the significance levels of most variables 
were the same in both the single-level and the two-level model, Vanlaar pointed 
out there were two variables for which this was not the case. Those two 
variables were Passenger and Weekend night. Both were significant at the 5%- 
level in the single-level model. However, these effects were no longer significant 
according to the two-level model. 
 
The proportion of level-two variance estimated in the two-level model was 
significant, which indicated that the data did indeed have a hierarchical 
structure. This example by Vanlaar (2005a) demonstrated that ignoring this 
structure can lead to erroneous conclusions. As he warned, based on the 
significant negative coefficient of front-seat passengers compared to drivers in 
the single-level model (meaning that the odds of front-seat passengers to wear 
a seatbelt are lower than those of drivers) it could for example be decided to 
make front-seat passengers a special target group in a mass media campaign. 
However, the two-level model suggested that the difference in seatbelt use 
between those two groups does not exceed the chance-level. More generally, 
single-level models applied to multilevel structures can lead to overconfident or 
even plain incorrect conclusions. 
 

1.2.1.3. Consequences of impoverished conceptualisation of contextual 
information 

Many problems in traffic research cannot be understood correctly if only one 
level is regarded. As an example, consider the following question: Are pedal 
cyclists safer on roads with cycle paths as compared to roads without? The 
Netherlands have by far the highest percentage of roads with cycle paths in 
Europe. They also have the highest rate of accidents involving cyclists. Should 
we conclude that the presence of cycle paths puts cyclists in particular danger? 
Probably not. This wrong conclusion would rise from trying to answer a question 
concerning the individual level (here the roads that do or do not have cycle 
paths) with data concerning the group level (here the countries), a tendency that 
is known as the ecological fallacy (Robinson, 1950).  
 
In order to avoid the ecological fallacy, one might focus exclusively on the 
individual level. This strategy, however, might also lead to incorrect or at least 
incomplete conclusions. For example, it is possible that in the Netherlands there 
is no difference with respect to the number of cyclist accidents between roads 
with and without cycle paths. The reason would be that the only roads without 
cycle paths are those that are relatively safe for cyclists and that other road 
users are used to watch out for them. This would however, not be true in 
countries with fewer pedal cyclists and a smaller percentage of roads with cycle 
paths. The difference between cycling on roads with and without cycle path is, 
therefore, affected by country-level variables (overall number of pedal cyclists, 
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extension of cycle path network) as well. To ignore these higher-level effects is 
called the individualistic (or psychologistic) fallacy (Diez-Roux, 2002)  
 
The interactions between variables measured at different levels in hierarchically 
structured data are referred to as cross-level interactions (Kreft and de Leeuw, 
2002). The examination of cross-level interactions is also called contextual 
analysis which has been developed in the social sciences. There, the focus is 
on the effects of the social context on individual behaviour, which gave rise to 
the need to consider variables at different levels simultaneously. This has been 
the motivation for the development multilevel models in the first place (Hox, 
2002; Snijders and Bosker, 1999).  
 
Likewise, many road-safety problems involve relationships between micro-level 
(e.g. presence of cycle-paths) and macro-level variables (e.g. overall number of 
pedal cyclists). These complex problems could not be solved with analyses on 
either aggregated or data disaggregated. Multilevel modelling overcomes these 
obstacles in an elegant and productive way. 
 

1.2.1.4. Conclusion 

Although multilevel models are common in many scientific areas, they are 
relatively new to the field of traffic safety. The advantages of multilevel 
modelling compared to statistical techniques that ignore hierarchies were 
discussed and illustrated based on two traffic safety examples. 
 
Two types of problems were demonstrated when ignoring a hierarchical 
structure in the data: statistical and conceptual. Statistical problems result from 
the underestimation of standard errors due to the dependence of nested 
observations. Data from a road-side survey on seatbelt behaviour were 
analysed according to a single-level model and a two-level model to illustrate 
this. Two effects that were significant in the single-level model were found not to 
be significant any longer when including the level of road-sites into the model. 
The model that ignores the hierarchical data structure would therefore lead to 
erroneous conclusions regarding variables that could have an impact on 
seatbelt use and ultimately, on increasing the level of traffic safety (Vanlaar, 
2005a). 
 
The second consequence is a conceptually impoverished representation. For 
traditional types of analyses a choice has to be made considering the level of 
aggregation. Based on the example of bike-safety, it has been demonstrated 
that analyses at the country level can lead to wrong conclusions but that 
analyses that include the level of individual bikers only also leave out important 
information. As a consequence, it was argued for the need of statistical 
methods that allow the analysis of variables for different levels in the data 
structure simultaneously. 
 
Of course, multilevel modelling is no wonder-weapon. The assumptions that 
have to hold in order to apply them are plenty and will be discussed in the 
remainder of the document. However, when applied with caution, they can 
prevent overoptimistic inferences and “allow researchers to translate a research 
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problem into a design reproducing a lot of the nuances at stake and without 
giving in too drastically towards simplifying the nature of the issue under 
evaluation.”(Vanlaar, 2005a, p. 315) 



   

1.2.2 Time series models  

Jacques Commandeur (SWOV) 

 
Many road traffic data consist of observations made sequentially through time. 
Examples are the annual or monthly number of road traffic accidents in a 
country, its annual or monthly number of road traffic fatalities, its annual or 
monthly number of vehicle kilometres driven, its annual or monthly values on 
safety performance indicators, etc.. Each example is a collection of 
observations made sequentially through time.  
 
Whenever one is interested in studying and analysing such developments of 
one and the same phenomenon over time, special issues arise not encountered 
in cross-sectional data analysis. In this section we will illustrate with a simple 
example what these special issues are, and how they can be dealt with by using 
a special family of analysis techniques collectively known as time series 
models. 
 
The example consists of the log of the annual number of road traffic fatalities as 
observed in Norway for the period 1970-2003. It may be noted that the annual 
number of road traffic fatalities are count data, which are non-negative. If count 
data were analysed as they are, one could obtain predicted counts that are 
negative. By analysing them in their logarithm, however, and then taking the 
exponent of the predicted values, it is guaranteed that non-negative predicted 
counts are obtained. 
 
Since the period 1970-2003 spans 34 years, there are n = 34 observations. 
Because the observations (i.e., the annual number of fatalities) are made 
sequentially through time, they are collectively called a time series (see 
Chatfield, 2004). We will first analyse this time series with traditional linear 
regression. 
 
Typically, in traditional linear regression a linear relationship is assumed 
between a criterion or dependent or endogenous variable y, and an explanatory 
or independent or exogenous variable x such that 
 

iii bxay ε++= ,  ),0(~ 2
εσε NIDi    (1.2.4) 

 
where i = 1,..., n, and n is the number of observations. The expression 
 

 ),0(~ 2
εσε NIDi  

 

in (1.2.4) is a shorthand notation for: the residuals εi are assumed to be 
Normally and Independently Distributed (NID) with mean equal to zero and 

variance equal to 2
εσ .  
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Figure 1.2.1: Scatter plot of log of fatalities in Norway against time (in years), including 
regression line. 

 
 
Now suppose that the dependent variable y in (1.2.4) is the just mentioned 
series of the log of Norwegian road traffic fatalities. Also, suppose that the 
independent variable x in (1.2.4) consists of the numbered consecutive time 
points in the series (thus, x = i = 1, 2, ..., 34). The usual scatter plot of these two 
variables -including the best fitting line according to traditional linear regression- 
is shown in Figure 1.2.1. 
 
The equation of the regression line in Figure 1.2.1 is 
 

 ,019837.02794.6
^

ii xy −=  

 

with residual variance 0.00985827 2 =εσ . Graphically, the intercept a = 6.2794 

in model (1.2.4) is the point where the regression line intersects with the y-axis.  
Therefore, the intercept determines the ‘height’ or level of the regression line on 
the y-axis. The value of the regression coefficient or weight b = -0.019837 
determines the slope of the regression line (i.e., the tangent of its angle with the 
x-axis). 
 
The standard t-test for establishing whether the regression coefficient b = 
-0.019837 deviates from zero yields 
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Since the value of this t-test is associated with a p-value of 1E-12, the linear 
relationship between the criterion variable y and the predictor variable x is 
extremely significant. 
 
When the assumptions for traditional linear regression are valid, time is a highly 
significant predictor of the log of the number of Norwegian road traffic fatalities, 
and there is a negative relation between these two variables: as time proceeds 
the log of the number of fatalities decreases. 
 
 
However, one crucial issue has completely been overlooked in this analysis. 
The just mentioned t-test was based on the fundamental assumption that the 34 
observations in the time series are independent of one another. That the 
observations are not independent becomes more obvious by connecting the 
consecutive observations in Figure 1.2.1 with lines, as has been done in the top 
graph of Figure 1.2.2. Inspection of the latter graph shows that the observations 
in a certain year tend to be more similar to the observation of the previous year 
than to any other earlier observation. 
 
The dependencies between the observations are also reflected in the fact that 
the residuals of traditional linear regression model (equation 1.2.4) shown at the 
bottom of Figure 1.2.2 are not independent of one another. Positive values of 
the residuals in Figure 1.2.2 tend to be followed by further positive values, while 
negative values tend to be followed by further negative values. 
 
A useful diagnostic tool for investigating whether the residuals are independent 
is called the correlogram. As will be explained in more detail in Section 3.2.1.2, 
the correlogram is a graph depicting the correlations between the residuals and 
the same residuals shifted k time points into the future. These correlations are 
therefore called autocorrelations.  
 
The correlogram containing the first eight autocorrelations of the traditional 
linear regression residuals in Figure 1.2.2 takes on the form shown in Figure 
1.2.3. The two horizontal lines in the correlogram are the 95% confidence limits 

343.034/2/2 ±=±=± n . If residuals are independently distributed then all 

autocorrelations in the correlogram are close to zero, and do not exceed the 
confidence limits. The dependence in the traditional linear regression residuals 
is therefore confirmed by the fact that three of the eight autocorrelations in the 
correlogram in Figure 1.2.3 significantly deviate from zero. 
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Figure 1.2.2: Log of fatalities in Norway plotted as a time series including regression 
line (top), and residuals of traditional linear regression analysis (bottom). 
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Figure 1.2.3: Correlogram of residuals of traditional linear regression of the log of the 
Norwegian fatalities on time. 
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Generally, when the first order residual autocorrelation is positive and 
significantly deviates from zero, a positive residual tends to be followed by one 
or more further positive residuals, and a negative residual tends to be followed 
by one or more further negative residuals. As pointed out in the literature (e.g., 
Ostrom, 1990; van Belle, 2002), the error variance for standard statistical tests 
is seriously underestimated in this case. This in turn leads to a large 
overestimation of the F- or t-ratio, and therefore to overly optimistic conclusions 
about the linear relation between the dependent variable and time. 
 
Note that this is exactly what is found to be the case in the traditional linear 
regression analysis of the log of the Norwegian fatalities series discussed 
above: the first autocorrelation in the correlogram of the residuals is positive 
and significantly deviates from zero (see Figure 1.2.3), and positive residuals 
tend to be followed by one or more further positive residuals, while negative 
residuals tend to be followed by one or more further negative residuals (see 
Figure 1.2.2). All this implies that the value of -11.43 for the t-test is seriously 
flawed, and probably much too large. 
 
The problem of dependencies between the residuals in the traditional linear 
regression analysis of time series data can be solved as follows: 
1. additional predictor variables can be added to the regression of the 

dependent variable on time such that the dependencies are removed from 
the residuals; 

2. the dependent variable can be analysed with (dedicated) time series 
analysis techniques like ARMA-type, DRAG and state space models. 

 
To give an example in this introductory chapter, we illustrate how the time 
dependencies between the observations are dealt with in state space methods 
(Harvey, 1989; Durbin and Koopman, 2001). In state space methods it is 
assumed that the development over time of the system under study is 
determined by an unobserved number of components which are collectively 
called the state, and with which are associated a series of observations y1, …, 
yn. The relation between the state and the observations is specified by the state 
space model. The purpose of time series analysis by state space methods is to 
infer the relevant properties of the state given a series of observations y1, …, yn. 
State space methods handle the dependencies between the observations 
constituting a time series by absorbing them directly into the model. This again 
is achieved by allowing the intercept and/or the regression coefficient -that are 
constants in traditional linear regression- to vary over time. 
 
The dependencies in the log of the Norwegian fatalities series, for example, can 
be handled by allowing the intercept in model (1.2.4) to vary over time, as 
follows: 
 

  tttt bxay ε++= ,  ),0(~ 2
εσε NIDt   (1.2.5a) 

 

   ttt aa ξ+=+1 ,  ),0(~ 2
ξσξ NIDt   (1.2.5b) 
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where t = 1, …, n, and n is the number of observations. The second equation in 
(1.2.5b) allows the intercept (i.e., the level) to change from time point to time 
point. Moreover, in this equation dependencies in the observed time series are 
dealt with by letting the intercept at time t+1 be a direct function of the intercept 
at time t. Therefore, it takes into account that the observed value of the series at 
time point t+1 is usually more similar to the observed value of the time series at 
time point t than to other previous values in the series. 

 

Applying model (1.2.5) to the log of the Norwegian fatalities series, we find 
 

 ,019860.0- ttt

^
xay =  

 

for t = 1, …, n, with variances 0.003673572 =εσ  and 0.00359082 =ξσ . The 

values of t

^

y are plotted at the top of Figure 1.2.4, while the values of the 

residuals tε  obtained with model (1.2.5) are graphed at the bottom of Figure 

1.2.4. 

 

The first eight autocorrelations of the residuals in Figure 1.2.4 are shown in the 
correlogram in Figure 1.2.5 (see again Section 3.2.1.2 for the exact definition of 
the correlogram). None of these autocorrelations exceed the 95% limits of 
±0.343. In contrast with traditional linear regression, this indicates that the 
residuals of the state space analysis are independent of one another, and that 
the value of the t-test can now therefore be trusted. 
 

In this case, the standard t-test for establishing whether the regression 
coefficient b = -0.019860 deviates from zero yields 
 

.87.1
0.0106358

0.019860-
−==t  

 
Since the value of the latter t-test is associated with a p-value of 0.071, the 
relation between the Norwegian fatalities and time is no longer significant at the 
conventional 5% level. Moreover, since the values of the regression coefficient 
obtained with traditional linear regression and with state space analysis are 
virtually identical, the large difference between the values of the two t-tests can 
be almost completely attributed to the large differences in their standard errors: 
0.0017356 for traditional regression versus 0.0106358 for time series analysis.  
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Figure 1.2.4: Correlogram of residuals of traditional linear regression of the log of the 
Norwegian fatalities on time. 
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Figure 1.2.5: Correlogram of the residuals of state space analysis of the log of the 
Norwegian fatalities. 

 
See Durbin and Koopman (2001, Section 6.2.4) for details on how to calculate 
the denominator of the t-statistic. 
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Generally, time series analysis can serve three purposes. First, time series 
analysis can be used to obtain an adequate description of the time series at 
hand, as we have illustrated for the log of the Norwegian fatalities series. 
Second, explanatory variables other than time can be added to the model in 
order to obtain explanations for the development in the time series at hand. In 
SafetyNet, these explanatory variables are national exposure data (as collected 
in WP2), national safety performance indicators (as collected in WP3), and 
national road traffic safety measures. A third important application of time series 
analysis is the ability to predict or forecast further developments of a series into 
the (unknown) future. In traffic safety research, such forecasts can be used to 
assess whether future national safety targets are likely to be met, for example. 
 
Summarising, when dealing with observations made sequentially through time, 
statistical tests based on standard techniques like traditional linear regression 
easily result in overoptimistic or even plain incorrect conclusions, due to the fact 
that the residuals obtained with these techniques usually do not satisfy the 
model assumptions. This is true irrespective of whether the interest lies in 
descriptive analysis, in explanatory analysis, or in forecasting. 
 
Dedicated time series analysis techniques, on the other hand, explicitly take the 
time dependencies between the observations into account, thus greatly 
improving the chances of obtaining residuals that do satisfy the model 
assumptions, and allowing to reliably test whether the estimated relationships 
between dependent and independent variables in the analysis are statistically 
meaningful or not. This is not only true for the state space methods illustrated in 
the present section, but also applies to other dedicated time series techniques 
like ARIMA (see Section 3.4) and DRAG models (Section 3.5). 
 
Since many data collected in the SafetyNet project consist of observations 
made sequentially through time, it is essential that the relations between 
developments in accident data, exposure data, and safety performance 
indicators in the EU are investigated with dedicated time series analysis 
techniques. 
 
In the report the following data sets are used to illustrate the results of their 
analysis with time series models: 
- the monthly number of Austrian fatal accidents from January 1987 through 

December 2004 (Section 3.2.1); 
- the monthly number of people killed and seriously injured in road traffic in 

Greece from January 1998 through December 2003, excluding the cities of 
Athens and Thessalonica, together with the monthly number of breath 
alcohol controls and the monthly number of vehicles in circulation for the 
same period of time (Section 3.2.2); 

- the annual number of fatalities, vehicles and population from 1970 through 
2002 for seventeen member states of the European Union (Section 3.2.3);  

- the annual number of Norwegian road traffic fatalities for the years 1970 
through 2003 (Sections 1.2.2, 3.4.3, 3.6.1, 3.6.6, and 3.7); 
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- the monthly number of French road traffic fatalities from January 1975 
through December 2001, together with gasoline and diesel sales, car fuel 
price, a few weather variables, and three intervention variables: two for 
presidential amnesties concerning fines, and one for the so-called Cellier 
incident (a young woman killed by a drunk driver resulting in a lot of media 
attention); the monthly number of injury accidents and fatalities on French A-
level roads and motorways in the same time period are also considered 
(Section 3.4.5);  

- the annual number of Finnish road traffic fatalities for the years 1970 through 
2003 (Sections 3.6.2 and 3.6.6); 

the monthly number of drivers killed and seriously injured in the UK from 
January 1969 through December 1984, together with the monthly price of petrol 
in the UK and the monthly number of vehicle kilometers driven by cars for the 
same period of time, and an intervention variable for the introduction of the 
seatbelt law in February 1983 in the UK (Sections 3.4.4, 3.6.3, 3.6.4, 3.6.5, 
3.6.6 and 3.7).  



   

1.3 Overview 

In this introductory chapter, it has been demonstrated that in traffic-safety 
research data often form hierarchies (nested data) or time series. It has been 
demonstrated how the analysis of such complex designs with traditional 
techniques can lead to erroneous conclusions and two families of analysis 
techniques were presented that are able to properly represent the 
dependencies in these complex data structures.  
 
As mentioned above, the independence of the errors is not the only assumption 
that traditional regression analyses are based on. It is often stated however, 
that it is the most important one in terms of potential consequences of its 
violation. Note that this can only be regarded as a very general rule of thumb. 
Violations of the other assumptions (see above for a general introduction and 
3.2.1.2 for details) may also lead to serious, sometimes even more serious 
consequences. Nevertheless, examples of the dire consequences of ignoring 
dependence are sufficiently frequent to make it a reasonable rule of thumb. 
 
It is also important to note that the potential (combinations of) violations of the 
assumptions are abundant, any combination of dependency and distribution 
may occur. General classes of violations can be treated by available statistical 
techniques (in the software packages). With respect to the Gaussian 
assumption, the generalised linear models approach (McCullagh & Nelder, 
1989), which is commonly available in statistical software, allows to treat a class 
of Non-Gaussian distributions, that includes the Poisson and negative binomial 
distribution among others, but it does not cover all potential distributions (see 
2.3.1 and 3.2). Extensions to hierarchical models of the generalised linear 
models are available and are discussed in section 2.3. Extensions to time series 
models are currently under development. Although in practice, one might 
sometimes have to develop a completely new approach, the most important 
now implemented approaches are discussed in this best practice advice. 
 
Next to variables that do not follow the Gaussian distribution one also often 
encounters problems that involve multiple dependent variables. There are a 
multitude of techniques dedicated to this type of data, which to describe is 
clearly beyond the scope of the present document that is focused on the 
treatment of dependency. Multivariate methods are addressed only to the extent 
that they are straight forward extensions of the multilevel models presented 
(2.4, 2.5, and 2.6). 
 
To conclude, this best practice advice is focussed on the treatment of 
dependency in complex data structures and therefore introduces multilevel 
models for the analysis of nested data and time series analysis. These 
guidelines encompass two deliverables. The present document, Deliverable 7.4, 
gives theoretical back-ground and details for the two families of analyses 
sketched in this introduction. Deliverable 7.5, the manual, is developed in 
parallel with the present document. It contains practical guidelines for the 
conduction of the analyses that are introduced in this deliverable. It gives an 
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overview of the software available at the time of writing as well as examples of 
their actual implementation in exemplary chosen software. 
 
The present document is organized in two main chapters, focussing on 
multilevel modelling and time series analysis respectively. This separation is 
based on the general difference between the data structure for multilevel 
modelling and time series analyses. Typically, multilevel analyses are applied to 
data from many units of measurements (e.g. drivers, cars, counties, etc.) with 
one or relatively few observations per unit. In contrast, time series data are 
usually applied to data from one or relatively few units of measurement 
(regions, countries, etc) with many observations per unit repeated through time. 
Because of this general difference, the deliverable is structured in one chapter 
treating multilevel modelling (Chapter 2) and one treating time series analysis 
(Chapter 3). For researchers who want to analyse hierarchically structured data 
it should be enough to read the parts concerning multilevel analyses, while 
researchers interested in the analysis of time series data can restrict 
themselves to reading the parts dedicated to time series analyses. Within the 
chapters, however, information does build up across sections.  
 
In Chapter 2, the general principles of multilevel modelling are at first described 
in an intuitive way along the lines of a simplified example (Section 2.1). 
Subsequently, detailed descriptions are given for multilevel versions of analyses 
that are commonly used in traffic research. As presented in Figure 1.3.1, the 
sections are structured according to the type of dependent variable. In Section 
2.2 the multilevel version of linear regression models for normally distributed 
data are presented. In Section 2.3, this special case is placed in the broader 
framework of the generalised linear model approach, which allows to model 
data resulting from different types of distributions (Section 2.3.1). Under this 
framework models for discrete data will be presented. More specifically, in 
Section 2.3.2 it will be described how binary responses can be modelled in 
multilevel logistic regression analyses. In Section 2.3.3 the analysis two types of 
models are presented for the analysis of multinomial responses: the ordered 
proportional odds analysis and an unordered multinomial model. In Section 
2.3.4 it is demonstrated how count data can be modelled in multilevel Poisson 
regression analyses. Further it will be shown how multilevel modelling can be 
applied to analyse datasets containing repeated measurements in Section 2.4 
and multivariate responses in Section 2.5. Finally, the application of the 
multilevel approach to structural equation models will be discussed in Section 
2.6. In Section 2.7 modelling data structures that are not strictly hierarchical will 
be addressed. In particular modelling cross-classifications and/or multiple 
memberships will be addressed. In Section 2.8 recently developed estimation 
based on Bayesian modelling will be addressed.  The chapter on multilevel 
modelling is closed with conclusions (Section 2.9) containing a summary of the 
methods presented and some general recommendations for the analysis of 
hierarchical data structures. The structure of Chapter 2 is presented in Figure 
1.3.1 



  1.3 Overview 
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Figure 1.3.1: Structure of multilevel models presented in Chapter 2. 

 
 

 

Figure 1.3.2: Structure of multilevel models presented in Chapter 3. 

 
Chapter 3 begins with a short introduction to a few core issues in time series 
analysis (3.1). Section 3.2 describes traditional regression analyses models 
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(linear: 3.2.1, generalised linear model: 3.2.2 and non-linear models in 3.2.3) 
discussing possible violations of the assumption when dealing with time series 
data and the possibility to solve these problems by adding predictors variables 
such that the dependencies are removed. An introduction to dedicated time 
series analysis techniques and their application in road-safety research is 
presented in Section 3.3. In Sections 3.4 to 3.6 models dedicated to time series 
analyses are presented. The ARMA-type and DRAG approaches are discussed 
in Sections 3.4 and 3.5, while the state space methods are presented in Section 
3.6. In Section 3.7, the equivalence of ARMA-type and state space models is 
demonstrated on the basis of a few examples. The chapter on time series is 
closed with conclusions (Section 3.8) containing a summary of the methods 
presented and some general recommendations for the analysis time series. The 
structure of Chapter 3 is presented in Figure 1.3.2. 
 
Chapters 2 and 3 each present a number of analysis models for either nested 
data or time series that are relevant to traffic safety research. A standardized 
discussion format was adhered to when scrutinizing each model to maintain a 
certain consistency throughout this deliverable. Furthermore, theoretical 
considerations with respect to model building, testing and interpreting are 
explained by applying them to a real dataset. Therefore, special attention is 
given to each of the following aspects of a particular model: 
 

• Objectives of the technique 

• Model definition 

• Model assumptions 

• Research example + dataset 

• Model fit and diagnostics 

• Model interpretation 
 
This standardized format should give the reader a good insight how a particular 
model is applied, for what sort of data it is suitable and how the results can be 
interpreted. For each chapter there will also be references for a more in-depth 
treatment of the method presented.  
 
Throughout the remainder of the document readers are expected to master 
ordinary regression analysis. Given the different levels of complexity of the 
models described in the various chapters, the readers’ need to depend on 
earlier acquired information or on extra background material will vary. For the 
later multilevel chapters it is good to be familiar with the corresponding single 
level models (more specifically, binomial model, Poisson model, structural 
equation modelling, etc.). Similarly, references for readers who are interested in 
the background and different versions of the ARMA-type models, state space 
models, or non-linear time series analysis will be supplied. 



   

Chapter 2 - Multilevel Modelling 
In the introductory chapter it has been shown that many research problems in 
the area of road-safety contain hierarchical data structures and how this 
challenges the use and interpretation of traditional analysis. In the following 
sections it will be demonstrated in detail how the problems sketched in the 
introduction can be solved by the application of multilevel models. To 
understand the structure of Chapter 2 the reader has to keep in mind that 
multilevel modelling is not one type of analysis. It does not even denote one 
class of analyses; rather it is a technique that has to be applied to traditional 
statistical analysis of different types. In the last decennium, the problem of 
hierarchical data structures for traditional analyses7 has been widely recognised 
and as a consequence the multi-level approach has now been implemented in a 
wide range of techniques of analyses (Kreft and de Leeuw 2002). Structurally 
identical models are also know as mixed effects or random effects models (e.g., 
Bates & Pinheiro, 1995) or as random coefficient regression models (e.g., 
Longford, 1993) 
 
In Section 2.1, the general principles of multilevel modelling are at first 
described in an intuitive way along the lines of a simplified example. 
Subsequently, detailed descriptions will be given for multilevel versions of 
analyses that are commonly used in traffic research. Sections 2.2 and 2.3 are 
dedicated to describing multilevel regression models in more detail. In Section 
2.2 the multilevel version of linear regression models for normally distributed 
data are presented, while in Section 2.3, the analysis of discrete response data 
will be described. The introduction to this section (2.3.1) places the special case 
of linear models into the broader framework of the General Linear Model 
approach, which allows to model data resulting from different types of 
distributions. Under this framework models for discrete data will be presented. 
Specifically, in Section 2.3.2 it will be described how binary and binomial data 
can be modelled in multilevel logistic regression analyses, in Section 2.3.3 how 
multilevel models can be used to model multinomial responses in either ordered 
or unordered category models and in Section 2.3.4 it is demonstrated how 
count data can be modelled in multilevel Poisson regression analyses.  
 
Hierarchical data structures can also arise due to the structure of the variables 
that are analysed. A dataset with multiple dependent variables has several 
measurements that are nested under one person. These data structures can 
therefore be modelled with multilevel models. We will show how multilevel 
modelling can be applied to the analysis of datasets containing longitudinal data 
and other types of repeated measurements in Section 2.4 and to the analysis of 
multivariate responses in Section 2.5. In both cases, just like in the case of the 
multinomial responses, multilevel modelling is used to represent the structure of 
the responses themselves and not (at least not in the first place) that of a 
hierarchical structure from which the data are collected. Finally, in Section 2.6 a 
multilevel version of structural equation models will be presented. In Section 2.7 
modelling data structures that are not strictly hierarchical because they contain 

                                            
7
 Here and in the following, the term “traditional analyses” denotes analyses in which the 

random part is not structured – neither hierarchically nor in time. 



Chapter 2 – Multilevel modelling 
 
 

 

 

cross-classifications and/or multiple memberships will be addressed and in 
Section 2.8 recently developed estimation methods, in particular Bayesian 
estimation methods are presented. This document on multilevel modelling will 
be closed with conclusions (Section 2.9) containing a summary of the methods 
presented and some general recommendations for the analysis of hierarchical 
data structures. 
 
In each section, a standardised discussion format was adhered to, to discuss 
each model (objectives of the technique, model definition, model assumptions, 
introduction of a research example and dataset, model fit and diagnostics, 
model interpretation). 



   

2.1 An intuitive introduction to multilevel modelling8  

(Ward Vanlaar, IBSR) 

 
To appreciate the basic concepts of the multilevel approach, we first work with a 
two-level model with drivers at level 1 nested in road sites at level 2 and two 
variables measured on a continuous scale. The example in this section is an 
artificial example as an illustration for teaching purposes. Each driver’s speed is 
measured along with some other variables when passing by the road site. The 
dependent variable in this artificial example is speed, measured in km/h and the 
independent variable is length of the car, measured in metres and centred 
about its mean. The underlying hypothesis is that longer vehicles will correlate 
with higher speeds because a longer vehicle has a more powerful engine. Note 
that this hypothesis is rather naively formulated for the sake of clarity in this 
artificial example and that it does not necessarily bear real social relevance. 
 
In a multilevel model distributional assumptions are made at each level of the 
model, in this case at level 1 – drivers – and at level 2 – road sites. The 
distributional assumptions at the lower level are assumptions about the variation 
between drivers; this is comparable to the distributional assumptions in the 
traditional regression model. The distributional assumptions at the higher level 
are assumptions about the variation between road sites. Road sites too are now 
allowed to vary and this variation is summarized in a distribution. For example, 
road sites can have different intercepts and slopes and they are assumed to be 
normally distributed around the overall intercept and slope. These distributions 
at higher levels are called higher-level distributions. Figures 2.1.1a - f (after 
Jones, 1993) give a range of possible models and the higher-level distributions 
for the corresponding slope and intercept. These higher-level distributions are 
the result of the existence of several intercepts and slopes at level 2, 
corresponding to road sites. Put another way, instead of one regression line 
with one intercept and slope, there are several regression lines, one per road 
site, each with their corresponding intercept and slope. The slopes measure the 
increase in speed associated with a unit increase in length for each road site. 
Since the vertical axis in these graphs is centred at the mean of length, the 
intercepts correspond to the speed of a car of average length per road site. In 
figure 1a the speed/length relation is shown as a straight line with a positive 
slope; longer cars drive faster. In this graph no account is taken of context; 
place – i.e. road site – does not matter for the speed of drivers and the 
relationship is conceived only in terms of individual characteristics. This is 
remedied in 1b with each of the different road sites (seven in this figure) having 
its own speed/length relation represented by a separate line. These parallel 
lines imply that, while the speed/length relation on each road site is the same, 
some road sites have uniformly higher speeds than others, which is easily 
explained by the existence of different speed limits. The lowest line could for 
example represent a road site with a speed limit of 30km/h, while the upper line 
could represent a road site with a speed limit of 120km/h. 
 
                                            
8
 In this section the same format appears as in Jones (1993). Dr. Kelvin Jones kindly gave his 

permission to use this format. 
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Figures 2.1.1a to f: Higher level distributions for road sites’ intercepts and slopes – 
regression of speed against car length depending on road sites (graphs on left hand 
side); dot plot for the distribution of the slopes and intercepts separately, with the 
variable length centred about its mean (centre); scatter plot of the joint intercepts and 
slopes distributions, with the variable length centred about its mean (right hand side). 
Adapted from Jones, 1993, p. 251   
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The situation becomes more complicated in 2.1.1c to 2.1.1f as the steepness of 
the lines varies from road site to road site, i.e. each line, representing a road 
site, has a different slope, while in 2.1.1b only the intercepts of the lines 
differed. In 2.1.1c the pattern is such that road site makes very little difference 
for small cars, but road sites have very different speeds for longer cars. An 
explanation could be that the maximum speed of small cars is so low that they 
can only reach the lowest speed limit of 30km/h, e.g., if the car fleet of a town 
would be composed exclusively of small electronic cars, while long powerful 
cars can easily reach higher speeds leading to a more diverse speed pattern 
depending on the different existing speed limits at road sites. In contrast, figure 
2.1.1d shows relatively large road site-specific differentials for small cars. A 
possible explanation could perhaps be found in the attitude of drivers of 
powerful cars: those drivers tend to speed regardless of the speed limit and 
therefore their speed distribution over different locations has a very small range, 
while drivers of smaller cars are more conscientious and tend to respect the 
speed limits resulting in a broad range of speeds. Note again that these 
possible explanations are only given for didactical reasons; they don’t 
necessarily reflect a relevant or true idea. 
 
The next graph, 2.1.1e, with its criss-crossing, represents a complex interaction 
between length and road site. Steep lines, indicating strong relationships 
between the dependent and independent variable, can both be seen at road 
sites with a high speed limit and with a low speed limit. At some road sites small 
cars have relatively high speeds, in others long cars have. An explanation could 
probably be found in other road site-specific characteristics besides the speed 
limit. Finally, plot 2.1.1f shows that small cars drive with the same speed, 
regardless of the road site, while the speed of powerful long cars differs 
according to the road site. This pattern is similar to 2.1.1c, but this time this 
difference is achieved by some road sites having a high speed for long cars, 
while at other road sites long cars drive at a lower speed than small cars. An 
explanation could be the architecture of the roads in combination with the 
attitude of car owners. Car owners of long powerful – and thus exclusive and 
expensive cars – will treat their car with a lot of care. Such drivers will take 
speed bumps in a low speed regime very prudently and therefore perhaps even 
drive slower than the maximum limit. Car owners of small cars could be less 
considerate about their car and thus take speed bumps at a more appropriate 
speed. 
 
“The differing patterns of Figure [2.1.1] are achieved by varying the slopes and 
intercepts of the lines. […] The key feature of multilevel models is that they 
specify the potentially different intercepts and slopes for each road site as 
coming from a distribution at a high level” (Jones, 1993, p. 250). Figure 2.1.1 
also shows the higher-level distributions for the slope and intercept that 
correspond to the different graphs. A separate dot plot for the distributions of 
the slopes and intercepts and a scatter plot of the joint distribution can be found 
in the centre part and the part at the right hand side of Figure 2.1.1. These 
distributions concern road sites, not individuals, and result from treating road 
sites as a sample drawn from a population of road sites. “It can be seen that: 



Chapter 2 – Multilevel modelling 
 
 

 

 

Figure 1a is the result of a single non-zero intercept and slope; Figure 2.1.1b 
has a set of intercepts, but a single slope; Figures 2.1.1c-2.1.1f have sets of 
intercepts and slopes” (Jones, 1993, p. 251). 
 
“The different forms of Figures [2.1.1]c to f are a result of how the intercepts and 
slopes are associated” (Jones, 1993, p. 252). In Figure 2.1.1c the speed/length 
relation is strongest at road sites where the average speed is high (as indicated 
by a greater intercept); a steep slope is therefore associated with a high 
intercept, meaning there is positive association between the intercepts and 
slopes, as shown on the right hand side of the figure. In contrast, in Figure 
2.1.1d road sites where the average speed is high have a weak speed/length 
relationship: a high intercept is associated with a shallow slope. Consequently, 
there is a negative association between the slopes and the intercepts. “The 
complex criss-crossing of Figure 2.1.1e is the result of the lack of pattern 
between the intercepts and slopes” (Jones, 1993, p. 252) shown in the graph at 
the right hand side of Figure 2.1.1e. The average speed at a particular road site 
contains no information about the marginal increase in speed with length of cars 
at that road site. The distinctive feature of the final plot in Figure 2.1.1f, results 
from the slopes varying about zero so that at the “typical” road site there is no 
relation between speed and length; at some road sites the slope is positive and 
at others it is negative. 



   

2.2 Multilevel linear regression models  

In this section, graphs will be turned into equations shifting from an intuitive 
approach to a more formal, mathematical approach. For the ease of 
understanding, multilevel models will be presented for linear models. 
 

2.2.1 Basic two level random intercept and random slope 
models9 

 Ward Vanlaar (IBSR) 

 

The basic principles of 2-level models will be illustrated on the basis of the 
assessment of the relationship between the length of cars and their speed 
described in the introduction.  

2.2.1.1. Objectives of the technique 

The objectives of this technique correspond to the objectives of ordinary 
regression analysis, but in addition to that, there is also the objective of taking 
contextual information into account by letting the intercept and slope vary 
across road sites. According to Tacq (1997), the four objectives of traditional 
linear regression analysis are: 
 

• To look for a function, which represents the linear association between the 
independent variables and the dependent variable better than any other 
function. This comes down to calculating a regression coefficient for each 
independent variable. 

• To examine the strength of the relationship and to know which share of the 
variance of the dependent variable is explained by the variances of the 
independent variables together. This comes down to the calculation of the 
multiple correlation coefficient R and its square. While the concept of 
explained variance is well-known in traditional regression analysis, it is 
problematic in multilevel models according to Snijders and Bosker (1999). 

• To investigate whether the associations found in the sample can be 
generalized to the population. This corresponds to performing significance 
tests. 

• To examine which independent variable is most important in the explanation 
of the dependent variable, corresponding to calculation of the beta weights. 

 

2.2.1.2. Model definition  

2.2.1.2.1. The random intercept model 

According to Jones (1993, P. 252) all statistical equations have in essence the 
same underlying structure, which can be expressed verbally as: 
 

                                            
9
 In this section the same format appears as in Jones (1993). Dr. Kelvin Jones kindly gave his 

permission to use this format. 
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RESPONSE =  SYSTEMATIC  + FLUCTUATIONS 
COMPONENT 
 

Or 
 
RESPONSE  =  FIXED   + RANDOM PARAMETERS 

PARAMETERS 
 
In the case of a single-level bivariate model, i.e. the usual simple regression 
model (cf. figure 1a), the general verbal equation becomes: 
 

 iii exy ++= 110 ββ  (2.2.1) 

 
where 
 

• subscript i signifies an individual respondent; 

• y and x measure the dependent and independent variables, namely the 
speed and length of a car; 

• 0β  and 1β  are fixed and unchanging parameters, namely the intercept and 

the slope; the former, when x is centred about its mean, represents the 
speed of a car of average length; the latter is the change in speed for an 
increase in length with one metre; 

• e signifies the random part which allows for fluctuations around the fixed 
part, where the term random simply means “allowed to vary”. 

 
This equation is specified only at the micro-level of the individual. To build a 
multilevel model the micro-model has to be re-specified by distinguishing road 
sites with the subscript j. For the random intercept model (cf. figure 2.1.1b) this 
yields: 
 
 

ijijjij exy ++= 110 ββ  (2.2.2a) 

 
There is one macro-model at the road site level: 
 

 jj u000 += ββ  (2.2.2b) 

 

This macro-model allows for the differential road site intercept ( j0β ) to vary from 

road site to road site around the overall intercept ( 0β ) by adding the random 

term ju0 . 

 
The micro model is seen as a within-road site equation, while the macro model 
is a between-road site equation in which the parameter of the within model is 
the response (Jones, 1993). Both equations are combined to form the random 
two-level model: 
 
 ( )ijjijij euxy +++= 0110 ββ  (2.2.2c) 
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All the elaborations have come in the random part, because in addition to 
allowing individual cars to vary, road sites have been allowed to vary in having a 
differential speed for a car of average length. Such models in which the 
intercept is the only term allowed to vary at level two are commonly referred to 
as “variance components models” (Rasbash, Steele, Browne, & Prosser., 
2004).  

2.2.1.2.2. The random intercept/random slope model 

The formulas look as follows if the slope is also allowed to vary from road site to 
road site in addition to a random intercept (cf. figures 2.1.1c-f). The micro 
model: 

 
 

ijijjjij exy ++= 110 ββ  (2.2.3a) 

 
and the two macro-models at the road site level: 
 

 jj u000 += ββ  (2.2.3b) 

 
 

jj u111 += ββ  (2.2.3c) 

 
These two macro-models allow respectively for the differential road site 

intercept ( j0β ) to vary from road site to road site around the overall intercept 

( 0β ) by adding the random component ju0  and for the differential slope ( j1β ) to 

vary around the overall slope ( 1β ) by adding the random component ju1  (Jones, 

1993). 
 
Again, the micro model is seen as a within-road site equation, while the macro 
models are two between-road site equations in which the parameters of the 
within model are the responses. Note that this is easy to see when using the 

notation with ije  as part of the micro model as opposed to the macro model 

because then only the micro-model contains both subscripts i and j, referring to 
a within situation, while the macro-models then only contain subscript j, referring 
to a between situation. All three equations are combined to form the fully 
random two-level model: 
 
 ( )ijjijjijij euxuxy ++++= 011110 ββ  (2.2.3d) 

 
All the elaborations have come in the random part, because in addition to 
allowing individual cars to vary, road sites are also allowed to vary in having a 
differential speed for a car of average length, and a differential speed/length 
relationship (Jones, 1993). 
 
As with any other statistical distribution, and making the usual assumptions of 
normality, homogeneity and independence, these higher-level distributions can 
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be summarized by measures of the centre, the mean, and spread around the 
centre, the variance. Relations between the slope and intercept distributions 
can be summarized by a measure of covariance. “Thus, the higher-level 

distributions can be summarized in terms of the fixed part (the means 0β  and 

1β ) and the random part (the variances 2

0uσ and 2

1uσ , and the covariance 
10uuσ )” 

(Jones, 1993, p. 253). 
 
Table 2.2.1 (after Jones, 1993) summarizes Figure 2.1.1 in terms of these 
parameters. Estimates of these terms effectively summarize the extent to which 
places differ. The various combinations of substantial and close-to-zero 
estimates for the variance/covariance tell us in a quantitative manner the way in 
which context matters. The case of Figure 1f is interesting in this regard, 
because it suggests that the usual single-level model would find that across the 
sample there is no relation between speed and length, but the multilevel model 
would reveal differing relationships at different road sites. If all the variance 
terms of the higher-level distributions are effectively zero, there is no 
contextuality and thus there is no need for macro models. These variations in 
speed are adequately described in terms of a micro model based solely on 
individual attributes (cf. Figure 2.1.1a). 
 

 Intercepts Slope Intercept/slope 

 Mean Variance Mean Variance Covariance 

Graph 
0β  2

0uσ  1β  2

1uσ  
10UUσ  

A + 0 + 0 / 

B + + + 0 / 

C + + + + + 

D + + + + - 

E + + + + 0 

F + + 0 + + 

      

Table 2.2.1: Figure 2.1.1 represented as parameters for two higher-level distributions 
(where + is positive, different from zero and where – is negative, different from zero) 

2.2.1.3. Heteroscedasticity 

Multilevel models share with many traditional models the assumption that the 
residuals at each level are homoscedastic, i.e., have constant variance and 
covariances, and do not depend on the particular values of the explanatory 
variable(s) included in the model. This assumption is partially relaxed, however, 
once random slopes are specified in the model: Variances at one or both levels 
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are assumed to depend linearly or quadratically on one or more of the 
explanatory variable(s)10.  
 
The following reasoning, borrowed from Snijders and Bosker (1999), and 
applied to our speed example, illustrates this feature of multilevel models. In 
case of a fanning-in pattern (see figure 2.1.1d) a random slope for the effect of 
car length on speed would indicate that road sites affect the speed of small cars 
to a larger extent than the speed of large cars. This can be seen in figure 2.1.1d 
as the lines representing the different road sites are farther away from one 
another at the lower values on the X-axis and closer to one another at the 
higher values on the X-axis. So at lower values on the X-axis (i.e. for small cars) 
there is much more variation in speed between road sites, compared to higher 
values on the X-axis (i.e. for large cars). In other words, if you drive a small car, 
which road site you are at will matter a lot and may influence your speed 
considerably, while road site does not matter if you drive a large car. This 
means that road sites add a large component of variance to the speed of small 
cars, but little or nothing to the speed of large cars. Therefore, the intra-class 
correlation for small cars (also known as the Variance Partition Coefficient 
(VPC)), defined as the proportion of the total residual variation that is due to 
differences between groups (Goldstein, 2003), will be higher than the intra-class 
correlation for large cars. This implies that, once random slopes are specified in 
a model, the intra-class correlation or VPC cannot be uniquely defined any 
longer because this residual variation (due to differences between groups; road 
sites in our case) will vary as a function of the explanatory variable’s values 
(small or large cars in this example). 

2.2.1.4. Model assumptions 

“As all statistical models, the hierarchical linear model is based on a number of 
assumptions. If these assumptions are not satisfied, the procedures for 
estimating and testing coefficients can be invalid. […] It is advisable, when 
analysing multilevel data, to devote some energy to checks of the assumptions. 
(Snijders & Bosker, 1999, p. 120)” Before investigating checks of the 
assumptions in the next section, the assumptions themselves are listed below 
(Snijders & Bosker, 1999; Rasbash et al., 2004): 
 

ije0 ~ ( )2,0
OeN σ , the level-one residuals are assumed to be Normally distributed, 

with mean zero and constant variance 2

0eσ ; 

 

ju0 ~ ( )2

0
,0 uN σ  and ju1 ~ ( )2

1
,0 uN σ , the level-two random coefficients are assumed 

to follow a multivariate Normal distribution with mean zero and constant 

variance respectively 2

0uσ and 2

1uσ ; 

 

                                            
10

 The reader is referred to Section 2.5 for a similar discussion of heteroscedasticity linked to the 
introduction of random slopes in the model, and for a mathematical description of the implication 
of random slopes in the definition of the observations’ variance and covariances.  
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Random coefficients at level 1 ( ije ) and at level 2 ( 2

0uσ , 2

1uσ  ) are assumed to be 

uncorrelated; 
 

( )Ω= ,XBNy ij , the response variable is assumed to be Normally distributed, 

where XB is the fixed part of the model and Ω  represents the variances and 
covariances of the random terms over all the levels of the data. 

2.2.1.5. Research problem 

As explained in the previous section the basic two level model will be explained 
using an artificial example about the influence of length of a car on the speed of 
that car. The underlying hypothesis, formulated for teaching purposes only, is 
that longer vehicles will correlate with higher speed as a longer vehicle has a 
more powerful engine. 

2.2.1.6. Dataset 

The dataset used consists of a sample of n=4994 drivers (of cars and 
motorbikes) passing by m=131 road sites out of a real dataset, which was 
collected in Belgium for epidemiological purposes. Each driver’s speed is 
measured as a continuous variable in km/h along with some other variables 
when passing by the road site, the most important being the independent 
continuous variable length of the car, measured in metres and centred about its 
mean. 
 

2.2.1.7. Model fit and diagnostics 

2.2.1.7.1. The variance partition coefficient (VPC) 

The VPC is the proportion of the total residual variation that is due to 
differences between groups (Goldstein, 2003), more precisely between road 
sites in our example. It is also referred to as the intra-class correlation (Snijders 
& Bosker, 1999), which measures the extent to which the y-values of individuals 
in the same group resemble each other as compared to those from individuals 
in different groups11. However, the former interpretation is the more usual one 
(Rasbash, 2004). The VPC is denoted by: 
 

 
22

2

00

0

eu

u

σσ

σ

+
 (2.2.4) 

 
In our example the VPC for the random intercept model with length as 
explanatory variable is 0.749, meaning that almost 75% of the variation is due 
to differences between road sites. This is a strong indication that clustering 

                                            
11

 As it has been noted earlier, the VPC cannot be uniquely defined once random slopes are 
included in the model. Snijders & Bosker (1999) propose alternative solutions to partition the 
observations’ variance between the different level of analysis for models including random 
slopes. 
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effects are not to be disregarded in this dataset and that a multilevel approach 
is preferable. 
 

2.2.1.7.2. Deviance test 

“The deviance test, or likelihood ratio test, is a quite general principle for 
statistical testing. […] The general principle is as follows. When parameters of a 
statistical model are estimated by the maximum likelihood (ML) method the 
estimation also provides the likelihood, which can be transformed into the 
deviance defined as minus twice the natural logarithm of the likelihood. This 
deviance can be regarded as a measure of lack of fit between model and data, 
but (in most statistical models) one cannot interpret the values of deviance 
directly, but only differences in deviance values for several models fitted to the 
same data.” (Snijders & Bosker, p. 88). 
 
The deviance can thus be used to make an overall comparison of a more 
complex model with a less complex one, e.g., for the comparison of the model 
containing only the constant term with the model with length as an explanatory 
variable. The difference between minus twice the natural logarithm of the 
likelihood (-2xloglikelihood, see Tables 2.2.2. to 2.2.4) of both models follows a 
chi-square distribution with the number of degrees of freedom equal to the 
difference in the number of parameters being estimated in both models. This 
chi-square value can be tested against the null hypothesis that the extra 
parameters have population values of zero (Rasbash et al., 2001). 
 
First, the simplest model of all is fitted, i.e. the model in which the intercept is 
specified as random at level 2, and in which no explanatory variables are 
included. For obvious reasons, such a model is referred to as the “null” or 
“empty” model. The value of the deviance for this null model is 45262.130 (cf. 
Table 2.2.2). Then, this empty model is extended by adding a fixed slope, 
representing the effect of car length on speed. The deviance obtained in this 
case corresponds to 45192.320. Both models can now be compared by 
performing the deviance test. Subtracting the deviance value of the variance 
component model with a fixed slope for car length (the “more complex model”) 
from the deviance value of the empty model (the “less complex model) yields a 
value of 69.81. One extra parameter is estimated in the more complex model. 
Therefore the associated degree of freedom is 1. Testing this value as a chi-
square value of 69.81 with 1 degree of freedom against the null hypothesis 
shows that this decrease is highly significant (p=0.000), indicating that the more 
complex model is the better model. Put another way, the deviance decreased 
after having elaborated the model, meaning the model fit improved.  
 
The same conclusion can be drawn when shifting from the random intercept 
model to the full random model. The decrease corresponds now to 290.82 
(45192.32 minus 44901.50) with 2 degrees of freedom (two additional 

parameters have been estimated, namely, 
2

1uσ and
2

0uσ ) . This yields a p-value of 

0.000 and is thus highly significant. 
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2.2.1.7.3. Residuals 

Estimated residuals at any level can be used to check model assumptions 
(Rasbash et al., 2004). The residuals at each level are assumed to follow 
Normal distributions (see Section 2.2.1.4). At level 2, these residuals are 
interpreted as group effects, i.e. road site effects, while at level 1, residuals are 
in general interpreted as the individual error terms. 
 

 
 

 

 
 

Figure 2.2.1: Normal probability plot of residuals for the random intercept model with 
speed and length, centered about its mean, at level 1 (left side) and 2 (right side) 

 
 

 
 

 

 
 

Figure 2.2.2.: Normal probability plot of residuals for the random intercept model with 
the natural logarithm of speed and length, centered about its mean, at level 1 (left 
side) and 2 (right side) 

 

 

Parameter Null model 
Random intercept 

model 
Full random 

model 

 Estimate (s.e.) Estimate (s.e.) Estimate (s.e.) 

Fixed    
  Intercept 68.69 (3.27) 68.88 (3.24) 68.95 (3.24) 
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  Length / 2.30 (0.28) 1.69 (0.47) 
Random    
  Level 2    

    2

0uσ  (intercept) 1358.94 (173.03) 1333.18 (169.37) 1334.85 (169.70) 

   
10 uuσ   

(covariance) 
/ / -15.51 (17.42) 

    2

1uσ  (length) / / 12.82 (3.16) 

  Level 1    

    2

0eσ  452.70 (9.18) 446.48 (9.05) 412.75 (8.46) 

-2xloglikelihood 45262.13 45192.32 44901.50 
    

Table 2.2.2 Estimates for the null, variance components, and full random models, with 
car length as a continuous explanatory variable 

 
Clearly, the residuals in Figure 2.2.1 do not follow a normal distribution as their 
normal probability plot does not correspond to a straight diagonal, meaning 
those assumptions are violated. Therefore, care is warranted when estimating 
and testing the regression coefficients of the model. A solution could be to 
transform the dependent or independent variables, for example by calculating 
their natural logarithm. Figure 2.2.2. contains normal probability plots for the log 
transformed data. The situation at level 2 has improved as the level 2 residuals 
seem to follow the Normal distribution more closely after having transformed the 
data. However, the residuals at level 1 are still problematic. Model fit issues will 
be studied more extensively in the following chapters when elaborating on the 
different models. 

2.2.1.8. Model interpretation 

2.2.1.8.1. Random intercept model12 

The coefficients of the random intercept model are interpreted as follows: (see 
Table 2.2.2) On average, over all road sites, the speed of a car with an average 
length is 68.88km/h. Obviously, there is a lot of variation over road sites, due to 
the different speed limits at road sites. This was revealed by the VPC. 
 
For each increase of one length unit of a car, the speed of that car increases 
with 2.30km/h. Put another way, there is a positive relationship between length 
of a car and speed of that car. 
 
The question now is whether this positive coefficient is significantly different 
from zero. The answer can be found by comparing the value of the coefficient 
with its standard error. In our case the standard error is 0.28. Clearly the 

                                            
12

 Because they allow the calculation of the Variance Partition Coefficient, and thus the 
partitioning of the variance of the observations between the two levels, random intercepts model 
are also sometimes referred to as to “Variance Components Models”.  
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coefficient is significant as it is much greater than twice the value of its standard 
error.  

2.2.1.8.2. Random intercept/random slope model 

The main difference between the random intercept model and the full random 
model (i.e. the random intercept/random slope model) is the random slope, 

indicated by 2 extra parameters (
10uuσ , 2

1uσ ) in the random part at level 2. A 

deviance test comparing the -2 loglikelihood value of the random intercept 
model to the one of the full random model clearly indicates that the inclusion of 
these two parameters significantly improved the model’s fit 

( )001.,37.2552

2 <= pχ . 

 
Different road sites can now have different slopes besides different intercepts. 

The variation between the different slopes is summarized by 2

1uσ . There is a 

significant difference between the slopes of the different road sites since the 
value of the parameter (12.82) is greater than twice the value of its s.e. (3.16).  
 
The average slope over all road sites is 1.69 (s.e.=0.47), meaning that a one 
unit increase of length of a car results in an average increase of speed with 
1.69km/h. 
 
 

 
 

Figure 2.2.3: Regression lines of speed against car length (centred) for the various 
road sites 
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Figure 2.2.4: Small (<4.3m) and long cars’ (>=4.3m) speed as a function of road sites 

 
Note that the model also contains a value of the covariance between the 

random level 2 parameter for the intercept ( 2

0uσ ) and length ( 2

1uσ ). Its value 

equals -15.51 with a standard error of 17.42. Although this value clearly is not 
significant, its negative sign indicates a fanning in pattern (see figure 2.1.1d and 
Figure 2.2.3). In other words, a greater intercept corresponds to a smaller slope. 
The pattern is more easily discerned on figure 1d than on the graph based on 
our dataset. A possible explanation may be the attitude of drivers of powerful 
cars differs: those drivers tend to speed regardless of the speed limit and 
therefore their speed distribution over different locations has a very small range, 
while drivers of smaller cars are more conscientious and tend to respect the 
speed limits resulting in a broad range of speeds. 

2.2.1.9. Extending the model 

So far a bivariate two-level model with continuous variables on level 1 has been 
considered. Two important extensions of this model will now be discussed. First 
a model with a categorical explanatory variable will be studied. Second, higher 
level explanatory variables and contextual effects will be considered 

2.2.1.9.1. Categorical explanatory variables 

According to Jones (1993), level 1 categorical explanatory variables present no 
special problems and multilevel models can be specified in which some or all of 
the explanatory variables consist of categories. A random intercept/random 
slope model with an independent variable with two categories is achieved by 
specifying a micro-model with two dummy variables (having a value 0 or 1). In 
our example the continuous independent variable length could for example be 
divided in two categories: small cars and long cars. The micro-model looks as 
follows:
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Parameter Null model 
Random intercept 

model 
Full random 

model 

 Estimate (s.e.) Estimate (s.e.) Estimate (s.e.) 

Fixed 
 

   

  Intercept 68.69 (3.27) 65.03 (3.28) 65.01 (3.48) 
  >4.3 meter 
 

/ 4.97 (0.76) 5.11 (1.33) 

Random 
 

   

  Level 2    

    2

0uσ  (intercept) 1358.94 (173.03) 1333.86 (169.48) 1472.44 (195.63) 

    
10 uuσ  

(covariance) 
/ / -132.28 (55.11) 

    2

1uσ  (length) / / 99.286 (24.49) 

  Level 1    

    2

0eσ  452.70 (9.18) 448.92 (9.104) 418.31 (8.57) 

-2xloglikelihood 45262.13 45218.96 44963.59 
    

Table 2.2.3: Estimates for the null, variance components, and full random models, with 
car length as a categorical explanatory variable 

 
 

(2.2.5a) 
 

and additionally two macro-models: 
 

(2.2.5b) 
 

(2.2.5c) 
 

 
If the reference category is small cars (<4.3 meters) and the dummy variable x 
represents long cars (>4.3 meters), this model allows cars of different length at 
different road sites to have different speeds (cf. Figure 2.2.4). The solid lines in 
the figure represent the overall general relationship indicating that smaller cars, 
on average, drive slower than longer cars. However, at road site 5 a pattern is 
discerned that differs from the overall general relationship, more precisely, at 
that site, on average, long cars drive slower than small cars. 

 
Table 2.2.3 contains the estimates of the null model, the random intercept 
model and the full random model. According to the random intercept model 
drivers of long cars (>4.3 meters) drive on average 4.97 km per hour faster than 
drivers of small cars (<4.3 meters). This variable is significant, which can be 
derived from its standard error (the value of the coefficient is greater than twice 
the value of the standard error). The variation of the intercept is also significant 

ijijjjij exy ++= 110 ββ

jj u000 += ββ

jj u111 += ββ



  2.2 Linear regression models  
 

 

 

  
P r o j e c t  c o - f i n a n c e d  b y  t h e  E u r o p e a n  C omm i s s i o n ,  D i r e c t o r a t e - G e n e r a l  T r a n s p o r t  a n d  E n e r g y  

 

 

Page  49  

for the same reason (1333.86>2x169.48). Furthermore, there is a significant 
decrease in -2loglikelihood when shifting from the null model to the random 
intercept model (deviance: 45262.13-45218.96=43.17; degrees of freedom=1; 
p=0.000). 
 
The full random model allows for the difference in speed between small and 
long cars to vary from road site to road site. On average, there is an increase in 
speed of 5.11km/h for long cars compared to small cars. This value is 
significant (s.e.=1.33). The variance of the intercept, of the slope and of the 
covariance between intercept and slope are all three significant. The negative 
sign of the covariance indicates again that greater intercepts correspond to 
smaller slopes. A possible explanation of this pattern was given in a previous 
section.  

2.2.1.9.2. Contextual effects 

Another type of extension is to include higher-level variables in the model. 
Higher-level variables are also referred to as aggregate or ecological variables 
(Snijders & Bosker, 1999). They describe the higher-level structures in the 
dataset. This is achieved by including such variables in the relevant macro-
models (Jones, 1993). For example, if road site average speed is thought to be 
affected by traffic count at that road site (C), the random intercept macro model 
of equation (2.2.2b) can be re-specified to include an extra term, as in: 
 
 

jjj uC 0100 ++= αββ  (2.2.6a) 

 
This could for example mean that the average speed at a road site would 
decrease with increasing traffic count at that road site. 
 
Similarly, the slope terms can also be related to traffic count at a road site.  
 
 

jjj uC 1211 ++= αββ  (2.2.6b) 

 
This could for example be explained as follows. At road sites with a low traffic 
count the real relationship between length and speed is revealed and consists 
of a strong association between both variables in that a unit increase in length 
corresponds to a high increase in speed. At road sites with a high traffic count 
the real relationship is hidden because there is no free flow of traffic; cars are 
obstructed by one another and therefore a unit increase in length only 
corresponds to a small increase in speed.  
 
This formulation results in the introduction of an interaction term (the product of 
x and C) in the combined model. This was defined in the introduction as a 
cross-level interaction term: interactions between variables measured at 
different levels in hierarchically structured data (Kreft and de Leeuw, 2002): 
 
 ( )ijjijjijjjijij euxuxCCxy ++++++= 011121110 ααββ  (2.2.6c) 
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Parameter Null model 
Context (level 2 

variable) 
Main effect 

Context (level 2 
variable) 

Cross level 
interaction 

 Estimate (s.e.) Estimate (s.e.) Estimate (s.e.) 

Fixed 
 

   

  Intercept 68.69 (3.27) 59.49 (3.50) 59.48 (3.51) 
  Length / 1.65 (0.47) 1.68 (0.60) 
  >100 / 33.17 (6.51) 33.22 (6.53) 
  >100xlength 
 

/ / -0.08 (0.97) 

Random 
 

   

  Level 2    

    2

0uσ  (intercept) 1358.94 (173.03) 1107.59 (141.57) 1107.33 (141.56) 

    
10 uuσ  

(covariance) 
/ -15.65 (15.87) -15.59 (15.86) 

    2

1uσ  (length) / 12.85 (3.15) 12.87 (3.15) 

  Level 1    

    2

0eσ  452.70 (9.18) 412.75 (8.46) 412.75 (8.46) 

-2xloglikelihood 45262.13 44877.82 44877.82 
    

Table 2.2.4: Estimates for the null model and the models including contextual effects 

 
Table 2.2.4 contains the results of the null model and of two additional models 
with a level-2 variable. This level-2 variable is a dummy variable with the value 
0 representing those road sites where less than 100 cars passed by during 
observation, while the value 1 was given to those road sites where more than 
100 cars passed by during observation. The former is the reference category.  
 
The first model with the main effect of the dummy variable only calculates the 
influence of traffic count on the average speed at a road site. The second model 
includes an interaction term between traffic count and length of cars. It shows 
how the relationship between length and speed changes according to the value 
of traffic count. 
 
The coefficient of the level-2 variable in the main effect model is 33.17, meaning 
the average speed of cars at a road site with a traffic count of at least 100 cars 
increases with 33.17km/h on average compared to road sites where traffic 
count is below the threshold value of 100. This coefficient is significant 
(s.e.=6.51). Traffic count somehow reflects the speed regime: higher traffic 
count corresponds to higher speed regimes, which makes sense because roads 
that have higher speed regimes are typically busier roads with a higher traffic 
count. The random parameters show the same pattern as the previous models 
discussed before: there is a fanning in pattern, although the covariance is not 
significant. Finally there is significant reduction in the -2xloglikelihood-value: it 



  2.2 Linear regression models  
 

 

 

  
P r o j e c t  c o - f i n a n c e d  b y  t h e  E u r o p e a n  C omm i s s i o n ,  D i r e c t o r a t e - G e n e r a l  T r a n s p o r t  a n d  E n e r g y  

 

 

Page  5 1  

drops from 45262.13 to 44877.82 with a difference of 4 degrees of freedom 
yielding a p-value of 0.000. 
 
Although the coefficient of the interaction term in the third model clearly is not 
significant, it is interesting from a conceptual point of view to interpret it anyway. 
It shows that the relationship between length and speed differs according to 
different values of traffic count. More precisely, for road sites with a traffic count 
of at least 100 cars, the slope is reduced with 0.08. Put another way, on road 
sites with a low traffic count the speed increases with 1.68km/h for each unit 
increase in length of cars, while the speed only increases with 1.60km/h per unit 
increase in length of cars for road sites with high traffic count. This confirms the 
previously formulated hypothesis that the real relationship between length and 
speed may be hidden because of a high traffic count. This coefficient, however, 
is not significant, hence this third model is not a better one than the main effect 
model according to the deviance test. 



   

2.2.2 Three level models and more 

(Emmanuelle Dupont and Heike Martensen, IBSR) 

 
Section 2.2.1 introduced the “simplest” multilevel model, namely the 2-level 
model. The present section will show that the same statistical principles apply 
when the structure of the data at hand contains more than 2 levels. For the 
ease of comparison with Section 2.2, the same research example and data set 
will be used here. The relationship between the length of cars and their speed 
will thus be further assessed, but this time taking account of a presence of a 
third level in the data hierarchy, namely: the Belgian provinces from which the 
level-2 units (the road sites) have been selected.  
 

2.2.2.1. Objectives of the technique 

The objectives underlying the modelling of data structures with three levels and 
more are in all points similar to those of 2-level models. The reader is thus 
referred to Section 2.2 for more information on this topic.  
 

2.2.2.2. Model definition 

2.2.2.2.1. The random intercept model: 

A first step to take in examining how the 3-level structure affects the relationship 
between car length and speed would consist of fitting a random intercept model, 
defining the effect of car length as fixed. The dependent variable “speed” will 

now be noted “ ijkY ” to indicate the speed of car “i” within road site “j” within 

province “k”: 
 

 ijkijkjkijk exY ++= 110 ββ   (2.2.7a) 

 

There are now two equations defining the intercept term “ jk0β “: one at the 

second - and the other at the third - level of the data structure. At level 2, the 
intercept is defined as: 
 

 jkkjk u000 += ββ  (2.2.7b) 

 

“
k0β ” represents the average intercept in level-3 unit “k”, and is itself defined by 

the following equation: 
 

 kk v000 += ββ  (2.2.7c) 

 

The complete model for ijkY  is thus: 

 

 ijkjkkijkijk euvxY ++++= 00110 ββ  (2.2.7d) 
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This model describes speed as being a function of an average speed value (the 

fixed coefficient for the intercept, or 0β ), of the fixed effect of car length (
ijk

x11β ), 

and of 3 random deviations from the average intercept value: deviations that 

occur at the province level ( kv0 ), deviations at the road-site level ( jku0 ), and 

deviations occurring within road-sites, between cars ( ijke ). 

 
Section 2.2.1 already introduced the VPC, defining it as “the proportion of total 
residual variation that is due to differences between groups” and related it to the 
intra-class correlation coefficient – or “the extent to which the y-values of 
individuals in the same group resemble each other as compared to those from 
individuals in different groups”.  
 
It is nevertheless important to note that this is only in the limited context of a 2-
level random intercept model that the two constructs can be so equated 
(Goldstein, 2003). In the case of 3-level models the two concepts turn out to be 
close but different, because they actually refer to “two different aspects of the 
data, which happen to coincide when there are only 2 levels” (Hox, 2002, p. 32).  
 
To illustrate this distinction, the meaning of the VPC and of the intra-class 
correlation as applied to the 3-level speed dataset must be examined. As it is 
defined, the VPC corresponds to the ratio of a single level’s variation to the total 
variation. By applying this principle to partition the total variance, the level-2 
variance is clearly separated from the level-3 one. The formulas to be used to 
calculate the variance at level 2 (2.2.8a) and level 3 (2.2.8b) are straightforward 
extensions of the ones given in Section 2.2.1: 
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Matters are different, however, when the intra-class correlation coefficient must 
be estimated. As a reminder, this coefficient corresponds to the expected 
correlation between two elements randomly selected within the same higher-
level unit (2 or 3). When the model comprises 3 levels, account must be taken 
of the fact that two level-1 units in the same level-2 one also are de facto 
included in the same level-3 unit (2 speed values recorded at the same road 
sites were also inevitably recorded in the same province!). Calculating the intra-
class correlation at level 2 thus requires that variance components at both level 
2 and 3 variance components be included in the numerator:  
 
Thus, while for level 3 the same formula (formula 2.2.4b) will be used for the 
calculation of the VPC and of the intra-class correlation, the intra-class 
correlation at level 2 will be estimated by 2.2.8c:  
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2.2.2.2.2. The random intercept and slope model: 

 
The full random model - or a model in which the slope for the effect of car length 
on speed is specified as being random at level 2 and 3 – would then be defined 
in the following way: 
 

 ijkijkjkjkijk exY ++= 10 ββ  (2.2.9a) 

 

 jkkjk u111 += ββ  (2.2.9b) 

 jkkjk u000 += ββ  (2.2.9c) 

 

 kk v111 += ββ  (2.2.9d) 

 kk v000 += ββ  (2.2.9e) 

 

 ijkijkjkijkkjkkijkijk exuxvuvxY ++++++= 110010 ββ  (2.2.9f) 

 
 
The 3-level model now defines the total variation in the speed of cars as the 
result of 2 fixed factors (the average intercept and slope), and of 5 sources of 
random variations. Both level-3 (provinces) and level-2 units (road sites) are 
said to entail random departure in the cars’ speed from the “average speed 
value” (the fixed intercept) and from the “average length-speed relationship” 
(the fixed slope). The covariances between the random intercepts and slopes at 
each level are also part of the model, which raises up to 7 the number of 
random parameters to be estimated. 
 
Of course, it is by no means compulsory that the effect of any level-1 
explanatory variable added to the model were defined as random at both level 2 
and 3. A given effect can be declared random at level 3 without being so at level 
2, and the other way around. Explanatory variables at either level 2 or 3 can be 
included in the model, and level-2 explanatory variables can themselves be 
defined as random at level 3.  
 

2.2.2.3. Model assumptions 

The random coefficients at level 2, 3, or higher are all considered representative 
of distributions of individual effects in the population. These parameter 
distributions themselves are assumed to be normal, with means 0 and 

variances 
1100

2222 ,,, vuvu σσσσ  for the intercepts and slopes, respectively. At 

level 2, this implies: 
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And, at level 3: 
 

 








k

k

v

v

1

0
 ~ 



































110

1
100

1
2

2

,
0

0

vvv

vvv

N
σσ

σσ
 (2.2.10b) 

 

The level-1 residuals ( ije ), are in turn assumed to be normally distributed with 

mean 0 and variance 2σ  ( ),0(~ 2σε Nij ), and to be independent from one 

another.  
 
Finally, the level-2 residuals are assumed to be independent over j (i.e.: across 
the level-2 units, or road sites), the level-3 coefficients are assumed to be 
independent over k (the level-3 units, or provinces). The residuals at all levels 
(1, 2, and 3) are assumed to be independent from each other.  
 

2.2.2.4. Research problem 

The research problem and the dataset used in this section are identical to those 
used in Section 2.2.1. Taking account of the full structure of this “length-speed 
dataset”, attempt will be made at determining whether the different Belgian 
provinces from which the road sites were sampled can be considered to: (1) 
contribute to the variation of the speed of cars, (2) affect the relationship 
between car length and speed. Again, it is important to stress that this empirical 
question was chosen more on the basis of didactical than of theoretical 
objectives. 
 

2.2.2.5. Dataset 

As a reminder, the speed data were collected in Belgium, and consist of a 
sample of n = 4994 drivers passing by m = 131 road sites. These road sites 
were themselves selected among 11 provinces. 

 

2.2.2.6. Model fit and diagnostic 

With the exception of the Variance Partition Coefficient (VPC), all tools available 
for diagnostics and for assessing the fit of the model are identical to those 
outlined with respect to the basic 2-level model. The reader is thus referred to 
Section 2.2 for a description of deviance tests and tests of single parameters.  
 
The two-level variance-components model that was fitted in Section 2.2.1.8.1 
provided indications that a substantial part of the total variation of speed was 
attributable to the second level of the data hierarchy (road sites). Having now 
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included the third level – “province” – in the model, this level’s contribution to 
the variation of cars speed can also be assessed. One could, for example, 
imagine that the average speed is generally lower in some provinces than in 
others.  
 

Parameter 
Random 

intercept model 
Length random at 

level 2 only 
Length random at 

levels 2 and 3  

 Estimate (s.e.) Estimate (s.e.) Estimate (s.e.) 

Fixed    
  Intercept 74.47 (5.33) 74.49 (5.30) 74.51 (5.34) 
  Length 
 

2.28 (0.28) 1.68 (0.47) 1.64 (0.59) 

Random    
  Level 3 

    2

0vσ  (intercept) 

    
1

10vvσ  (covariance) 

    1
2

vσ  (length) 
  Level 2 

218.01 (132.89) 
/ 
/ 

213.11 (131.59) 
/ 
/ 

219.14 (133.93) 
-10.43 (14.37) 

1.31 (1.60) 

    2

0uσ  (intercept) 990.13 (132.62) 995.89 (133.41) 994.40 (133.26) 

   
10uuσ   (covariance) / - 12 (15.43) - 11.55 (15.30) 

    2

1uσ  (length) / 12.761(3.12) 11.64 (3.12) 

  Level 1    

    2

0eσ  

 
446.47 (9.051) 412.74 (8.46) 412.74 (8.46) 

-2xloglikelihood 45167.92 44877.42 44876.820 

Deviance test 
2

1χ = 24.4; p < 

.00013 

2

2χ = 33.73; p < 

.000 

2

2χ = 0.6; p = .74, 

n.s. 

Table 2.2.5: Estimates for the 3-level models: variance components, random slope for 
car length at level 2, and full random model 

 
 
Table 2.2.5 summarises the results of the different steps of the 3-level model 
specification. The deviance test comparing the log-likelihood values associated 
with the 2-level variance component model (-2 loglikelihood = 4519232, see 
Section 2.2.1.7.2) and the one associated with the 3-level model reveals a 

significant improvement in the model’s fit ( 2

1χ = 24.4; p < .000). Nevertheless, 

the variance of the random intercept at level 3 is not in itself significant (see 
Table 2.2.5). The results are thus rather ambiguous with respect to the 
necessity of including the province level in the model.  
 
Deciding whether the inclusion of an additional level in a model is empirically 
justified is eased by the estimation of the amount of variation in the 
observations at this level. Substituting the level 2 and level 3 variance estimates 

                                            
13

 This deviance test compares the log-likelihood value of the current 3-level random intercept 
model with the one of the 2-level random intercept model fitted in Section 2.2. 
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presented in Table 2.2.5 into formulas 2.2.8a and 2.2.8b reveals that 60% of the 
variation in the speed of vehicles is attributable to the second level (road sites), 
while 13% only are accounted for by the third level (provinces). Clearly, the 
amount of variation in cars’ speed that is “located” at the third level is far less 
important than the observations’ variance at level 2. The calculation of the intra-
class correlation coefficient at each level (formulas 2.2.8c and 2.2.8b for level 2 
and 3, respectively) indicates that, should 2 observations be randomly selected 
from the same level-2 unit, a correlation of about 0.73 between them would be 
expected. The expected correlation between 2 observations randomly selected 
from the same level-3 unit is 0.13, a considerably lower value. Both the VPC 
and the intra-class correlation thus converge to suggest that the dependency 
among data is much stronger at level 2 than at level 3 (and that more variation 
in Y is accounted for by level 2 than by level 3). However, the intra-class 
coefficient value observed at level 3 is not negligible.14  
 
The above results did not offer stronger indication of the necessity to take 
account of the province level when modelling the effect of car length on speed. 
Defining this effect as random at level 2 yielded highly similar conclusions in the 
context of the present three level model than when the model comprised two 
levels only. However, the third model, in which the effect of car length was 
defined as random at both level 2 and 3 was not associated with any significant 
fit improvement. The estimates for the random effects at level 3 are not 
significant.  
 

2.2.2.7. Model interpretation 

Adding the province level to the model resulted in a significant improvement of 
the model’s fit, although not dramatic. Including this level also resulted in a 

decrease of the random variation of the intercept at level 2 (
0

2
uσ ). This is in line 

with previous observations indicating that the random variation associated with 
levels that are present in a given data hierarchy, yet omitted from a model is 
“added” to the residual variation associated with the levels that are specified in 
the model (Moerbeek, 2004). Imagining, for example, that the random variation 
in speed records associated with the third level of the data hierarchy would 
have been very important but that this level had not been explicitly included in 
the model, then the failure to specify this third level would have resulted in the 
associated variance “summing” up to the level 2 and level 1 residual variation. 
These two would have looked more important than what they actually are, 
simply as the result of a model misspecification. 
 
Compared to level 2, however, our third level cannot be said to contribute much 
to the variation of the criterion variable. This level does introduce some 
dependency in the observations, although to a far lower extent than level 2 

                                            
14

 As a reference : An intra-class correlation of about 0.01 is considered small, while 0.20 is 
considered a large value (see Kreft & De Leeuw, 1999 for a more detailed discussion of this 
topic and of the relation between the size of the intra-class coefficient and the standard errors of 
the estimated parameters). 
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does. Including the third level in our model of car speed entailed almost no 
change in the estimation of the parameters as compared to when the 2 level 
model was fitted. This suggests that “omitting” this level from the model does 
not result in serious model misspecification.  
 
The 3 level model fitted here can of course be extended, for example through 
the inclusion of explanatory variables at level-3. In Section 2.2.1, the analysis of 
the cross level interaction between “traffic count” (an explanatory variable at 
level-2) and “car length” (at level 1) was described. Although this interactive 
effect was not significant, the associated coefficient was interpreted there for 
the purpose of illustration: This coefficient was negative, suggesting that the 
speed-length relationship was lower at road-sites with less important traffic 
flows (i.e.: with low traffic count). In the framework of the present 3-level model, 
the length-traffic count interaction term could itself be defined as random at 
level 3. The finding of a significant random slope would indicate that the 
variation of the effect of length on speed depends on traffic count and besides 
varies  (randomly) between provinces. How should the level-3 covariance 
between this random slope for the interaction effect and the random intercept 
be interpreted? - A negative covariance would indicate that the traffic count-by-
car-length interactive effect is weaker for provinces that are characterised by 
higher average speed values. In other words, the higher the province’s average 
speed, the more homogeneous the effect of length – or the less affected it 
would be by the different traffic count values associated with each road sites.  
 
These hypothetical considerations make it clear that models with three levels 
and more offer the same possibilities as their 2-level counterparts, but that 
these possibilities are multiplied by the number of levels under analysis. One 
should bear in mind, however, that this comes at the cost of parsimony, on the 
one hand, and of ease of interpretation, on the other. The example of the cross 
level (1 and 2) interaction made random at level 3 illustrates the fact that 
multiple level models can quickly become “difficult to follow from a conceptual 
point of view” (Hox, 2002, p. 30).  
 
The number of parameters to be estimated increases in a multiplicative way 
along with the number of levels included in the model: The simple definition of 
an effect as being random at both level 2 and 3 implies the estimation of 7 
parameters. Defining the effect of another explanatory variable at level-1 as 
being random at level 2 will involve the estimation of 3 additional parameters 
(the fixed effect, random slope, and random intercept and slope covariance); 
raising the total number of parameters to ten. Further specifying this additional 
parameters’ effect as being random at level 3 as well amounts to estimating 2 
parameters more (the random slope and intercept-slope covariance at level 3), 
and so on…  
 
Independently of increasing the difficulty of interpretations, estimating important 
number of parameters also augment the risk of encountering estimation 
problems (algorithms failing to converge…). Caution is thus required when 
fitting models with 3-levels and more. It is usually recommended that the 
definition of effects at the various levels be grounded on sound theoretical 
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reasons, or empirical evidence, rather than on mere exploratory attempts (Hox, 
2002; Snijders & Boskers, 1999; Kreft & De Leeuw, 2002). 
 



   

2.3 Discrete response models 

2.3.1 Introduction  

 

(Emmanuelle Dupont and Heike Martensen, IBSR) 

 

Sections 2.3.2, 2.3.3, and 2.3.4 of this deliverable respectively focus on the 
multilevel analysis of three different types of discrete data, namely: dichotomous 
responses, counts, and multinomial responses. The aim of this introductory 
section is to provide the reader with useful preliminaries that will allow him/her 
to apprehend the general framework of the multilevel analysis of discrete data 
analysis, i.e., the Multilevel Generalised Linear Model (MGLM). This 
introduction starts with a reminder of the structure underlying the familiar linear 
model and describes the main properties of discrete response variables. On this 
basis, the risks associated with the straightforward application of the linear 
model to discrete response variables are illustrated, and the solution provided 
by the Generalised Linear Model is outlined. The general principles underlying 
the multilevel generalised linear model are then defined.  

2.3.1.1. Reminder: The linear model 

 

Response = Systematic component + Random component 

    

iy  = iη  + iε  

 “How does response vary with 
covariates /predictors/explanatory 
variables?” 

 “What kind of distribution do 
data follow?”  

The linear 
model:  
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Table 2.3.1: The linear model and related assumptions 

 

As it is already mentioned in Section 2.2, any statistical model defines a 

response variable ( niyi ,,1, K= ) as the result of a systematic and of a random 

component. The systematic component of the model describes how the 

response varies with explanatory variables or predictors ( rhxk ,,1, K= ). This 

component is the one that defines the expected value of the response variable. 
The generic term used to refer to the systematic component and, by extension, 

to the expected value is iη . The random component of the model defines the 

variation of the observations that the model cannot explain. It defines the 
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distribution that the observations and the residual follow (Mc. Cullogh & Searle, 
2001). 
 
When the particular model adopted is the linear one, two main assumptions are 
associated with the definition of the observations that the systematic and the 
random components respectively provide: (a) the expected value for each 
observation corresponds to a linear combination of unknown parameters, 
considered constants, and (b) the data come from a normal distribution with 

mean iη  and variance 2σ  (McCulloch & Searle, 2001).  

2.3.1.1.1. Properties of discrete variables 

Discrete response variables often happen to be the focus of road safety 
research. Attempts at modelling the probability of occurrence of given events - 
such as the survival of vehicle occupants after a crash, or the infringements that 
drivers commit - are common. Count data, such as the number of accidents 
occurring within a given time frame, are also regularly encountered as response 
variables. As can be seen by comparing the features of the normal distribution 
to those of the discrete distributions listed in Table 2.3.2, there are two general 
properties of discrete data that prevent a straightforward application of the linear 
model. The first is these data’s restricted ranges, the second is that they have 
related mean and variance.  
 
Binary outcomes correspond to data that can take two values only: “1” (usually 
defined as “success”, such as the survival of car drivers following a crash) or “0” 
(usually defined as “failure”, such as the dead of car drivers following a crash). 
The number of successes in m samples can be described by a stochastic 
variable which is binomially distributed, with parameters φ and m. Now assume 
that in several regions the number of crashes and the number of dead drivers 
resulting from these crashes within a certain period are known. Then the 

number of drivers that survived a crash in region i , denoted by  iy , is binomially 

distributed with parameters iϕ  and im , where iϕ  is the probability that a driver 

survives a crash in region i  and im  is the number of crashes in region i . Then 

iii my ϕ=)(E and ).1()(Var iiii my ϕϕ −=   

 
Count data are to be conceived of as the number of events occurring during an 

interval of time having length im , or within an area having size im . They also 

have restricted range in the sense that they can only take positive values. When 
the counted occurrences are rare,15 such data can be considered to follow the 
Poisson distribution. In several cases, the events being counted are actually the 
outcomes of discrete trials, and would more precisely be modeled using the 
binomial distribution. However, the binomial distribution with parameters n  and 

nλ , i.e., the probability distribution of the number of successes in n  trials, with 

                                            
15

 i.e., when there are less than 10 cases of the counted event within the time period or the area 

considered ( im ), according to Langford & Day, 2001. 
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probability nλ of success on each trial, approaches the Poisson distribution 

with expected value λ  as n  approaches infinity. When the occurrence 
assessed is frequent, the binomial distribution is more appropriate. The Poisson 

distribution is characterized by the “exposure” term, 
i

m  and by the event rate 

i
λ . This distribution has a variance equal to the expected value, namely the 

mean, so that the two parameters are related, as was also the case for binary 
data. 
 

Distribution of the response 
variable: 

Sampling model  
(Raudenbusch & Bryk, 2001) 

  

Normal: ),( NID ~ 2σµ
ii

y  

 

E (
i

y ) = 
i

µ  

Var (
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y ) = 2σ  

 

Bernouilli and Binomial ),( B~
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Poisson ),( P~
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Multinomial responses  

E (
m

y ) = 
m

nϕ  

)1()(Var
mmm

ny ϕϕ −=

mmmm
nyy

ˆˆ
),(Cov ϕϕ−=  

 

Table 2.3.2: Sampling models for normal, binary/binomial, counts and multinomial 
responses . 

 

The term “multinomial responses” refers to categorical data, or to responses 
that can take one of a few number of values. Assume that Y is a random 

variable which can take its value in M  categories and let mϕ  be the probability 

that Y  is in category m . If there are n  observations of the random variable Y  

and my  is the number of observations in category m , then Y  is multinomially 

distributed with parameters .,,, 1 Mϕϕ KΜ   
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2.3.1.1.2. Applying linear models to discrete data 

Given the particular properties of discrete observations, and the assumptions 
made by the linear model, two main problems would result from a 
straightforward application of a linear model to discrete data.  
 
First, the response variable being defined as a linear function of some 
explanatory variables or predictors, the fitted values generated on the basis of 
the model’s systematic component are likely to lie outside the actual range of 
the observations. What would be modelled in this case would be something that 
conceptually differs from the observations (values outside the 0-1 range cannot 
be considered as probabilities). The distribution specified by the model would 
neither correspond to the actual distribution of the observations, nor to the 
residual distribution.  
 
Second, the relation existing between the expected value and the variance of 
discrete observations implies that, once predictors are included in the model, 
the variance of the error term is not homoscedastic any more (i.e., is not 
constant and depends on the particular values taken by the predictor(s))16.  
 
Similar problems are encountered if the response variable consists of non-
normal data (and not of well-defined discrete distributions such as the Poisson 
or Binomial ones). One solution could be to apply an appropriate transformation 
to these observations, then submit them to a “standard” linear analysis. Such an 
approach has been – and still is – common practice in data analysis. Although it 
remains useful and appropriate in particular circumstances (such as in the 
exploration phase of data analysis), it offers no certainty that the application of 
linear methods to the transformed data will allow safe inference. First, 
transformation of data may not be an option at all: One can wonder, for 
example, which transformation could ever make dichotomous data resemble a 
normal distribution (Hox, 2002). Second, transforming the observed response 
offers no guarantee that the error distribution will be normally distributed, an 
essential condition to be met when applying linear models (Hox, ibid). As it will 
be explained in the next section, the generalised linear model is a far more 
advanced technique than transformation, in the sense that it includes “the 
necessary transformation and the choice of the appropriate error distribution 
(…) explicitly in the statistical model” (Hox, 2002, p. 104). 

2.3.1.2. The generalised linear model (GLM) 

The Generalised Linear Model is more than a particular statistical technique that 
conveniently allows overcoming the problems posed by discrete and/or non-
normal data. It must be conceived as a broad class of statistical models, in 
which the linear model itself is encompassed.  
 

                                            
16 In a model fitting binary responses, for example, the residual can take only 

two values : “1- (
110 i

xββ + )” and “
110 i

xββ + ” 
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The appropriateness of the GLM to analyse discrete data relates to the fact that 
it “generalises” both the distributional assumptions made about the data, and 
the systematic component defining the expectations.  
 
With respect to the observed distribution, the GLM makes the general 
assumption according to which the response variable has a probability 
distribution that pertains to the “exponential family” (see Dobson, 1990 for a 
formal definition). This family of distributions encompasses a large number of 
probability distributions, both continuous and discrete. As a consequence, all 
specific distributions pertaining to this broad class can be used in the GLM to 
specify the distribution of the observations. 
 

Distribution of the response 
variable: 

Link function (Raudenbusch & 
Bryk, 2001) 

  

Normal: - The identity link -  

ii
µη =  

 

Bernouilli and Binomial - The logit link9 - 
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Poisson - The log link - 

( )
ii

λη log=  

 

Multinomial responses - The logit link – 


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


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
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j

j ϕ

ϕ
η log   

(with l being the reference category) 
 

Table 2.3.3: Examples of link functions used for normal, binary/binomial, counts and 
multinomial responses. 

 
The GLM also renders possible fitting “correct” predicted values. Indeed, the 
usual linear component (the sum of predictors expected to affect the response) 
is not directly equated to the expected values any more, but to some function of 
them, called a link function. This transformed version of the original response 
variable (probabilities, counts…) is not restricted in range (it can take values 
outside 0 and 1, and positive and negative values). There exists some “inverse 
function” on the basis of which these predicted values can be transformed back 
into the “metric” of the units initially measured (i.e., probabilities, counts…). 
 
 
 
The use of link functions to relate expected values to the predictors included in 
the model thus prevents fitting “out-of-range” expected values. Various link 
functions are available; the choice of the appropriate one depending on the 
nature of the data that are to be modelled. Table 2.3.3 describes a number of 
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link functions, which are used in Sections 2.3.2 to 2.3.4. As a point of reference, 
Table 2.3.3 provides the link function corresponding to the normal distribution 
(the “identity link”). Because the functions listed in this table equate the linear 
component of the model to the natural parameter of the distribution at hand 

(
m

ϕ ,etc.), they are also termed canonical link functions. Other link functions are 

available, however (see Dobson, 1990 for examples). 
 

As many data in traffic safety are binary, the logit link for binomially distributed 
data is the one that will mostly be used in next sections over discrete data 
analysis. The logit link is defined as the logarithm of odds ratio. The odds ratio 
themselves correspond to ratio of probabilities. As an example, the log of the 
odds of survival following an accident amounts to the log of the ratio of the 

probability to survive (
i

ϕ ) to the probability of dying (
i

ϕ−1 ) as a consequence of 

the i-th accident17.  

The link function included, the systematic component of the GLM for binomial or 
binary data with two explanatory variables writes out: 










−
=

i

i

i ϕ
ϕ

η
1

log  = .22110 ii xx βββ ++  (2.3.1) 

This indicates that the predicted values fitted by means of the link function are 
predicted log-odds. How should the coefficients for the different predictors 
making up the linear component be interpreted? Predicted log-odds can be 
converted to odds, by taking their exponential18.  

i
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i
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ϕ
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



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







− 11
logexp  (the predicted odds-ratio)  (2.3.2) 

Since the exponential function is applied to the predicted values, it has to be 
applied to the predictors making up the linear component of the model, in order 
to obtain: 

22110

1
ii xx

i

i eee
βββ

ϕ
ϕ

××=
−

  (2.3.3) 

The relation between the different predictors that was additive when the log-odd 
function was applied is now multiplicative. Consequently, the coefficients for the 
predictors must be interpreted as the multiplicative effect, associated with a 

one-unit increase on 
1i

x  (for coefficient 1β ) , 2i
x  (for coefficient 2β ) , etc, on the 

odds-ratio. 

The estimated values of the predictors can in turn be converted into predicted 
probabilities using the formula: 

                                            
17

 The binomial model is actually a special case of the multinomial model, for which the 

numerator iϕ−1  has to be replaced by the probability of a reference category lϕ . 
18

 The exponential function is the inverse of the log function.  
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2.3.1.3. The Multilevel Generalised Linear Model (MGLM) 

The essential feature of a multilevel generalised linear model is the fact that the 
individuals from which the data are received belong to groups and the groups 
themselves are a random sample from a population of groups. In the linear 
case, higher levels were accounted for by assigning the “j” subscript to the 

systematic component  - 
iµ - allowing this parameter to vary randomly across 

the higher-level units. The corresponding variance was then estimated. The 
same principle applies in the framework of the multilevel generalised linear 
model, to the difference that what will be declared to vary across higher-level 
units are the transformed values of the  parameters of the distribution at hand 

(i.e., iim ϕ ; iim λ , and so on…)  . For the sake of simplicity, the distribution 

parameter will now be referred to as to “π ”. 
 
In a two-level generalized linear model, the expected value of the response yij – 

provided by individual i in group j – is defined as being a probability, or a count, 
or whatever the particular form taken by the observations. The model must 
account for the particular type of distribution that these observations follow. In 
the case of binomial responses, for example, the sampling model corresponding 
to the observations would be;  
 

),( ijijij nBiny π≈  (2.3.5) 

 

The expected value for the response ijy  is  consequently defined as  

 
(2.3.6) 

 
 
… and the variance as:  

 
(2.3.7) 

 
 

On this basis, the first level of the multilevel model is written as: 
 

(2.3.8a) 
 

 
And,  

ij

ijij

ij
n

Z
)1( ππ −

= , 12 =eσ  (2.3.8b) 

 
The two parameters in this model adequately reflect the distribution specified by 
the sampling model (2.3.5). In this case, the data are assumed to follow the 

ijijijij nyE ππ =)(

ij

ijij

ijij
n

yVar
)1(

)(
ππ

π
−

=

ijijijij Zey += π
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binomial distribution, hence the formula for ijZ . For another distribution, ijZ  

would be defined in another way (variance functions for different types of 

discrete responses are listed in Table 2.3.2). Note that 12 =eσ can be estimated 
instead of being constrained to 1. This is a general device in GLMs that allows 
testing whether the variance of the observations indeed follows the distribution 
specified by the sampling model. This is achieved by estimating this parameter, 
and examining whether the obtained value significantly differs from 1. In such a 
case, it is recommended to keep on working with the estimated parameter to 
perform the remainder of the analyses.  
 

Depending on the type of observations, the mean response value -  ijπ  - is 

either a probability, a count, etc… With the adequate link function, it can be 
expressed as a linear function of parameters: 

 
(2.3.9) 

 
 
Higher-level effects can be incorporated in this linear combination of predictors 
just as they were in the case of the linear models. Thus, the effect(s) of the 
higher-level units is defined on the values of the level-1 units that are 
transformed according to the link function used. So, in the case of the logit link 
function: 

 Logit ( jij u00) += γπ  (2.3.10) 

 
It is important to note that although the variation of the residual variation at level 
1 (2.3.8a) is defined as following a discrete distribution, the level 2 random 

variation of transformed ijπ  values ( 0

2
uσ , for example) are expected to be 

normally distributed.. 

2.3.1.3.1.  The empty model 

The empty model for the linear hierarchical model, defines a response variable 
as a function of an average value, the intercept, which is specified to vary 
randomly across the level-2 units. For the logit-link this gives: 
 

 ijijijij Zey += π   (2.3.10a) 

 Logit ( jij u00) += γπ  (2.3.10b) 

 

where 0γ  represents the average of logit ( ijπ ) across groups and ju0  the 

deviation of the logit in group j from the population average logit ( 0γ ). These 

deviations are assumed to be normally distributed, with mean 0 and variance 
2

0uσ , just as this was the case with the linear multilevel model. The model does 

not contain a parameter for the level-1 variance.  This is because for discrete 
responses the variance follows directly from the expected value as indicated in 
Table 2.3.2.  

)( 110 ijij xf ββπ +=
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Using the inverse of the logit function, the logits can be reconverted into 
probabilities. 
 

 Logit ( jij u00) += γπ  

 
)(exp(1

1

00 j

ij
u+−+

=
γ

π   (2.3.10c) 

 
The reader should however bear in mind that there is no direct relation between 

population average of the logits (
0γ ) and the population value of the discrete 

variable itself (
0π ). The same is true for the level-2 variance ( 2

ouσ ) - which 

concerns the variation of the logits  and cannot directly be equated to the 

variance of the discrete values ijπ  themselves. Although in each case the 

reconverted former value can be considered a proxy for the latter, they cannot 
be considered equivalent, . This is so because the link between them (the logit 
link) is a nonlinear one. 
 
Another important difference between the linear and the GLM hierarchical 
model concerns the level-1 residual. For discrete responses, the individual 

residual variance ijij Ze  is a function of the mean ijπ (
ij

ijij

ij
n

Z
)1( ππ −

= ). 

Consequently, the residual variance in a MGLM model cannot be constant as it 
is the case in linear models. In the MGLM, the groups will have different within-

group variances, because ijπ  depends on oju . Given that ijπ  constrains the 

value of ijZ , this will lead to a different ijij Ze  value for each group.  

2.3.1.3.2.  The random intercept model 

Generally speaking, the random intercept model differs from the empty model in 
the sense that – besides specifying the intercept as being random – fixed 
explanatory variables may also be included in the model.  
Once explanatory variables enter the model, the expected value of the discrete 

variable ( ijπ ) cannot any more be considered as a sole function of the level-2 

units. Indeed, if some of these predictors are characteristics of the lowest level 
units (i.e. if they are level-1 predictors), the values fitted are likely to differ for all 
individuals within the groups. Consequently, the expected discrete value must 
now be denoted by the “ij” subscript, so that the model becomes:  

 ijijij Ry += π
  (2.3.11a) 

 Logit ( ojhij

r

h

hij ux ++= ∑
=1

0) γγπ  (2.3.11b) 
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The log of the odds of jπ  are now defined as being a function of a linear 

combination of an average population value ( 0γ ), of the effect of level-1 (and/or) 

level-2 predictors ( hij

r

h

h x∑
=1

γ ) and of a group-related random deviation oju . 

 

2.3.1.3.3.  The random intercept-and-slope model: 

The specification of a random intercept and slope MGLM poses no particular 
additional difficulty, once the general multilevel structure in the GLM is made 
clear. The model would then describe the expected value as being a nonlinear 
function of predictors and random effects at higher level(s), and replace this 
expected value in the framework of the sampling model that is appropriate for 
the outcome variable. It can be written as: 
 

 Logit ( ijjojhij

r

h

hij xuux 11

1

0) +++= ∑
=

γγπ  (2.3.12) 

 

2.3.1.3.4.  Over- or underdispersion 

When fitting a (hierarchical) generalised linear model, the choice of the 
distribution at level 1 is often dictated by the nature of the empirical data. For 
example, Poisson regression analysis is commonly used to model count data, 
while binary data are modelled under the binomial distribution. It is however 
possible that the data do not exactly follow the assumed distribution. If the 
observed level 1 variance is larger than the variance of the distribution 
assumed, overdispersion has occurred. Conversely, underdispersion means 
that there was less variation in the data than predicted. 
 
Overdispersion often indicates heterogeneity in the sample. This can be due to 
underspecification of the model in terms of predictor variables or in terms of 
hierarchical levels (i.e., there is variation introduced in the observations by them 
being clustered into higher levels, without this being specified in the model). 
Although the parameter estimates are usually still correct, in the case of 
overdispersion the variance is underestimated suggesting a higher confidence 
in the estimates than is actually appropriate. The opposite is the case with 
underdispersion. In both cases it is possible to generalise the model by 
estimating a scalar variance component α. The variance originally specified by 
the distribution has to be multiplied by this estimated factor in order to match the 
observed variance (Raudenbush & Bryk, 2002). Estimating this scalar 
component is actually a way to test for over- or underdispersion (see Sections 
2.3.2 and 2.3.4). 
 

2.3.1.3.5. Estimation methods and tests of the parameters 

Although the underlying general principle appears simple, fitting multilevel 
GLMs can not yet be considered pure routine. This is related to the fact that 
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“level-1 sampling for discrete models is not normal, while the higher-level model 
involves multilevel normal assumptions poses a problem for conventional 
estimation theory” (Raudenbush & Bryk, 2002, p. 352). Without entering details 
of estimation methods, it is important for the reader to be aware that most 
current software – at the time of writing - can be considered to use approximate 
methods. Three main approaches can be distinguished on this basis: The first 
involve the computation of Maximum Likelihood values. This is the most 
computationally intensive method, performed by some software (such as SAS). 
The second involves the approximation of Maximum Likelihood values. This is 
the approach followed in the analyses described in the present document. The 
main consequence of using approximate likelihood value is that the estimated 
likelihood values are not reliable any more, and cannot be used to perform the 
usual Likelihood-Ratio Test (Leyland & Goldstein, 2001; Rasbash et al., 2004). 
The third approach relies on the use of Bayesian estimation, such as the use of 
Markov Chain Monte Carlo methods (see Section 2.1.8.4). 
 
 

2.3.1.4. Conclusion 

 
For the statistical analyses of discrete responses, the generalised linear model 
(GLM) and its multilevel extension, the hierarchical GLM was introduced. This 
introduction provides the theoretical background required for proceeding to 
fitting the multilevel GLMs that are presented in the following sections. The clear 
advantage of GLMs is their flexibility to model response variables of very 
different types. The cost this comes with is an increased complexity, less 
straightforward interpretation of the parameters and less reliable estimation 
procedures. As noted above, matters are still evolving with respect to the 
implementation of these methods on software. The reader interested in the use 
of the MGLM is strongly recommended to read the Section 2.8 àver Bayesian 
estimation methods. 
 
In road-safety research many of the important response variables are non-linear 
and therefore require the GLM approach. This will be demonstrated in the 
following sections. In Section 2.3.2 and 2.3.3 data from a road-site survey with 
respect to drink driving will be presented. In Section 2.3.2, this data will be 
analysed as binary responses (driver has drunk or not) and in 2.3.3 as 
multinomial responses (not drunk, moderately drunk, drunk). In both cases the 
effect of the particular road-site at which measurement has taken place is 
included as a second level in a hierarchical GLM. In Section 2.3.4, counts of 
fatal accidents are modelled with a hierarchical GLM in order to detect regional 
variation in the number of accidents and in the effect of law-enforcement 
measures. It can be concluded that hierarchical GLM forms a tool that cannot 
be missed in the analysis of road-safety data. 



   

2.3.2 Binary and general binomial responses  

(Ward Vanlaar, IBSR
19

) 

 

Many variables observed in traffic research are binary variables with only two 
possible values, rather than continuous variables. As an example we will 
consider the results of a Belgian roadside survey in which drivers were stopped 
at randomly selected road-sites. In addition to a number of explanatory control 
variables, the blood alcohol concentration (BAC) was measured as well. Results 
of this continuous variable were stored and analyzed according to a binary 
format; zero indicates a BAC below the legal limit while one corresponds to a 
BAC at or above the legal limit. Such a binary dependent variable can be 
modelled using logistic regression analysis. 

2.3.2.1. Objectives of the technique 

As for other regression techniques, the objective is to look for an appropriate 
function to model the relationship between a set of explanatory variables (this 
set can consist of continuous variables, categorical variables or a mixture of 
both types of variables) and the dependent variable. Specific to the logistic 
regression analyses presented here is that the dependent variable is binary so 
the responses can only take the values of 0 or 1. 
 
The multilevel version of logistic regression presented here allows assigning the 
observed variance to different hierarchical levels and investigating whether the 
model that was found fits the data well. A proper multilevel representation 
allows for reliably testing whether the relationships found in the data can be 
generalized to the population. 

2.3.2.2. Model definition 

 

Models for binary data concern the probability ijπ  that the observed variable 

ijy from person i in cluster j takes the value 1 (as opposed to 0). In our example 

with BAC as an underlying continuous variable, the logistic model can be 
construed as a threshold model (Snijders and Bosker, 1999). The threshold is 
the legal limit; if BAC is equal to or greater than this threshold then the 
dependent variable is one, if BAC is smaller than the threshold, then it is zero. 
The model can then be written in terms of the underlying continuous variable y*ij 
– note that the asterix is used as a symbol to denote the underlying continuous 
or latent variable, rather than the observed variable. 
 

 ijijjij exy ++= 110

* ββ   (2.3.13) 

 
Where  
 

                                            
19

 This section is mainly based on Vanlaar, 2005b. 
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ije ~ ( )3,0logistic 2π , with mean zero and variance 29.332 =π  (in this case 

π does not denote a parameter but the number 3.141). 

 
The advantage of constructing the model on the basis of an underlying 
continuous variable is that the level 1 errors can be assumed to follow the 
logistic distribution and therefore the error variance is known. More generally, 
binary data are assumed to follow the binomial distribution, whether they are 
derived from an underlying continuous variable (e.g., above/below average, 
severely injured/slightly injured, passed /failed, etc.) or not (e.g. male/female, 
yes/no, dead/alive, etc.). The model for logistic regression is based on this 
distribution.   
 

In order to analyse the probability ijπ  that the observed variable 
ijy takes the 

value 1 (as opposed to 0) in the generalised linear model, a link function has to 
be chosen. For a discussion of possible link functions e.g., logit, probit, or log-
log functions) see Snijders and Bosker (1999). In this document the most 
popular link-function, the logit function, will be used, meaning the analyses that 
are conducted, are multilevel logistic regression analyses.  
 
A 2 level logistic variance components model for binary responses as an 

equation for the probability ijπ is (Rasbash et al., 2004, p. 111): 

 ijj

ij

ij

ij x110
1

logit)logit( ββ
π

π
π +=

−
=   (2.3.14a) 

 
jj u000 += ββ  (2.3.14b) 

 
To interpret the relationship between the binary response and an explanatory 
variable, logit coefficients were transformed into odds ratios using the 
exponential transformation (see Rasbash et al. 2000 and Rasbash et al. 2004 
for a detailed explanation). These odds ratios compare the odds for drink driving 
of a certain category of a variable (for example the odds for drink driving for the 
category “female” of the variable “gender”) to the reference category of that 
variable (in this example the reference category is “male”).  
 
Taking the exponentials of each side of (2.3.14a), we obtain: 
 

 )exp()exp(
1

10 ijj

ij

ij
xββ

π

π
×=

−
 (2.3.15a) 

 
If we increase x  by one unit, we obtain: 
 

)exp()exp()exp())1(exp()exp(
1

1110 βββββ
π

π
××=+×=

− ijojijj

ij

ij
xx  (2.3.15b) 

 

This is the expression in (2.3.15a), multiplied by )exp( 1β (i.e., 1βe ). Therefore 

)exp( 1β  can be interpreted as the multiplicative effect on the odds for a 1-unit 
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increase in x . If x  is binary (like gender), then )exp( 1β is interpreted as the odds 

ratio, comparing the odds for units with 1=x  relative to the odds for units with 
0=x , i.e., the reference category. More generally, if x  is categorical, then 

)exp( 1β  is interpreted as the odds ratio, comparing the odds for units with a 

value for x , different from 0 (1, 2, 3, etc. depending on how many categories 
the categorical variable consists of) with 0=x , i.e., the reference category. 

2.3.2.3.  Model assumptions 

 
The model assumptions for the binomial model are listed below. 
 

ju0 ~ ( )2
0,0 uN σ , the road-site-specific component of the intercept is assumed to be 

normally distributed with mean zero and variance 2
0uσ . 

 

ijy ~ ( )ijBin π,1 , the observed binary responses are assumed to follow the binomial 

distribution with denominator 1, expected value ijπ  and variance )1( ijij ππ − . 

 
 

2.3.2.4. Research problem and Data set 

In 2003 the Belgian Road Safety Institute organised the third national roadside 
survey to estimate the proportion of drink drivers and their profile (Vanlaar, 2005 
b). The objective of this initiative was to gather epidemiological data as a basis 
to formulate theory- and research-based recommendations to policymakers with 
the intention of decreasing the number of alcohol related accidents and victims 
on Belgian roads. This roadside survey is repeated every two years to study 
trends in drink driving. 
 
According to the official statistics on police enforcement 6% of all tested drivers 
were at or above the legal limit (BIVV, 2002). This result corresponds to the 
results from the SARTRE survey (2004): 6% of fully licensed, active Belgian car 
drivers report they may have been driving during 1 or more days in the past 
week while over the legal limit for drinking and driving. The first percentage, 
however, is based on a non-representative sample as a result of a selective 
way of sampling drivers. Therefore, it is impossible to generalise this result to 
the Belgian population of car drivers as a whole. The second percentage most 
probably suffers from a bias due to social desirability.  
 
The data presented here were gathered during a drink driving roadside survey 
in 2003 according to a stratified two stage cluster sample. The first stage of the 
roadside survey consisted of randomly selecting road sites (m=413) in each 
region using a Geographical Information System (Arcview). The road sites are 
also called primary sampling units (PSU’s). Once the sampling of road sites was 
completed, each site was randomly linked to one out of four possible time spans 
(weekday; weekday nights; weekend days; weekend nights). Therefore, the 
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sampling design is not only stratified in space (per region) but also in time. The 
second stage of the roadside survey consisted of randomly stopping drivers 
(n=11,186). Once stopped, they were asked by the police to perform an alcohol 
breath test. 
 
The outcome variable is a binary variable based on the blood alcohol 
concentration (BAC) of each driver. For the purpose of the multilevel analysis it 
has been recoded with 0 representing those drivers with a BAC below the legal 
limit and 1 representing those drivers with a BAC at or above the legal limit. 
Drivers at or above the legal limit are referred to as drink drivers. 
 
The individual explanatory variables (level 1 explanatory variables) are Gender, 
Age (a categorical variable consisting of the following age groups: 16-25, 26-39, 
40-54, 55+), Previously (a binary variable distinguishing between drivers who 
previously have been stopped and tested at a road site at least once and 
drivers who have never been stopped and tested at a road site before) and 
Probability (a categorical variable representing the driver’s perception of the 
probability of being tested for drink driving; drivers could answer: very low, low, 
medium, high, very high). 
 
The aggregated explanatory variables (level 2 explanatory variables) are Traffic 
count (a continuous variable indicating the total number of vehicles driving by 
the road site during the police check) and Intensity (a continuous variable 
calculated by dividing the number of policemen per road site by traffic count for 
that road site). 

2.3.2.5.  Model fit and diagnostics 

A two-level binomial model was fit with drivers at level 1 and road sites (the 
PSU’s) at level 2. To model the relationship between the binary response and 
the set of explanatory variables, the logit function was used as a link function, 
meaning a multilevel logistic regression was performed (Rice, 2001).  
 
The results for the final model, containing all explanatory variables described in 
the previous section, are presented in Table 2.3.4. Two versions were 
estimated, a binomial model, in which the variance is constrained to be 1 and 
an extra binomial model, which does not impose such a constraint. The final 
model fits the data well, which can be derived from the level 1 variance 

eσ =0.712 in the extra binomial model, which is close to the theoretical value of 

1 (restriction imposed by the binomial distribution). This means there is little 
evidence that our model exhibits extra binomial variance, more precisely 
underdispersion20 – the binomial distribution holds. As can be seen in Table 
2.3.4, the strength and the direction of all relationships remain unchanged 
between both models. 
 
With threshold models the Variance Partition Coefficient (VPC), as defined in 
Section 2.2.1.7.1, can be applied to the latent variable. “Since the logistic 

distribution for the level one residual implies a variance of 32π =3.29”, the VPC 

                                            
20

 Underdispersion refers to the situation in which the total variance is less than 1; conversely, 
overdispersion corresponds to a total variance, greater than 1. 
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formula simplifies to ( )32πσσρ += uu   – with uσ  being the level 2 variance and 

π  being the number π  (Snijders and Bosker, 1999, p. 224). In our case the 
VPC, while controlling for the explanatory variables, is 0.231. This means 
23.1% of the total variance is level 2 variance, which justifies modelling the data 
according to a multilevel structure. 
 

2.3.2.6. Model interpretation 

The influence of the independent variables on the outcome variable is 
interpreted based on the exponential coefficients (i.e., odds ratios) of the 
binomial model in Table 2.3.4, using the definition explained in the section on 
model definition. 
 
There is a significant (joint chi square test=10.464, df=1, p=0.001) negative 
relationship between Traffic count and the odds of drink driving when controlling 
for intensity of stopping drivers and for the other independent variables. For 
each additional car at a road site the odds of drink driving are multiplied by a 
factor of 0.998. This means that the odds of drink driving decrease by 0.2%, or, 
per 100 extra cars on a site, the odds are multiplied by a factor of 0.819 (exp(-
0.002x100)), meaning that the odds of drink driving decrease by 18.1%.  
 
One could argue that this relationship is of a spurious nature caused by the fact 
that drink driving takes place primarily on weekend nights with low traffic while 
there are less drink drivers during the day when there is much more traffic. 
Therefore another series of analyses per time span was performed to rule out 
this explanation. The result confirmed our findings regarding the negative 
relationship between traffic count and odds for drink driving. Note that a more 
sophisticated way to investigate this relationship is by extending the two-level 
model to a-three level model by including the variable time as an extra level. 
Locations would then be at level 3, time at level 2 and drivers at level 1. 
 
The odds of drink driving for women in comparison with men (Female) are 
multiplied by a factor of 0.253, meaning that women’s odds for drink driving 
decrease significantly (joint chi square test=44.123, df=1, p=0.000) by 74.7% 
compared to men.  
 
The reference category for the variable Age is the category of drivers in the age 
group 16-25. The odds of drink driving for drivers with an age in the range 26-39 
in comparison with the reference category are multiplied by 2.034. This means 
that drivers with an age in the range 26-39 have 103.4% more chance to be a 
drink driver than drivers with an age in the range of 16-25. The odds of drink 
driving for drivers with an age in the interval 40-54 in comparison with the 
reference category are multiplied by 3.721 and thus those odds increase by 
272.1%. Finally, the odds of drivers aged 55 or older in comparison with the 
reference category are multiplied by a factor of 2.370; those odds increase by 
137.0%. This relationship between age and the dependent variable is also 
significant (joint chi square test=38.666, df=3, p=0.000). 
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The odds of drink driving for drivers who previously have been stopped and 
tested at a road site at least once in comparison with drivers who have never 
been stopped and tested (Previously) are multiplied by a factor of 1.505. This 
means that the former drivers have a 50.5% higher risk for drink driving than the 
latter drivers. This relationship was also found to be significant (joint chi square 
test=8.476, df=1, p=0.004). 
 
This result seems to be in contradiction with the SORC-model, explained in the 
GADGET-project, stating that past experiences with law enforcement – as one 
aspect of the objective risk of getting caught – lead to obedience (Christ et al., 
1999). It can, however, be explained by the selective way in which police 
checks in general are carried out in Belgium. Normally police officers focus on 
drivers who are more likely to be drink driving based on observable criteria like 
gender. This eventually results in a population of drivers consisting of drink 
drivers who, relatively speaking, have been tested for drink driving more often 
than the non-drinking drivers. The evidence we found in this roadside survey is 
based on a random sampling mechanism that allocates equal probabilities for 
selection to drink drivers and non-drinking drivers, reflecting the result of the 
selective way in which police checks are carried out in general. This rationale is 
of course conditional on the assumption that drink drivers in general are 
recidivists who will continue to drink drive even if they have been caught and 
sentenced before. In other words, the explanation for the evidence we found 
could simply be the nature of the group of drink drivers which might be 
composed for the largest part by hard core drink drivers (Simpson et al., 2004) 
for whom this SORC-model does not hold. 

 
The reference category for the following variable (Probability) is the category of 
drivers who answered that they perceive the probability of being tested to be 
very low. The relationship as a whole is significant (joint chi square test=36.378, 
df=4, p=0.000). The odds of drink driving for drivers who answered they 
perceive the probability of being tested as low in comparison with the reference 
category are multiplied by a factor of 1.711, meaning the odds of drink driving 
increase by 71.1% compared to the reference category. The odds of those who 
answered they perceive the probability of being tested medium in comparison 
with the reference category are multiplied by a factor of 2.104, so the odds 
increase by 110.4% compared to the reference category. The odds of those 
drivers who answered they perceive the probability of being tested high in 
comparison with the reference category are multiplied by a factor of 1.366 and 
thus are 36.6% higher than the reference category’s odds (but this dummy 
variable is not significant). Finally, the odds of drink driving of those drivers who 
answered they perceive the probability of being tested as very high compared to  
the reference category are multiplied by a factor of 4.187; in other words, those 
odds increase by 318.7%. 
 

Extra binomial model Binomial model 

Parameter Logit 
coefficients 

(s.e.) 

Exponential 
coefficients 

Logit 
coefficients 

(s.e.) 

Exponential 
coefficients 

Fixed      
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  Intercept 
-4.981 

(0.265) 
 -4.757 (0.285)  

  Traffic count 
-0.001 

(0.000) 
0.999 -0.002 (0.000) 0.998 

  Intensity 0.746 (0.407) 2.109 0.896 (0.383) 2.450 

  Female 
-1.395 

(0.177) 
0.248 -1.375 (0.207) 0.253 

  Previously 0.467 (0.126) 1.595 0.409 (0.141) 1.505 
  Probability low 0.565 (0.144) 1.759 0.537 (0.167) 1.711 
  Probability medium 0.769 (0.146) 2.158 0.744 (0.169) 2.104 
  Probability high 0.304 (0.239) 1.355 0.312 (0.278) 1.366 
  Probability very 
high 

1.445 (0.254) 4.242 1.432 (0.290) 4.187 

  Age26-39 0.749 (0.206) 2.115 0.710 (0.242) 2.034 
  Age40-54 1.382 (0.200) 3.983 1.314 (0.234) 3.721 
  Age55+ 
 

0.948 (0.233) 2.581 0.863 (0.272) 2.370 

Random  
 

    

  Level 2 variance: 

uσ  
1.569 (0.229)  0.991 (0.197)  

  Level 1 variance: 

eσ  
0.712 (0.010)  1.000 (0.000)  

     

Table 2.3.4: Logit and Exponential coefficients for the fixed and random effects of the 
extra binomial and the binomial 2 level multilevel logistic model (significant 
coefficients are printed in italic) 

 
 
Based on the SORC model (Christ et al., 1999), mentioned above, one would 
expect the opposite. A possible explanation is that the perception of drivers who 
are caught on the spot is influenced by this event. An alternative explanation 
could be related to a selective memory bias for alcohol cues (Franken et al., 
2003). 
 
To summarise, it was shown in the model fit section that the model fits the data 
well and that the data called for a multilevel approach. The results of the 
multilevel models revealed an interesting relationship between traffic count and 
odds for drink driving indicating that drink drivers tend to avoid places with 
higher traffic counts. In practice this means that police officers should not 
restrict their enforcement activities to sites where the frequency of vehicle traffic 
is high. The results for gender and age are in line with previous findings: women 
are less at risk for drink driving, as are the youngest drivers aged 16-25 
(Vanlaar, 2002). Finally it was demonstrated that, in contradiction with the 
SORC model, drivers who have been controlled previously and/or perceive the 
probability of being controlled for alcohol are particularly prone to drink driving.  



Chapter 2 – Multilevel modelling 
 
 

 

 

2.3.2.7. Conclusion 

A multilevel version of logistic regression analysis was presented. Transforming 
coefficients of the fixed effects of such a model into easy-to-interpret odds ratios 
was demonstrated. Differences between the binomial and the extra-binomial 
model were discussed and it was illustrated how to interpret these differences 
appropriately. 
 
 



   

2.3.3 Multinomial responses  

Emmanuelle Dupont and Heike Martensen (IBSR) 

 

The response variable to be modelled can be made of several categories (i.e., 
two or more). In this case, it is assumed that the response follows the 
multinomial distribution. The analyses for these data can be considered as an 
extension of binomial data analysis: What is being modelled is the probability of 
the observations falling into each of the response category21. Contrary to the 
binomial analysis, however, more than 2 possible responses must be 
considered altogether. It is important – in order to properly perform the analysis 
– to distinguish between cases where these categories are related by some 
meaningful order, and cases where they can not be ordered so. The first case 
requires the application of “ordered” category analysis (also called ordered 
proportional odds analysis), the other an unordered model, sometimes simply 
termed a “multinomial analysis”. In order to highlight the statistical implications 
of conceiving response categories as ordered or not, the models’ objectives, 
definitions and assumptions will be developed in parallel for ordered and 
unordered responses models.  
 
The Belgian drink-driving study presented in Section 2.3.2 will also be used as a 
research example in this section. In the present case, however, the drink-driving 
response variable will be handled as it had been recorded, namely, as made up 
of 3 categories (“safe”, “alarm”, and “positive”). Models will be fitted first 
assuming that there is a meaningful order underlying category numbers 1 to 3, 
then without making this assumption.  

2.3.3.1. Objectives of the technique 

The primary aim of the analysis of multinomial responses data is to model the 

probability of ijky  - the observation for individual j belonging to group k - to fall 

into one of the various categories (the i’s) making up the response variable. 
This probability itself is represented as a function of one or more explanatory 
variables. In its multilevel version, such an analysis additionally allows 
examining whether these probabilities - and the way they are influenced by the 
predictors – vary as a function of higher-level units.  

2.3.3.2. Model definition 

Applying multilevel techniques to multinomial responses implies that the 
model’s lowest level will serve essentially pragmatic purposes, namely the 
specification of the structure of the response variable. Therefore, even a model 
accounting for single-level data will take a 2-level form. Level 1 will be made of 
several dummy variables (as many as the total number of categories minus 
one, designated as the reference). Each of these variables will take on the 
value “1” when a given observation corresponds to the category it figures in, “0” 
otherwise. Level 2 will represent the individuals sampled in the study, or 

                                            
21

 Another option consists of modelling the frequencies or counts of the responses in each of 
the response category as the response variable, therefore using the Poisson distribution as 
sampling model at level 1 (see Dobson, 2001; or Goldstein, 2003 for details on this option). 
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whatever units the observations are made on. To each level 2 unit will thus 
corresponds a set of dummy values, among which only one “1”. In this 
framework, level 1 does not in itself consist of observations, but rather defines 
their structure. Therefore, this is at the second level that the lowest-level units 
are to be found. This device is thus similar to the one applied in the case of 
repeated measurements (see Section 2.4), or of multivariate multilevel analysis 
(see Section 2.5): Level 1 in all these models establishes the “measurement 
model” (Raudenbush & Bryk, 2002). Examining 2-level versions of these data, 
therefore, requires 3 levels to be included in the model.  
 
The general principles outlined when describing the Multilevel Generalised 
Linear Model (see section 2.3.1) are applicable to the modelling of multinomial 
responses data: The distributional features of the data to be modelled are 
incorporated into the level 1 sampling model, allowing to define the response 
variable at this level as the result of some particular expected values 
(probabilities in this case, as in the case of binomial data). This expected value 
is in turned modelled as being some function of a linear arrangement of 
predictors, among which random variation at higher levels of the data hierarchy 
(bearing in mind that level-2 in the present case actually corresponds to the 
lowest level, the one of the observations).  
 
As indicated earlier, although the models fitted for ordered or non-ordered 
category data lie upon the same multilevel structure (level 1 defining the 
structure of the response, level 2 corresponding to the observations), they also 
substantially differ from each other. In both cases the logit link is used, the odds 
of two probabilities. The two probabilities that are contrasted, however, differ. 
The log odds in the unordered response categories contrast the simple 
probabilities with those of a reference category. In contrast, in the case of 
ordered categories, it is a cumulative probability that is contrasted with a 
reference category. The link function for the ordered proportional odds model is 
therefore called ‘cumulative logit’. The use of the cumulative logit link, as 
explained below is what allows the model to preserve the ordered nature of the 
categories.  

2.3.3.2.1. Ordered categories 

The response variable ijky  represents the test result of the jth driver at the kth 

road site as belonging to one of these three categories: 1 = “Safe”, 2 = “Alarm”, 
3 = “Positive”. Considering that a meaningful order underlies these test results, 
one could conceive of them as reflecting some unobservable dimension – say 
“z”. In the present example, this dimension would be the blood alcohol 
concentration (BAC) 22: The higher an individual’s stand on this underlying 
dimension, the higher the probability that this individual’s test result will fall into 
the upper categories of the response variable. 
  
The cumulative logit link that is used in ordered models is based on cumulative 
probabilities. Because of the ordered nature of the categories, it makes sense to 
calculate for each category the probability of an observation falling into that 

                                            
22

 “Safe” corresponds to a blood alcohol concentration below 0.22 mg/l, “alarm”, to a BAC 
between 0.22 mg/l and 0.35 mg/l, and “positive” to a BAC exceeding 0.35 mg/l. 
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category or above. Throughout this section, the notation “ ijkγ “ will be used to 

refer to cumulative probabilities, while “ ijkπ “ will be employed to designate 

“ordinary” probabilities. Formally, cumulative probabilities are defined as: 
 

 =≥= i)Prob(yγ ijkijk ∑
I

i

ijkπ , (2.3.16a) 

 
where i is the rank of the response category in question. Thus, for a response 
made up of three categories, we have: 
 

 1jk3jk2jk1jk1 =++= πππγ   (2.3.16b) 

 

 3jk2jk2jk ππγ +=   (2.3.16c) 

 

 3jk3jk πγ =   (2.3.16d) 

 

Given that 11 =γ , only 1−I  (with I  being the total number of categories) 

cumulative probabilities will have to be estimated.  
 
In the example of the alcohol-breathtest the reference category is the lowest 

one (BAC<.05: safe). The cumulative probability
iγ  denotes the probability to 

have a BAC that defines category in question or more. Thus, the cumulative 
probability for the category “alarm” is the sum of the proportion in “alarm” and in 
“positive” because drivers in both categories have a BAC of .05 or more. The 
cumulative probability for “positive” is simply the proportion of this category, 
because there is no category defined by an even higher BAC. Finally, the 
cumulative probability for the category “safe” is 1, because everybody has a 
BAC <.05 or more. Figure 2.3.1 provides an illustration of the cumulative 
probabilities in the case of a 3-categories response. 
 
Cumulative logits are the ratio of the probability of one observation falling into 

the reference category or above ( i)Pr(y ijk ≥ ) to the probability of the 

observation falling in a lower category ( )Pr( iyijk p ). This odds ratio is formally 

defined as 


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The model’s systematic component can now completely be defined as: 
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The first part of this component, namely, the link function, has already been 
explained. The second part of the equation indicates that the predicted 
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cumulative log-odds are expected to be a function of some fixed (population) 

intercept value (
)(iojβ ), of a random effect of the level-3 units on this intercept 

value ( oku ), of fixed effects of explanatory variables ( hjkhj

p

1h
xβΣ

=
), and of random 

variation of these effects across level-3 units ( ljk

q

1l

lk xu∑
=

). 

 
 

 
Figure 2.3.1: Cumulative probabilities for the different BAC-levels 

 
The notation used in Equation 2.3.17 indicates that each response category has 

a different intercept value (
0β  is the only term of the model to which the i 

subscript for categories is assigned). These intercepts, or “thresholds” for the 
response categories must be understood as the average cumulative log-odds 
for each category. They can thus be interpreted as the ratio of the probability of 
an observation falling into category i or above to the probability of the 

observation falling into a lower category23, when all predictors are set to 0. 
(1)ojβ  

corresponds to the log-odds of being in category one rather than in category 2, 

or 3, 
(2)ojβ  corresponds to the log-odds of being in category 1 or 2 rather than in 

category 3. This series of intercepts accounts for the order of proportional odds, 
and is what confers the model its cumulative nature (Leyland & Goldstein, 
2001). They correspond to predicted log-odds which, once transformed into 
predicted probabilities, can be interpreted as the probability for a given 
observation to appear in category m before appearing in category i (Ibid).  
 
The model thus specifies different intercepts for the response categories, but 
provides one and only one estimate for the random variation of these intercepts 

                                            
23

 This interpretation holds because the category chosen as the reference is the first one. This 
interpretation is to be “reversed”, however, when the last category is the reference. 
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at level 3 (or higher). Indeed, allowing them to vary randomly at level 3, but all in 
a different way would render the interpretation of the results quite difficult, and 
the model rather costly to estimate (many parameters would have to be 
estimated). All the components of the proportional model – except the intercepts 
- are defined as being common to the different response categories. This is the 
case not only for the level-3 random effects, but for any fixed effect specified in 
the model. This feature - separate intercepts but common slopes to all 
categories – reflects a fundamental assumption of the proportional model: All 
the effects (both fixed and random) are assumed to be independent from the 
particular category considered. In the same way that the fixed effects of 
individual-level predictors are defined as being homogeneous across response 
categories, it can be assumed that the random effects related to the 
observations’ clustering into higher-level units is homogeneous across response 
categories24.  
 
Consequently, an empty, single-level proportional model will appear as a series 
of 1−I  equations, but these would differ from each other only on the ground of 
the fixed intercept values. The possible predictors do not vary across 
categories, and do not take the category index i, indicating that they are 
estimated for all categories jointly.  

2.3.3.2.2. Unordered categories 

Supposing that the categories making up “breathtest”, the response variable of 
the drink-driving study are not ordered, one would model it as a function of the 
probability of each category of result rather than on cumulative probabilities. 
One of the appropriate link functions would in this case be the “usual” logit 
function rather than the cumulative logit. The main difference between this 
model - the “unordered” model – and the ordered one is that the former does 
not assume homogeneous predictor effects across categories. The explanatory 
variables entered in the model are seen as likely to have a different effect on 
the different response categories.  
 
As a reminder, the logit link function corresponds to the log of the odds of being 
in one given category (i) rather than in another, designated as the reference 
category (m). The odds themselves are defined as the ratio of the probability of 
being into category i to the probability of being in category I. These probabilities 
are defined as: 

 

 ijkkijijk πi)Prob(yπ === , for Ii ,...,1=  (2.3.18a) 

 

                                            
24

 Fitting an unordered model to verify that the predictors’ effects indeed are homogeneous 
across categories is useful. However, failure to meet the “proportional odds assumption” and 
concluding that predictors do have different effects across the response categories does not 
necessarily imply that the ordered nature of the categories has to be questioned, but simply that 
the effects of predictors are not homogeneous across the different response categories 
(Raudenbush & Bryk, 2002). In such a case, it is nevertheless necessary to treat the latter as 
unordered, and to use the multinomial model.  
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And,  
 

 1jk1jk ππ =   (2.3.18b) 

 

 2jk2jk ππ =   (2.3.18c) 

 

 jk3π  = kj2jk11 ππ −−  (2.3.18d) 

 

Given that 1jk1jk2jk3 =++ πππ , only 1−I   probabilities will have to be estimated. 

 
The systematic component of the unordered model is:  
 

ijk

qi

1l

ljk(i)ok(i)hjkhjk(i)

pi

1h
o(i)ijk

ijk

ijk

Ijk

ijk

ijk xuuxβΣβη
m)Pr(y

i)Pr(y
log

π

π
logη ∑

=
=

+++==














=

=
=














=  (2.3.19) 

 
The i category index is assigned to all components of this equation, implying 
that there is one separate model for each response category. For this reason, 
the unordered model can be described as “contrast-specific”: It is made of 
several “sub-models” that compare each response category to the reference 
one (Rasbah, Steele, Browne, & Posser, 2004). This allows for much flexibility 
in the way the predictor-probability relationship is specified across the 
categories: The effect of one given predictor may differ depending on the 
particular categories contrasted, and so may the random effects at higher levels 
of the data hierarchy. The unordered model also allows specifying different 
predictors for different response categories (e.g.: the sub-model contrasting 
category 1 with the reference would contain predictor x and the sub-model 
contrasting category 2 with the reference would contain predictor z). To 
summarize, in contrast to the ordered model, the unordered model conceives of 
the effects of the predictors (both fixed and random) and of the category 
probabilities as interactive effects. This is the major difference between this 
model and the proportional odds one, which assumes them to be independent 
and additive. For this reason, the proportional model is also far more 
parsimonious than the unordered model (i.e.: the number of parameters to be 
estimated is greatly reduced in the case of the ordered model).  

 

2.3.3.3. Model assumptions 

As already indicated, there is no variance associated with level 1 in a model for 
multinomial responses. It is at the second level of the data hierarchy (the 
“individual” level) that the variance specified by the sampling model describing 

ijky  is to be found.  

Level 2 thus describes the inter-individual variation in the data, and the error 
structure of the response. In the case of the ordered model – working with 
cumulative probabilities – the variance and covariances of the observations are 
defined by the ordered multinomial sampling model: 
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 )1(  )( ijkijkijkijkyVar γγγ −=   (2.3.20) 

 )1(),,( ''' jkiijkjkiijkjkiijk yyCov γγγγ −=   (2.3.21) 

 
In the case of the unordered multinomial model, the variance and covariances 
of the observations should be: 
 

 )1()( ijkijkijkijkyVar πππ −=   (2.3.22) 

 

 )1(),,( ''' ijkiijkjkiijkjkiijk yyCov ππππ −−=   (2.3.23) 

 
The fact that the observed variance and covariances at level 2 follow the 
specification of the multinomial sampling model of course depends on whether 
or not the data indeed exactly follow the multinomial distribution, and do not 
show over - or under – dispersion (see section 3.1.2).25  
 
In the case of a 3-level random intercept model (conceptually a 2-level model, 
thus), these are the variance and covariances of logit values that compose the 
variance-covariance structure at level 3. Both the ordered and unordered 
models assume the intercepts and slopes of the level-3 units to be normally 

distributed, with mean 0 and variance 2σ . In other words, the (cumulative) logits 
are assumed to be normally distributed around the level-3 units.  
 
The variance-covariance structure at level 3 also depends on the (un)ordered 
nature of the model. Indeed, the ordered model assumes random variation at 
this level to be the same for all response categories, while the random effects 
are expected to differ across response categories in the case of the unordered 
model. In this latter case, given that the random effects are allowed to differ for 
the various categories, the covariance between the categories’ random effects 
also has to be estimated as part of the variance-covariances structure, in 
addition to the usual covariance between intercepts and slopes.  

2.3.3.4. Research problem  

The response variable that is assessed here (“breathtest”) is conceptually the 
same as the one examined in the section over binomial data (Section 2.3.2.). In 
the binomial case, however, observations were indiscriminately treated as the 
same indication that a driver had been drinking when his/her breathtest result 
exceeded the “alarm” or “positive” thresholds. These two categories were 
indeed merged in order to constitute a single “success result”, so that the 
response could be considered dichotomous. In the present analysis the two 
categories will be treated distinctly, and the response variable will thus be 

                                            
25

 This assumption can be checked through estimating an additional parameter, known as the 
“scale factor” that is associated to the “canonical” variance defined by the sampling model of the 
discrete distribution concerned. This parameter should appear close to one if indeed the data 
closely follow the discrete distribution described. Values lower than 1 reflect a situation termed 
“underdispersion”, values greater than 1 indicate “overdispersion”. 
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analysed as a “3-categories” response. The effect of gender and age on the 
drivers’ test results will be examined, first by means of the proportional logit 
model, then by means of the unordered model. This last analysis will provide 
useful indications about whether the predictors included in the model indeed 
can be considered to have homogeneous effects across the different response 
categories.  

2.3.3.5. Dataset 

The dataset used for the present illustration is the same as the one analysed in 
Section 2.3.2. The reader is therefore referred to this section for a complete 
description. 

2.3.3.6. Model fit and diagnostic 

2.3.3.6.1. A word of caution on estimation methods 

As already mentioned in the introductory section over Multilevel Generalised 
Linear Models, when the estimation method employed in this framework 
consists of quasi-likelihood estimation (i.e., the approximation of maximum 
likelihood estimation via linearization) rather than of maximum likelihood itself, 
the deviance test cannot be trusted any more. Consequently, there is no 
criterion available to gauge the improvement of the models successively 
specified. Tests of single parameters remain one option, but should also be 
used with caution, at least for random parameters.  

2.3.3.6.2. Ordered models 

The first type of model fitted - the proportional logit model - specifies the 
following sampling model for the response variable at level 1 (“the test result i of 
individual j”) : 
 

 ijy ~ Ordered multinomial ( ijn , ijγ ) (2.3.24a) 

 

The expected value for the response variable is the cumulative probability, ijγ , 

and is therefore the value that will have to be modelled on the joint basis of the 
linear predictor and the cumulative logit link function. The predicted cumulative 

probability ijγ  is defined the following way for each of the i response category: 

 

 1,, 123233 =+== jjjjjj γππγπγ   (2.3.24b) 

 
The first category (“Safe”) is designated as the reference, and thus has 

cumulative probability 11 =jγ . The lowest category being the reference, the 

other 2 cumulative probabilities must be understood as “the probability that an 
observation falls into the next higher category or above” (namely, in the “alarm 

or positive” categories for j2γ  and in the “positive” category for j3γ ) 26.  

                                            
26

 Had the last category – « positive » - been designated as the reference, the cumulative 

probabilities would have been defined the other way around, with 1γ3j = , and 2jγ  and 1jγ  
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As an initial step, the model is left empty. It does not include any predictor. Two 
levels are specified (“i”, and “j”), but one should bear in mind that such a model 
conceptually is a single-level model. The systematic component is at this stage 
composed of an intercept only, and fits the “baseline” predicted cumulative 
logits of the response categories27. Given that the response variable is made up 
of three categories, only two cumulative logits will be estimated: 
 

 3.49(0.06))logit(γ 2j −=   (2.3.24c) 

 

 3.91(0.07))logit(γ3j −=   (2.3.24d) 

 
Once exponentiated, these values can be interpreted as the “baseline” 
probability for an observation to correspond to an “alarm” or “positive” test result 

( 2jγ ), or to a “positive” result ( 3jγ ): 

 

 0.03
3.49)(exp1

1
γ 2j =

−−+
=   (2.3.24e) 

 

 0.02
3.91)(exp1

1
γ3j =

−−+
=   (2.3.24f) 

 
The results from the empty model indicate that the predicted probability for a 
driver to have a test result of “alarm” or “positive” is 0.03, and does not differ 
much from the probability for a driver to obtain a “positive” result to the test 
rather than a “safe” or an “alarm” one. Both coefficients are negative and 
significant, indicating that drivers are on average more likely to be tested as 
“safe” rather than as “positive” or “alarm”. The ordered model assumes all 
effects, save the fixed intercepts, to be homogeneous across the response 

categories.  In order to reflect this assumption, a single term “ jkh ” is added to 

each of the cumulative logit’s equation, which will contain any effect that will be 
further specified in the model and remain identical for all the response 
categories. 
 
The next model fitted is the random intercept model. This model will allow 
assessing whether “road sites”, the 2nd conceptual level in the data hierarchy 
(but the 3rd level in terms of the present model), introduces random variation in 

                                                                                                                                
being the cumulative probabilities of the observations falling in the next lower category or below 

, and 1j1j πγ = , given that there exists no lower category in the response. 
27

 As a reminder, the logit of a probability (whatever cumulative or not) has to be understood as 

the log of the ratio of 2 probabilities (log-odds). In the present model, logit( 2jγ ) corresponds to 

the log of the odds of the probability of being into category 2 or above as compared to category 

1, while logit 3jγ  corresponds to the odds of the probability of being in category 3 as compared 

to category 2 or below. 
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the cumulative logit of the intercept probabilities for the response’s categories. 

The random intercept model is the first one for which we use the jkh  which in 

this case contains only the level-3 variance of each of the categories’ intercepts 

( )logit(γ 2jk  and )logit(γ3jk ): These are expected to vary across higher-level units 

in the same way for the two response categories. :  
 

 jk2jk h3.37(0.08))logit(γ +−=   (2.3.25a) 

 

 jk3jk h3.79(0.08))ogit(γl +−=   (2.3.25b) 

 

And,  cons.23vh 3kjk = ,  (2.3.25c) 

 
Multiplying the random variation of the intercepts by a constant is what allows it 
being common to both cumulative logits. This random variation is also defined 
so as not to have any fixed part. The fixed – or population – values that are 
estimated for the intercepts of each category are to be considered as the fixed 
counterpart of this random variation. The random variation of the intercept is 
defined as: 
 

 [ ]3kv ~ ( ) [ ]0.88(0.18)Ω:Ω0,N vv =  (2.3.25d) 

 
The results obtained at this step seem to indicate that there is significant 
random variation in the probabilities to drink and drive across road sites. The 
reader is reminded, however, that the estimates obtained for the random 
parameters can in this case be severely biased.  
 
The effect of gender is then added to the model. The gender predictor is defined 
as a dummy variable, with the “0” (and thus, the reference) value corresponding 
to “men” and “1”, to “women”. Adding this effect to the model results in 
somewhat lower values for the intercepts of the two cumulative probabilities: 
 

 jk2jk h3.07(0.08))logit(γ +−=  (2.3.26a) 

 

 jk3jk h3.49(0.08))logit(γ +−=  (2.3.26b) 

 
The two intercept values now correspond to the predicted logits of being tested 
as alarm or as positive among men: Overall, these are less likely to be tested as 
“positive” or “alarm” than as “safe”. The predicted probabilities for men drivers to 
be tested as either “alarm” or “positive”, and to be tested as “positive” are 0.04 

and 0.03, respectively. The coefficient for women is now added to the jkh  

component, and expresses the change entailed in these predicted logits by 
being a woman rather than a man: Clearly, the odds of being tested as “alarm” 
or “positive” rather than as “safe” are even lower among women than among 
men. And, 
 

 cons.23vwomen.231.61(0.23)h 3kjkjk +−= ,  (2.3.26c) 
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The predicted probabilities for women can also be obtained using the 
exponential function:  
 

 0.009
1.61)3.07(exp1

1
γ 2jk =

−−−+
=   (2.3.26d) 

 

 0.006
1.61)3.49(exp1

1
γ3jk =

−−−+
=   (2.3.26e) 

 
These are the predicted probabilities of a female driver to be tested as « 
alarm » or « positive » or as “positive” rather than “safe”, respectively. 
Obviously, they are both much lower than those obtained for males. 
 
The estimate for the random variation of the intercepts at level 3 remains the 
same as the one calculated on the basis of the empty model:  
 

 [ ]3kv ~ ( ) [ ]0.89(0.18)Ω:Ω0,N vv =  (2.3.26f) 

 
An additional model is then fitted to add another categorical predictor – age – to 
the model. The age variable is made up of 4 categories (16-25; 26-39; 40-54;  
 

 Male Female 
 Alarm or positive Positive Alarm or positive Positive 

Age     
- 16-25 0.02 0.01 0.004 0.003 
- 26-39 0.04 0.03 0.008 0.005 
- 40-54 0.07 0.05 0.01 0.01 
- 55+ 0.04 0.03 0.008 0.005 

     

Table 2.3.5: Cumulative predicted probabilities for the different age and gender 
categories.  

 
and 55+), with the first being designated as the reference. This predictor is 
introduced in the model by means of three dummies, each comparing one of the 
remaining age categories with the “youngest” one. The intercept values for the 
cumulative logits are: 
 

 jk2jk h3.76(0.23))logit(γ +−=   (2.3.27a) 

 

 jk3jk h4.19(0.23))logit(γ +−=   (2.3.27b) 

 
These logits values are now the ones estimated for male drivers aged 16 to 25. 

The corresponding predicted probabilities are, 0.02 and 0.01 j2γ  and j3γ , 

respectively.  
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The jkh  component now includes the coefficients associated with the three 

dummies representing the age variable: 
 

cons.23v.23550.53(0.28)

54.23401.16(0.24)39.2360.51(0.2)2women.231.61(0.23)h

3kjk

jkjkjkjk

++

−+−+−=
+

 (2.3.27c) 

 
Overall, the three older age categories seem to be more likely than the 16-25 
ones to exceed the legal BAC limit. This is especially true, however, for the 40-
54 age range. Appropriately summing the coefficients and exponentiating them 
provides the corresponding predicted probabilities for all categories of the 
predictors in the model. For example, in the case of female drivers: 
 

 0.005
1.61)3.76(exp1

1
γ 2jk =

−−−+
=   (2.3.27d) 

 
…corresponds to the probability of a woman aged 16 to 25 to be tested as 
“alarm” or “positive”.. Computing:  
 

 0.01
1.16)1.613.76(exp1

1
γ 2j =

+−−−+
=   (2.3.27e) 

 
… provides the predicted probability of a female driver aged 40 to 54 to be 
tested as “alarm” or “positive”. All the predicted probabilities for the different 
predictors categories are summarised in Table 2.3.6. 
 

2.3.3.6.3. Unordered models: 

Finally, an unordered version of the model including gender and age as 
predictors should allow examining whether their effects can indeed be 
considered homogeneous across the response categories. The sampling model 
at level 1 in this case is: 
 

 ijy ~ Multinomial ( jkn , ijkπ )  (2.3.28a) 

 
The logit model is one for “ordinary” probabilities, and will readily be expressed 
as the log of the odds of each category to the reference category, which will in 
this case remain the “safe” one. Given that there are three categories, 2 logit 
models are estimated: 
 

 )
π

π
log(

1jk

2jk
 (2.3.28b) 

 
comparing the “alarm” and “safe” categories, and  
 

 ( )
1jk

3jk

π

π
log  (2.3.28c) 
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 comparing the “positive” and “safe” categories.  
 
Contrary to the ordered model, no common term underlies the logit models for 
the different categories:  
 

 

ijk

ijkijk

ijk0k

1jk

2jk

.Alarm.550.71(0.38)

54.Alarm401.02(0.34)39.Alarm260.77(0.34)

mWomen.Alar1.05(0.25)β)
π

π
log(

++

−+−+

−=

 (2.3.28d) 

 
With  

 okOk v4.93(0.31)β +−=   (2.3.28e) 

 
 

 

ijk

ijkijk

ijk1k

1jk

3jk

.Positive.550.59(0.27)

e54.Positiv401.19(0.24)e39.Positiv260.52(0.25)

tiveWomen.Posi1.61(0.22)β)
π

π
g(lo

++

−+−+

−=

 (2.3.28f) 

 
With  

 1k1k v4.16(0.23)β +−=  (2.3.28g) 

 
The intercepts for the log-odds of “alarm” to “safe”, and of “positive” to “safe” are 

each defined as being made of different fixed values ( 10 , ββ ) and of different 

random components ( okv , kv1 ). As a consequence, the covariance between 

these two random intercepts is also part of the parameters estimated by the 
model:  
 

 








1k

0k

v

v
~ ( ) 








=












=

0.96(0.18)1.05(0.16)

0.66(0.24)

σσ

σ
Ω:Ω0,N

2

v1v01

2

v0

vv  (2.3.28h) 

 
The fixed intercept values are both significant, and highly similar for the “alarm” 
and “positive” categories. Overall, the estimated effects are similar for the two 
categories. The effect of gender is in each case significant and negative: 
Women are less likely to be tested as “alarm” or “positive” than men are. The 40 
to 54 age category is the one that differ most from the 16 to 25 one, the positive 
coefficient associated with this age category revealing that people of this age 
are more likely to exceed both legal limits (i.e.: “alarm” and “safe”). The 
estimates for the random variation of the intercepts at level 3 for the two 

categories ( 2

0vσ , 2

1vσ ) also do not differ much from each other. All in all, the 

results suggests that the two probabilities tend to be homogeneously affected 
by the fixed and random effects specified in the model, and consequently that 
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the unordered model is not worth the cost it entails in terms of the number of 
coefficients to be estimated. The covariance observed between the random 
variations of the two intercepts at level 3 is quite elevated, further sustaining this 
conclusion. This positive covariance suggests that, at those road sites at which 
the probability of being tested as “alarm” rather than as “safe” is higher, the 
probability of being tested as “positive” also tends to be higher. 
 

2.3.3.7. Model interpretation 

The results of the models fitted in the previous section converge to suggest that 
gender and age are important predictors of the likelihood of the drink-driving 
behaviour. The pattern of effects observed for these fixed predictors on the 
basis of the ordered and unordered models proved similar for the probability of 
exceeding the “alarm” legal limit and for the probability of exceeding the 
“positive” one. In such a case, the ordered model is certainly the one to be 
preferred, first because the assumption of ordered response categories appears 
highly sensible, but also because of this model’s parsimonious value.  It can 
also be noted that the results agree with those found in the previous section 
(2.3.2), based upon a logistic regression analysis. The two categories “alarm” 
and “positive” analysed in the present section had been joined into one in the 
previous section. The unordered model analyses showed that the predictor 
effects for those two categories do not differ. Consequently, it is to be expected 
that dichotomising the response variable and analysing it in a logistic regression 
leads to comparable results, which is indeed what was found.  
 
Several indications were obtained that the baseline or intercept probabilities for 
the “alarm” and “positive” responses vary randomly as a function of the road 
sites at which the tests were made. As it has already been stressed however, 
the present analysis allows few conclusions with respect to random effects.  
 

2.3.3.8.  Conclusion 

Clearly, the present data call for a more complete multilevel analysis, one that 
would for example integrate level-3 effects such as the intensity of the traffic 
characterising the different road sites, or the time span during which tests have 
been performed at the different road sites. Cross-level interactions between 
these level-3 predictors and predictors at the individual level (e.g.: gender, age) 
are also potentially important aspects to address. Techniques permitting the 
exploitation of the multilevel structure of complex data are still under 
development, and the multilevel analysis of discrete data is certainly no 
exception. The available software keeps on evolving, and does so quickly. 
Before plainly satisfactory solutions can be offered, some alternatives can be 
used: Complementary information can be gained by relying on software directly 
using maximum likelihood estimation, although not specifically designed for 
multilevel analysis (such as “SAS”). Advanced estimation methods, such as 
MCMC (see Section 2.8) are also likely to provide valuable complementary 
information.  
 
 



   

2.3.4 Counts 

George Yannis, Eleonora Papadimitriou and Constantinos Antoniou (NTUA) 

 
2.3.4.1. Objective of the technique 
 
In this section, multilevel models that fit data with discrete response variables 
are further analysed. Following the analysis concerning binary or multinomial 
data shown in the previous sections, count data - or data that can take any 
positive integer value - are discussed. This count may be the number of times 
an event occurs out of a fixed number of "trials", in which case the resulting 
proportion is usually dealt with as response: an example is the proportion of 
fatalities in a population. It is common practise to use the Binomial distribution 
to fit models to proportional data, as shown in Section 2.3.2, and the Poisson - 
family distributions to fit models to count data.  
 
The present analysis has the following objectives: 
▪ Present the Poisson distributional assumptions and discuss the related 

properties and particularities 
▪ Describe the related multilevel structure 
▪ Use the above techniques to explore the regional effect of police 

enforcement on the number of road accidents in Greece. 
 
 
2.3.4.2. Model definitions and assumptions 
 
Count data have restrictions on the values they take; they must take positive 
integer values (or zero) and so if count responses were to be fitted as normal 
responses, one could obtain predicted counts that were negative. 
Consequently, the Poisson distribution is used instead (Langford et al., 1999). 
In this section, the basic Poisson assumptions for count data are presented.  
 
The Poisson distribution has a parameter λ that represents the rate at which 
events occur in the underlying population, according to the following 
characteristic function:  
 

 P(x ; λ)=
!x

eλ λx −

  (2.3.29) 

 
The Poisson distribution is based on four assumptions. The term "interval" 
refers to either a time interval or an area, depending on the context of the 
problem.  
 
▪ The probability of observing a single event over a small interval ∆τ is 

approximately proportional to the size of that interval. 
 P (1 ; ∆τ) = λ ∆τ   for small ∆τ 
▪ The probability of two events occurring in the same narrow interval is 

negligible. 
 P (0 ; ∆τ) + P (1 ; ∆τ) =1   for small ∆τ 



Chapter 2 – Multilevel modelling 
 
 

 

 

▪ The probability of an event within a certain interval does not change over 
different intervals. 

▪ The probability of an event in one interval is independent of the probability of 
an event in any other non-overlapping interval. 

 
These assumptions should be examined carefully, especially the last two. If 
either of these last two assumptions is violated, they can lead to extra variation, 
generally referred to as overdispersion, as discussed below (see also section 
2.3.1). 
 
Generally, modelling count data is known as Poisson regression and is not in 
itself a multilevel technique. To translate Poisson regression to multilevel 
Poisson regression is analogous to moving from linear modelling to normal 
response multilevel modelling (Langford et al, 1998, see also sections 2.1 and 
2.2). In case of Poisson multilevel regression, there is a higher level 
classification of the data across which the response is considered to vary. The 
multilevel model fitted to the data is based on iterative generalized least 
squares estimation. Assuming multivariate normality, calculations alternate 
between estimation of fixed and random parameter vectors until convergence is 
reached. However, in this case, a Poisson distributed response vector (O) of 
observed cases is assumed, and hence it is necessary to include an offset of 
expected numbers of cases in the model, so that: 
 
 Oij ~ Poisson (πij Eij) 
 
 log (πij) = β0j + β1j xj (2.3.30) 
 
 β0j = β0 + u0j 
 β1j = β1 + u1j 

 
where Eij represents the expected numbers of cases for each level 1 unit. When 
using such fixed offsets, it is recommended to centre them around their mean in 
order to avoid numerical instabilities (Rasbash et al., 2000). 
 
The Poisson distribution is used to model the level 1 variance, by using a 
logarithmic link function, and normal distribution is assumed for the random 
variances at higher levels. An efficient estimation procedure for this nonlinear 
model is predictive quasi-likelihood, where estimation of random parameters 
and associated residuals, is made using a Taylor series expansion around the 
current values of the fixed and random parts of the model. 
 
It should be underlined though that no random structure can be specified at the 
lowest level of a Poisson multilevel model. In particular, there is nothing random 
to estimate as in the Poisson model the relationship between mean and 
variance is known, so that there is no need to separately estimate the latter. 
However, the opposite is true in the classical linear regression model, where the 
mean of the error term is assumed equal to zero but the variance is unknown 
and must therefore be estimated. Consequently, one would be interested in 
making the intercept term vary randomly at the 1st level of a normal model but 
not at the 1st level of a Poisson model. 
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A basic additive model will have explanatory variables consisting of an 
intercept, and one or more dummy variables. One would normally also wish to 
include interactions between variables. 
 
To determine whether the Poisson-assumption of equal means and variance 
holds, a dispersion parameter at level 1 is estimated, so that 
 
 var(Oij / πij) =  σ1

2 πij Eij (2.3.31) 
 
If σ1

2=1, then variation is assumed to be Poisson, if σ1
2>1 then there is extra-

Poisson variation present (overdispersion), and if σ1
2 <1 the model is 

underdispersed as can happen when many of the counts are zero. However, 
quite often there are theoretical reasons to assume that extra-Poisson variation 
may be present in the data (Dean, 1992, Hauer, 2001). For instance, if the 
counts examined come from significantly heterogeneous populations, the 
expected values may vary significantly more than the mean of the distribution 
would allow.  
 
Ιn order to handle the overdispersion, one option is to include an additional 
parameter α, resulting in an extra - Poisson or quasi - Poisson distribution, so 
that: 
 
 var(Oij /πij) =  α σ1

2 πij Eij (2.3.32) 
 
This situation may be further described by stating that the counts in each level 1 
unit are being modelled as Poisson conditional on the distribution of rates 
between units. These rates may be assumed to follow a gamma distribution, 
and hence the mixture of these two distributions can be expressed as a 
negative binomial distribution of counts, so that: 
 
 Oij ~ Negative Binomial (πij Eij, v) 
 
 log (πij) = β0j + β1j xj (2.3.33) 
 
 β0j = β0 + u0j 
 β1j = β1 + u1j 

 
where the variance is a quadratic function of πij: 
 
 var(Oij /πij)= πij Eij +(πij Eij

 )2 / v = σ1
2 πij Eij + σ2

2(πij Eij )
2 (2.3.34) 

 
It should be noted that, ignoring extra-Poisson variation would not significantly 
affect parameter estimates; however the related significances may be slightly 
affected (Dean, 1992). 
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2.3.4.3. Research problem and dataset 
 
In 1998, the Greek Traffic Police started the intensification of road safety 
enforcement, having set as target the gradual increase of road controls for the 
two most important infringements: speeding and drinking-and-driving. Since 
then, all controls and related infringements recorded have systematically been 
monitored and the related enforcement and casualty results at local and 
national level are regularly published, as shown in Table 2.3.6 with basic road 
safety related trends in Greece. 
 
 
 
 

1998 1999 2000 2001 2002 5-year  
change 

injury road accidents 24.819 24.231 23.127 19.710 16.852 -32% 

persons killed 2.182 2.116 2.088 1.895 1.654 -24% 

vehicles (x1000) 4.323 4.690 5.061 5.390 5.741 33% 

speed infringements 92.122 97.947 175.075 316.451 418.421 354% 

drink & drive infringements 13.996 17.665 30.507 49.464 48.947 250% 

drink & drive controls 202.161 246.611 365.388 710.998 1.034.502 412% 

Table 2.3.6:  Basic road safety trends in Greece 1998-2002 

 
It is important, however, to further quantify the effect of this intensification of 
enforcement on road accidents. Additionally, the examination of regional effects 
might be particularly interesting. For that purpose, a multilevel model is 
developed, as a different amount and type of police activity in regions with 
different characteristics is likely to result in different effects of enforcement. It 
should be noted that the administrative structure of the Greek police also 
follows the geographical (e.g. geopolitical) structure of Greece. As the number 
of accident represents a random count of events occurring within a population, 
a Poisson distribution is assumed. 
 
The dataset that is used in the framework of this analysis concerns regional 
data from 50 counties of Greece (245 observations in total), nested within 12 
regions in the period 1998-2002. The response variable is the number of road 
accidents with casualties and the explanatory variables are the number of 
alcohol controls, the number of speed infringements, as well as socioeconomic 
parameters such as vehicle ownership and road network type. The population 
of each county is used as offset term, to express the expected number of 
accidents. It should be noted that explanatory variables are centred around their 
mean, to avoid numerical problems in the estimation. The dataset variables are 
summarized in the following Table 2.3.7. 
 
It should be noted that the Athens and Thessalonica metropolitan areas, where 
a disproportionably high number of accidents and police controls are observed, 
were not included in the dataset.  
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Region 1-12 regions of Greece 
County 1-50 counties of Greece 
Accs The number of accidents of each county 
alcontrol (1000) The number of alcohol controls of each county 
speedinf (1000) The number of speed infringements of each county 
logepop (offset) The natural logarithm of the population of each county 
Cons The constant term 
Table 2.3.7:  Variables and values considered in the analysis 

 
 
 
2.3.4.4. Model fit, diagnostics and interpretation of results 
 
In the following sections, an application of multilevel Poisson models is 
presented. The analysis aims at examining the regional effect of speed and 
alcohol enforcement on the number of road accidents. It should be noted that 
the demonstration follows a stepwise procedure, both in terms of multilevel 
model building and variables selection. As far as model building is concerned, 
the analysis starts from the simplest (single level) model to the most complex 
(multilevel models). Accordingly, variables are initially examined separately 
(single-effects models), and then jointly (multiple-effects models). 
 
The initial stage of the analysis concerns a single level model (level 1: i-county), 
ignoring the geographical hierarchy in the data. This approach gives the 
following results (Table 2.3.8): 
 
Parameters Single-level model 

Constant -6.450 (0.005) 
Alcontrols -0.015 (0.001) 
Speedinf -0.010 (0.001) 

Table 2.3.8:  Poisson single-level model for the effect of enforcement on road accidents 

 
The coefficients of this initial model, all highly significant, as indicated by the 
respective standard errors in parentheses, indicate a reduction of road 
accidents when speeding and drinking-and-driving controls increase. This result 
is reasonable. However, in the following sections it will be demonstrated how 
this effect may vary significantly among regions. 
 
The next stage is adding the hierarchical structure to the data, by including a 
second level (level 2: j-region). We first consider a two-level model with a 
random intercept term only, in order to examine the variation due to the regional 
effects. The results presented in Table 2.3.9 below indicate a significant random 
variance among regions (Model 1): 
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 Model 1 

(constant term) 
Model 2 

(Effect of alcohol 
controls) 

Model 3 
(Effect of speed 

controls) 

Model 4 
(Effect of 

speed and 
alcohol 

controls) 

Fixed effects     
Constant -6.488 (0.076) -6.672 (0.108) -6.691 (0.115) -6.654 

(0.101) 
Alcontrols  -0.059 (0.014)  -0.036 

(0.010) 
Speedinf   -0.131 (0.043) -0.058 

(0.023) 
Random effects     
Level 2     
σu0

2
 (constant) 0.070 (0.029) 0.140 (0.057) 0.157 (0.065) 0.119 

(0.050) 
σu1

2
 (alcontrols)  0.002 (0.001)  0.001 

(0.000) 
σu2

2
 (speedinf)   0.022 (0.009) 0.006 

(0.002) 
σu01

2
 (covariance)  0.013 (0.006)  0.008 

(0.004) 
σu02

2
 (covariance)   0.051 (0.023) 0.013 

(0.009) 
σu12

2
 (covariance)    0.000 

(0.000) 
     
Variance/mean 1.000 1.000 1.000 1.000 

Table 2.3.9:  Poisson multilevel models for the regional effect of enforcement on road accidents 

 
The significant regional variation of the intercept is presented in Figure 2.3.2 
The top graph in Figure 2.3.2 concerns the average (fixed) intercept for all 
regions, whereas the bottom graph concerns the intercepts corresponding to 
each one of the 12 regions of Greece. It is noted that the x-axis concerns the 
number of alcohol controls (in thousands), centred around the mean. A 
significant regional variation of the number of accidents is illustrated.  
 
The next step in model fitting with this dataset is to add explanatory (predictor) 
variables into the multilevel model. Firstly, the effect of alcohol controls on the 
number of accidents is examined, allowing it to randomly vary between regions. 
A multilevel model with a random intercept and a random slope is therefore 
fitted (Model 2) and the results are presented in Table 2.3.9.  
 
It is noticed that all fixed and random effects are significant. However, the 
variance of the effect of alcohol controls is less significant than the variance of 
the intercept, suggesting that the regional effect itself (in geographical terms) is 
a stronger determinant of the number of accidents than the effect of 
enforcement. It is also interesting to note that there is a significant covariance 
among intercept and slope, indicating that, the higher the number of accidents 
of a region, the stronger the effect of alcohol enforcement (reduction of 
accidents).  
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It should be noted that, as mentioned previously, quasi-likelihood estimation is 
used for discrete response models. Consequently, likelihood statistics for these 
models are very approximate and are not examined for the assessment of 
models fit (Rasbash et al., 2000). 

 
 

  
Figure 2.3.2:  Average intercept (top graph) and random intercepts (bottom graph) for Model 1 

 
The significant regional variation of the slope of alcohol controls is presented in 
Figure 2.3.3. The top graph in Figure 2.3.3 concerns the average (fixed) slope 
for all regions, whereas the bottom graph concerns the slopes corresponding to 
each one of the 12 regions of Greece. A significant effect of alcohol controls on 
the number of accidents at regional level is illustrated. 

  

Figure 2.3.3: Average (top graph) and random (bottom graph) intercepts and slopes 
for Model 2 (effect of alcohol controls) 

 
In Figure 2.3.4, the Level 1 and 2 residuals are examined for Model 2. In 
particular, the top graphs in Figure 2.3.4a concern Level 1 residuals and the 
four bottom graphs in Figure 2.3.4b concern Level 2 residuals. Moreover, the 
left-side graphs concern standardized residuals against normal scores and the 
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right-side graphs concern standardized residuals against fixed part predicted 
values. 
 
It is observed that Level 1 residuals are normally distributed and independent. 
However, Level 2 residuals are less in keeping with the Normal distribution and 
present more dependence to the predicted values. 
 

  
Figure 2.3.4a. Level 1 residuals and normal scores (left graph), Level 1 residuals and 
predicted values (right graph) for Model 2 

 

 
Figure 2.3.4b Level 2 residuals and normal scores (left graphs), Level 1 residuals 
and predicted values (right graphs) for Model 2 

 
As a next step, the effect of speed enforcement on the number of accidents is 
examined separately. In parallel to the model including alcohol controls, the 
effect of the number of speed infringements is also allowed to randomly vary 
between regions. Another multilevel model with a random intercept and a 
random slope is therefore fitted (Model 3 in Table 2.3.9). 
 
All fixed and random effects are again significant. Contrary to the effect of 
alcohol controls, the variance of the effect of speed infringements is, however, 
highly significant. There is also a significant covariance among intercept and 
slope, indicating that, the higher the number of accidents of a region, the higher 
the effect of speed enforcement. Although the variables 'alcontrols' and 
'speedinf' are measured on the same scale, their parameter estimates are not 
directly comparable because the first one concerns number of controls and the 
second one concerns number of violations. In that sense, the fact that the 
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parameter for speed is higher can be explained by the fact that a given increase 
of violations results from a more important increase of related controls. 
Therefore, an equal increase of alcohol controls and speed violations 
corresponds to a higher increase of speed controls, making the effect of speed 
enforcement to appear more important, when expressed in number of 
violations. 
 
The last stage of the analysis concerns the incorporation of both speed and 
alcohol enforcement effects in the model, in order to examine the related 
combined effect. A two-level model is therefore fitted (Model 4 in Table 2.3.9), 
allowing both explanatory variables to vary among regions. In this case, all fixed 
effects are highly significant, as well as the random variances. However, the 
covariances related to the number of speed infringements are non significant. 
This is quite surprising, when considering that both effects were significant 
when examined separately. 
 
In Figure 2.3.5 the predicted intercepts and slopes of alcohol controls and 
speed infringements are plotted. It is noticed that the various regional effects 
differ significantly from the ones obtained previously, when effects were 
examined separately. Additionally, several slopes present an inversed effect, 
not directly attributable to regional characteristics.  
 

 

 
 

Figure 2.3.5. Random intercepts and slopes the effect of alcohol controls (top graph) and the effect 
of speed infringements (bottom graph) of Model 4. 
  

This is probably due to the fact that both variables may be seen practically as 
measurements of one parameter (i.e. police enforcement). The correlation 
between speed infringements and alcohol controls was examined, resulting to a 
positive correlation of 0.729. In this case (multicollinearity), a redundancy of 
variables is exposed, causing both logical and statistical problems and 
weakening the analysis through reduction of degrees of freedom error 
(Washington et al. 2003). As far as multilevel models are concerned, the results 
of a recent study show that, with multicollinearity present at Level 1 of a two-
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level multiple-effects linear model, the fixed-effect parameter estimates produce 
relatively unbiased values; however, the variance and covariance estimates 
produce downwardly biased values (Shieh, Fouladi, 2003).  
 
Another issue that should be examined in case of Poisson multilevel models is 
overdispersion (Dean, Lawless, 1989). Overdispersion generally reflects 
missing parameters, not included in the model, which would account for the 
extra-variation. 
 
A procedure to investigate and account for overdispersion can be used, by not 
restricting the variance-mean relationship to be equal to one as in equation 
2.3.31. It should be noted that this assumption would not significantly affect 
parameter estimates; however the related significances may be slightly affected 
(Dean, 1992). In the framework of the present demonstration, the regional effect 
of alcohol controls on the number of accidents was examined assuming extra-
Poisson variation, as in equation 2.3.32. 
 
In particular, in Table 2.3.10, parameter estimates are presented for an 
intercept only model (Model 5) and a model examining the effect of alcohol 
(Model 6). It is noticed that parameter estimates and their standard errors are 
not significantly different from the ones obtained with Poisson assumptions. 
However, a significant estimate of the variance/mean ratio is obtained, 
indicating that the variance-mean equality assumed in the previous examples 
was not adequate and that overdispersion was present and is sufficiently 
handled in this model. 
 

 Model 5 
(Constant term) 

Model 6 
(effect of alcohol) 

Fixed effects   
Constant -6.486 (0.073) -6.587 (0.092) 
Alcontrols  -0.047 (0.010) 
Random effects   
Level 2   
σu0

2 (constant) 0.064 (0.029) 0.094 (0.042) 
σu1

2 (alcontrols)  0.001 (0.000) 
σu01

2 (covariance)  0.006 (0.004) 
   
Variance/mean 22.622 (2.096) 12.892 (1.226) 
Table 2.3.10: Extra - Poisson multilevel models for the regional effect of 
enforcement on road accidents 

 
In Figure 2.3.6, level 1 and 2 residuals are examined for Model 6. Examining 
the level 1 residuals of the model (Figure 2.3.6a), it is observed that these are 
normally distributed and independent. When examining level 2 residuals (Figure 
2.3.6b), it can be noticed that their distribution is improved in relation to Model 2 
above, both in terms of normality and independence from predicted values. 
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Figure 2.3.6a. Level 1 residuals and normal scores (left graph), Level 1 residuals and 
predicted values (right graph) for Model 6 
 

 
Figure 2.3.6b. Level 2 residuals and normal scores (left graphs), Level 2 residuals 
and predicted values (right graphs) for Model 6 

 
 

As explained previously, another option for overdispersed counts data is to 
assume a Negative Binomial distribution, allowing for a more flexible variance 
structure, as in equation 2.3.34. The results for the examined dataset are 
presented in Table 2.3.11. It is interesting to note that the Negative Binomial 
models are very similar to the Extra-Poisson models, in terms of both fixed and 
random parameter estimates. It is therefore shown that both Extra-Poisson and 
Negative Binomial distributional assumptions can efficiently overcome 
overdispersion in count data. The results of the above analysis models indicate 
that Models 6 and 8 are the best Models for the purposes of the present 
analysis. 
 
Summarizing, a Poisson multilevel modelling process was demonstrated by 
means of an example concerning road accidents and speed-and-alcohol 
enforcement in Greece. The dataset used includes the number of road 
accidents and the related speeding and drinking-and-driving violations for 50 
counties nested within 12 regions of Greece. The analysis aimed at examining 
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the effect of police enforcement intensification on the road safety level. 
Moreover, the regional variation of this effect was quantified. 
 

 Model 7 
(Constant term) 

Model 8 
(effect of alcohol) 

Fixed effects   
Constant -6.477 (0.075) -6.599 (0.098) 
Alcontrols  -0.052 (0.013) 
Random effects   
Level 2   
σu0

2 (constant) 0.064 (0.029) 0.105 (0.046) 
σu1

2 (alcontrols)  0.002 (0.001) 
σu01

2 (covariance)  0.009 (0.005) 
Table 2.3.11: Negative Binomial multilevel models for the regional effect of 
enforcement on road accidents 

 
The multilevel modelling revealed a marginally significant different decrease of 
road accidents in different regions within the examined period. Moreover, a 
significant regional variation of the effect of enforcement was obtained. It is 
interesting to note that no other variables were found to add explanatory effect 
in the reduction of road accidents in Greece. This was not surprising, as no 
other parameter (e.g. vehicle ownership, road network length etc.) presented a 
significant overall variation, comparable to the increase of enforcement, in the 
examined period. Consequently, the intensification of enforcement is 
considered to be the main cause of the improvement of road safety in Greece. 
However, the models developed above are not considered to fully describe this 
trend. Additional explanatory variables might be required, but not among those 
for which data were available. However, the models are considered to 
adequately describe the regional variation of this trend and the relative regional 
effect of the main causal factor and they are efficient as such. 
 
As far as the regional effect is concerned, the results confirmed the initial 
suspicion of a significant regional variation of the effect of enforcement. It would 
be reasonable to assume that the regional variation of the effect is mainly the 
result of different practices in the implementation of enforcement, as the Greek 
police is organized according to an administrative structure in full accordance 
with the examined geographical hierarchy. 
 
 
2.3.4.5. Conclusions over techniques 
 
In this chapter, several aspects of multilevel models, in which the response 
variable is a count, were presented and discussed. It was shown that these 
models are an extension of the classical multilevel models for Normal 
responses, with a log link function used, in order to satisfy the restriction of 
positive integer values of the response variable. Within this framework, the 
Poisson-family distributions (i.e. Poisson, extra-Poisson and Negative Binomial) 
and their properties were presented. 
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Multilevel analysis was used to test different Poisson model structures, starting 
from the basic single-level model and adding fixed and random intercepts and 
slopes. It was underlined, though, that in Poisson models, random effects are 
only considered at higher levels, as the level 1 variance is assumed to be 
known. 
 
During the modelling process, several issues concerning particularities and 
limitations of data and techniques were discussed. In particular, the effects of 
multicollinearity (i.e. inclusion of two or more highly correlated 
covariates/predictors in a model) in multilevel models were discussed, although 
this problem does not exclusively concern Poisson models 
 
Moreover, the issue of overdispersion in count data was presented. It was 
shown that extra-Poisson and Negative Binomial distributional assumptions can 
efficiently handle overdispersion detected in the count data. Modelling results 
were presented to demonstrate these procedures. 
 
 
2.3.4.6. Ecological and spatial analysis in road safety research 
 
Spatial analysis refers to a vast group of formal techniques used in various 
fields of research which study entities using their topological, geometric, or 
geographic properties. Spatial analytic techniques have been developed in 
geography, biology, epidemiology, statistics, mathematics, and scientific 
modelling. A fundamental concept in spatial analysis is that nearby entities often 
share more similarities than entities which are far apart (Tobler, 1970). Different 
types of spatial analysis exist, including spatial autocorrelation statistics (which 
measure the degree of dependency among observations in space), spatial 
interpolation techniques (which estimate the variables at unobserved locations 
in geo-space based on the values at observed locations), spatial interaction or 
"gravity" models (which estimate the flow of people, material or information 
between locations in geo-space and spatial regression models (which aim at 
describing spatial relationships among the variables examined) (Miller, 2004). 
Performing a spatial analysis implies determining an appropriate spatial unit, 
which may range from a point in space to a large area or zone.  
 
The example presented in this chapter is an example "aggregate spatial 
modelling", in which the information on spatial variability is available in 
aggregate form, such as spatial zones. It can also be referred to as "ecological 
analysis", which uses aggregate group level data to estimate individual level 
relationships. A concern that often arises in such aggregate analyses is whether 
the results derived depend more on the type of zones being studied, than on the 
variables examined (Anselin, 1994). 
 
In this section, a review of spatial and ecological analyses applications in road 
safety research is presented, also in the light of the fundamental issues 
mentioned above. A lot of research during the last few years is devoted on 
spatial analysis of road safety phenomena, mainly focusing on the issue of 
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spatial dependence of road safety outcomes (road accidents, casualties etc). 
These studies are particularly relevant in the context of this chapter, not only 
because they often use hierarchical models, but also because they always 
assume Poisson-family distributions. 
 
LaScala et al. (2000) explore geographic correlates of pedestrian injury 
collisions through a spatial autocorrelation corrected regression model. Another 
study examines ecological and contextual determinants of motor vehicle 
accident injury in relation to socio-economic indicators, residential environment 
indicators, medical services availability and utilization, population health, 
proportion of recent immigrants, crime rates, rates of speeding charge and rates 
of seatbelt violation (MacNab,.2004). Meliker et al. (2004) evaluated geographic 
patterns of alcohol-related motor vehicle crashes in a cross-sectional analysis of 
individual-level blood alcohol content, traffic report information, census block 
group data, and alcohol distribution outlets, and found that areas of low 
population density had more alcohol-related motor vehicle crashes than 
expected. Aguero-Valverde and Jovanis (2006) developed Bayesian28 negative 
binomial hierarchical models (with spatial and temporal effects and space–time 
interactions) to investigate the annual county-level crash frequency in 
Pennsylvania for 1996–2000, in relation to socio-demographics, weather 
conditions, transport infrastructure and amount of travel. McMillan et al. (2007) 
investigate county-level variability in changes in alcohol-related crash rates 
while adjusting for county socio-demographic characteristics, spatial patterns in 
crash rates and temporal trends in alcohol-related crash rates through a 
Bayesian hierarchical binomial regression model. 
 
In these studies, it is often outlined that the level of spatial aggregation may play 
an important role in the selection of analysis method and the analysis outcome. 
It is suggested that generalizations made at one level of spatial aggregation 
may not necessarily hold at another level. Conclusions derived at one scale 
may be invalid at another. Preliminary examination of the data is important, as 
one best or unique level of aggregation is not available: it depends upon the 
objective of the study (Thomas, 1996).  
 
For instance, in a study on child pedestrian casualty data from Devon County 
UK, the data have been aggregated by two methods: a simple ecological model 
relating casualty with a child’s home location and a more complex spatial model 
with data aggregated in terms of the collision location. In the first case, it was 
proved that spatial independence could not be assumed for the data; on the 
contrary the more complex spatial model resulted in spatially independent 
counts of accidents (Hewson, 2005). 
 
A relevant issue is also known as the "Modifiable Areal Unit Problem (MAUP)", 
which may occur when aggregation zones are arbitrary in nature and different 
spatial units (e.g. counties or census zones) could be just as meaningful in 
displaying the same base level data (e.g. road accidents counts) (Openshaw, 
1984). Although most spatial studies tend towards aggregating units which have 

                                            
28

 For more information on Bayesian modeling and its applications please see Chapter 2.8 
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adjacent geographical boundaries, it is possible (and may also be more 
meaningful) to aggregate spatial units which are spatially distinct. 
 
In Yannis et al., (2007), the example on the effect of alcohol enforcement on 
road accidents, presented in this section, is also modelled under a different 
regional classification; counties are grouped on the basis of qualitative 
similarities, rather than geographical adjacency. The results show that this type 
of aggregation may be more meaningful for the interpretation of the results, 
especially as regards the regional variation of the effect. 
 
 
 



   

2.4 Longitudinal measures data 

Emmanuelle Dupont and Heike Martensen (IBSR) 

 

The relevance of multilevel models to data that are characterised by complex 
hierarchical structure (e.g.: speed observations nested within road sites 
themselves nested within regions…) is easy to conceive of. The fact that 
multilevel models are very useful when one is to deal with longitudinal data or 
repeated measurements29 is in comparison far less obvious: What’s hierarchical 
about repeated measurements? The answer is: The various measurements are 
to be considered as the lowest level units that are nested within higher level 
units – the individuals on which these measurements were made. Because they 
allow such a conception of data, multilevel models offer a handful way to deal 
with repeated observations. In this section, we will focus on longitudinal data 
only, but the reader has to bear in mind that ML models similarly allow handling 
other kinds of repeated measurements (see Section 2.5   about the multilevel 
analysis of multivariate data). The research example that will be used in this 
section is the one of a fictitious study in which the driving skills of newly 
licensed drivers are measured at several successive time points. In this case, 
the repeated observations of the participants’ driving skills constitute the lowest 
level units (level 1, or “the i’s”), and are nested within higher-level units, the 
individuals who each provided a set of observations. The impact of various 
predictors (the participants’ age, their experience with driving before each 
measurement…) on the evolution of driving skills is assessed. The data 
examined here are thus characterised by two main dimensions: Time, on the 
one hand, and the various individuals on which the measurements were made, 
on the other. This two-dimensional structure is typical of panel data research 
(Little, Schnabel, and Baumert, 2000), and is what differentiates them from both 
time-series (see Chapter 3) and cross-sectional data30, who are characterised 
by only one dimension (time and “individuals”, respectively). 

2.4.1 Objectives of the technique 

The main objectives of the multilevel analysis of longitudinal observations are 
identical to those of most techniques allowing their analysis. However, 
conceptualising longitudinal observations as being hierarchically structured 
allows for several “extra” objectives to be attained.  
 
Firstly, although one of the basic aims of longitudinal data analysis is the 
obtainment of an adequate model of the evolution of the criterion variable over 
time (e.g.: an individual’s driving skills), these analyses also render possible the 
examination of whether the “time – criterion variable” relationship varies among 
individuals. In most “traditional” tools for the analysis of repeated measurements 
(e.g.: standard linear regression, analysis of variance or multivariate analysis of 

                                            
29

Both terms are here understood as the recurrent observation of a dependent variable(s) over 
time. 
30

 The term « cross-sectional data » refers to data that are collected at one point of time as 
opposed to data collected at several points in time.  
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variance31), however, the question of knowing how the “time – criterion variable” 
relationship varies among individuals is disregarded: It is assumed to be the 
same for all individuals, because the slope of the time effect is bound to be 
fixed.  
 
Second, just as other, more traditional techniques do, the multilevel analysis of 
longitudinal measurements allows assessing the influence of explanatory 
variables on the dependent one. Yet, when longitudinal data are at hand, 
predictors which change with time may also appear to be of particular interest. 
In the example used in this section, the number of km driven by each participant 
during the year preceding each measurement of their driving skills was included 
as a predictor. This latter value, however, is likely to be different for each 
individual at each occasion measurement, i.e.: It is changing over time. The 
ability to handle such varying predictors, also called time-varying covariates 
(Hedeker, 2000; Snijders & Bosker,1999) is another specific feature of the 
application of multilevel modelling to longitudinal data. What is actually 
estimated in this case is a relationship that occurs “within individuals” (one 
participant’s skills are likely to be affected by the number of km driven by this 
very individual, not by another); but this is also likely to differ from one individual 
to the other (the relation between driving skills and the number of km driven 
may be stronger for some individuals than for others). Generally speaking, 
multilevel analyses allow modelling such complex phenomena, which are typical 
of longitudinal designs. 
 
Longitudinal observations have proved difficult to handle by techniques initially 
developed for the analysis of cross-sectional data because they are nested 
within individuals (they consist of “sets” of observations, each one being 
generated by one and the same individual). Indeed, longitudinal data are 
usually dependent, and their variances and covariances are also unlikely to 
remain constant over time. These two features violate common assumptions 
upon which depends the validity of many “traditional techniques”. Moreover, 
because longitudinal designs are more demanding in terms of observations, 
they most frequently result in unbalanced data sets. Up to two decades ago, no 
statistical technique appeared to adequately handle these peculiarities 
altogether32. Multilevel analyses offer a way to overcome these problems, 
precisely because their general aim is to take account of hierarchical structures, 
and hence of dependence among data. So, not only is ML modelling useful to 
take account of the two-dimensional nature of the data, it is also the adequate 
means to deal with the occurrence of missing values in panel data sets (see 

                                            
31

 Applied to longitudinal measurements, analysis of variance (ANOVA) would test the null 
hypothesis that the means of the observations are equivalent for all occasions, and would take 
no account of the possible random effects introduced by the individuals from which the 
observations originate. The same would be true of the multivariate analysis of variance 
(MANOVA), to the difference that the repeated measurements would in this case be specified 
on a multivariate response vector and would be transformed in order to test contrasts among 
the repeated measures (see Hedeker, 2000 for more detailed information on that topic). 
32

 MANOVA, for example, can adequately handle heterogeneous variances, but imposes the 
deletion of all incomplete data sets (Hedeker, 2000). 
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Section 2.4.3.3 for an extended discussion of this topic). In this respect, the ML 
analysis may prove particularly useful for road safety research. Indeed, it is 
recurrently necessary in this research field to have to deal altogether with the 
need to observe the same phenomenon repeatedly over time while taking 
account of it being nested into larger units, and while additionally having handle 
the occurrence of missing values.  
 

2.4.2 Model definition 

The multilevel analysis of longitudinal data is a straightforward extension of the 
multilevel modelling of cross-sectional data. The main difference between both 
methods is more of a conceptual than of a statistical nature. When longitudinal 
data are considered, the repeated observations make up the lowest level (level-
1) of the data hierarchy. The individuals providing the data at the different 
occasions thus constitute the level-2 units. By analogy with earlier 
developments on multilevel cross-sectional analysis (sections 2.2.1 and 2.2.2), 
one could say that individuals here constitute the “context” in which the 
repeated data arise. Just as with cross-sectional data, level-1 and level-2 
predictors can be included in the model. A predictor is qualified as “level 1” 
when its value is likely to vary as a function of the measurement occasions. 
They are, indeed, explanatory variables “at the within-individual” level. For this 
reason, they are often termed “time-varying covariates” (Hedeker, 2000; 
Snijders & Bosker,1999). In the study over the evolution of driving skills, for 
example, the cumulative number of kilometres driven by participants during the 
year preceding each measurement was included as an explanatory variable. 
Given that this predictor’s value is likely to change over the different occasion 
measurements, it must be conceived as a level-1 explanatory variable, or as a 
time-varying covariate. Participants’ gender, on the contrary, is a level-2 
explanatory variable: It does not change over time.  
 
In order to put forth the similarities between the multilevel analysis of cross-
sectional and longitudinal data, the notation used for level-2 units will be “j”, and 
the one for level-1 units will be “i”, by analogy with section 2.2.1 (“Basic two-
level model”). This will help making clear that the models described in both 
sections are identical. The reader must nevertheless remain aware that the “j’s” 
here refer to the individual participants while the “i’s” designate the 
measurement occasions.  
 
Before defining the multilevel model as applied to longitudinal data, a comment 
is necessary about the particular option chosen to code the time effect: In all 

subsequent developments, the latter will be noted “ ( )01 ttβ − ”. The 7 

measurement occasions were indeed coded as “ 60,1,2,...,t = ”. The value 0 has 

been assigned to the first occasion in order to make it the reference point in the 

analyses. Subtracting the value 0t  from t  allowed the intercept referring to this 

first measurement occasion rather than to a possibly meaningless 0 value. 
Various sensible coding options exist, and could prove more suited to other 
research problems. It is also important to note that specifying the effect of time 

as “ ( )01 ttβ − ”, implies that this effect is a linear one: The evolution of driving 

skills from one occasion to the other is here assumed to be the same, whatever 
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the pair of occasions considered. Again, more elaborated functions are 
available, and would probably allow a more realistic representation of the time 
effect33. Actually, the quality of a model fitted to longitudinal data greatly 
depends on the particular function chosen to depict the effect of time on the 
criterion variable. A necessary step in the analyses consists of probing the 
model’s fit with different such functions, using as a guide empirical and 
theoretical knowledge of the problem investigated. However, this topic will not 
be further discussed here, because this is a general question with respect to the 
analysis of longitudinal data, and not a specific issue of the application of 
multilevel analyses to these data. Furthermore, this is vast an issue, and could 
constitute the object of a whole chapter in the present document. For more 
detailed discussions of the modelling of time effects in the context of multilevel 
models, the reader is referred to Hedeker (2005) and Snijders and Boskers 
(1999).  
 

2.4.2.1. Definition of the random intercept model 

As its name indicates, the random intercept model specifies that the value of the 
intercept is allowed to vary randomly at level 2 (between individuals). Given the 
particular coding option chosen here for the time variable, the intercept refers 
here to the individuals’ level of driving skills at the 1st occasion measurement.  
 
The random intercept model is: 
 

 ( ) ijettββY
ij010jij +−+=  (2.4.1a) 

The coefficient for the time effect ( 1β ) is bound to be fixed, while the one for the 

intercept, which is assigned the subscript “j” is defined as random at level-2. 
Unfolding the model’s hierarchical nature, the following equation defines the 
intercept: 

 0j00j uββ +=   (2.4.1b) 

This equation describes the level of driving skills at the first measurement 

occasion as being a function of a fixed population value ( Oβ ) and of individuals’ 

random departure from this value ( 0ju ). The term 0ju  thus describes the 

individual-specific influence on the intercept’s value.  
 
The “complete” model is thus written as: 
 

 ( ) ij0jij010ij euttββY ++−+=   (2.4.1c) 

 

The random part of the model ( ij0j eu + ) specifies that two random sources 

determine the value of the observations ( ijY ): the individual and occasion-level. 

                                            
 
33

 Examples are : polynomial, piecewise, or spline functions. Each is discussed in details in 
Snijders & Bosker (1999). 
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Each of these parameters’ variances (
oju

2σ  and 2σ  for the individual and 

occasion-level residuals, respectively) indicates the magnitude of the variation 
in the observations that is attributable to each level. The variance of the 

observations themselves ( ijY ) is defined as being composed of individual and 

occasion-level random departures: 
 

 2
u

2

ij σσ)Var(Y
0

+=   (2.4.2) 

 
Note that this model estimates 2 and only 2 parameters to define the random 
variance of the observations. These parameters are bound to remain the same 
at all occasion measurements. This is an important property of the random 
intercept model: It assumes compound symmetry. This issue will again be 
addressed in the section devoted to the model assumptions. 
 

It is also important to clarify the nature of the parameter “ 0u
2σ ”. This parameter 

actually corresponds to the covariance between two observations randomly 
selected among the whole set of observations provided by one (randomly 
selected) individual: 
 

 )y,Cov(y ji'ij  = 
0u

2σ  (2.4.3) 

 
The intra-class correlation coefficient is obtained by calculating the ratio of the 
level-2 variance to the total variance, and thus “quantifies” the degree of 
resemblance of two observations taken among those generated by one 
individual (as compared to observations selected among the observations of 
different individuals):  

 { }
2

u
2

u
2

ji'ijI
σσ

σ
Y,Yρρ

0

0

+
==  = 

)Var(y

)y,Cov(y

ij

ji'ij
 (2.4.4) 

Applied to the research example of young driver’s skills, the intra-class 
correlation coefficient would thus correspond to the average correlation 
between the driving skills of the same driver measured at any two different time 
points.  
 

2.4.2.2. Definition of the random intercept and slope model 

One can assume that substantial between-individual variation affects the 
relationship between time and the criterion variable (e.g.: driving skills). In other 
words, the effect of time on the dependent variable could be larger for some 
individuals than for others. Such a supposition leads to the following model 
specification: 
 

 ( ) ijij0j10jij ettββY +−+=   (2.4.5a) 

 

The slope parameter 1β  is now assigned the subscript j and is thus allowed to 

vary randomly among individuals. The two macro-models defining the level-2 
intercept and slope are: 
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 0j00j uββ +=   (2.4.5b) 

 
1j11j uββ +=

 (2.4.5c) 
 

0β  and 1β  represent the population intercept and slope, 0ju  and 1ju  respectively 

represent the individuals’ departure from these population intercept and slope. 
 
Combining the equations for the two macro-models gives: 
 

 ( ) ( ) ijij01j0jij010ij ettuuttββY +−++−+=  “ (2.4.5d) 

The random part of the model ( ( ) ijij01j0j ettuu +−+ ) now specifies three random 

sources to determine the value of the observations: Within-individuals random 

deviations ( ije ) and between-individuals variations, which are now further 

subdivided into random departures from the intercept and random departures 
from the slope.  
 

Together, the variances of the random intercept and slope (
ou

2σ  and 
1ju

2σ ) 

provide a rough indication of the importance of inter-individual variation from the 
population intercept and slope. The covariance between the random intercept 

and the random slope (
01µ

σ ) is also part of the parameters estimated in the 

model. This parameter represents the co-variation between individual-related 
variation of initial driving skills (the random intercept) and individual-related 
variation of the effect of time on these skills (the random slope). A negative 
covariance (the higher the intercept, the weaker the slope), for example, 
indicates that time has a more important impact on the driving skills of those 
individuals who were initially poor at driving.  
 
The introduction of a random slope for a given effect in a model thus 
substantially complicates the latter. It amounts to estimating 3 parameters for 
one predictor (the fixed coefficient, the random slope’s variance and its 
covariance with the random intercept). Random slopes also introduce 
complexity with respect to the definition of the observations’ variance. Indeed:  
 

 2

0u
2

0uu
2

ij σ)t(tσ)t(t2σσ)Var(Y
1

01
0

+−+−+=   (2.4.6) 

 
This model expresses the total variance of the drivers’ skills to be a function of 
(1) the various “between-individual variations” (variation in the average skill 

value at the first measurement occasion (
0u

2σ ), in the average time effect 

( )t(tσ 0u
2

1
− ) and the co-variation between both) and (2) the within-individual 

variation ( 2σ ). In contrast to the random intercept model, both the slope 
variance and the slope-intercept covariance depend on time 

(
01u2σ )t(t 0− ,

1ju
2σ )t(t 0− ). Consequently, the observations’ variance itself is 
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allowed to vary over time. The same is true for the observations’ co-variances 
(i.e.: the co-variance between two driving skills measurements made at different 
time points on the same individual): 
 

 { } 2

i'0i01u
2

i'0i0uu
2

ji'ij σ)t(t)t(tσ)t(t)t(tσσ)Y,Cov(Y
01

0
+−−+−+−+=   (2.4.7) 

 
The random intercept-and-slope model does not assume compound symmetry 
for the matrix of the observations’ variance-covariances. For this reason, it 
allows a more realistic representation of longitudinal data.  
 
When defining the random intercept model, it was established that the intra-
class correlation coefficient expresses the ratio of the level-2 variance (i.e.: 
between individual) to the total variance (between- plus within-individuals) in the 
observations. In the case of the random intercept and slope model, however, 
the level-2 variance is made up of the random intercept and the random slope 
variance, as well as of their covariance. These two parameters depend on time. 
Being variable over time, they render impossible the definition of a unique intra-
class correlation coefficient.  
 

2.4.3 Model assumptions 

2.4.3.1. Random parameters 

The level-2 random coefficients (or level-2 residuals) are considered 
representative of distributions of individual effects in the population. These 
distributions parameters themselves are assumed to be normally distributed 

with means 0 and variances 
10 u

2
u

2 σ,σ  for the intercept and slope, respectively: 
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N  (2.4.8) 

The level-2 coefficients are also assumed to be independent over j (i.e.: across 

the level-2 units, or individuals), and independent from the level-1 residuals, ije . 

 

The level-1 residuals ( ije ) are assumed to be normally distributed with mean 0 

and variance 2σ  ( )σN(0,~ε 2

ij ), and to be independent from one another.  

 
These assumptions must be understood in the framework of the conditional 
nature of the model. From this perspective, saying that the level-1 residuals are 
independent amounts to stating that they are independent, conditional on other 
effects in the model. To put it in other words: Once the individual-level effects 

( 1joj u,u ) are specified in the model, the level-1 error term is “cleaned”, and the 

residuals at level 1 can be considered independent from one another. By 
contrast, when they are not specified in the model, the individual-level random 
effects are confounded with the level-1 error term and introduce dependence 
among the level-1 residuals.  
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2.4.3.2. Structure of the observations’ variances and covariances 

For the random intercept model, the variance and covariances of the 
observations were defined as: 
 

 2
u

2

ij σσ)Var(Y
0

+=  (2.4.9) 

 
ou

2

ji'ij, σ)Cov(Y =   (2.4.10) 

 
The random intercept model assumes the observations’ variances and 
covariances to remain the same whatever the moment at which the 
observations are made. This is the compound symmetry assumption. The 
introduction of a random slope to qualify the effect of time implies a more 
complex variance-covariance structure for the observations: The variance of the 
individuals’ observations is allowed to vary as a function of time, and so is their 
covariance. Defining the time coefficient as random is thus one way to relax the 
compound symmetry assumption. 
 

2.4.3.3. Assumptions about missing values 

As noted by Hox: “In longitudinal research, a major problem is the occurrence of 
panel attrition: Individuals who, after one or more measurement occasion, drop 
out of the study altogether” (2002, p. 95). Depending on the causes underlying 
the occurrence of panel attrition (or missing data), three broad situations can be 
distinguished (Goldstein & Woodhouse, 2001). 
 
First, data can be said to be Missing Completely At Random (MCAR): Their 
missingness is independent of all other variables included in the model. In the 
driving skills example, it is likely that the requirement to come back seven times 
in order to have one’s driving skills assessed would appear too much of a 
burden to many participants, and that consequently far fewer of them would 
have completed the 7th measurement occasion as compared to the first one. In 
such a case, panel attrition is linked to a broad feature of the study (its 
longitudinal nature), but is neither related to the true value of the response 
(participants’ actual driving skills), nor to any of the predictors measured and 
included in the model. As Wothke puts it: “The fact that a variable’s data is 
missing is not thought to affect its distribution, that is: P (Y|y missing) = P (Y|y 
unobserved)” (2000, p. 224). 
 
The second situation termed: “Missing At Random” (MAR) is one in which the 
probability of being missing depends on predictor variables in the model, or on 
previous observed values of the dependent variable; but is otherwise unrelated 
to the model’s parameters, in particular, to the level-1 and level-2 random 
effects (Goldstein & Woodhouse, p. 25). In the case of the example again, one 
could imagine that males are, generally speaking, less compliant or 
conscientious than females. This could lead them to drop out from the study 
more easily than female participants do. Yet, it remains reasonable to assume 
that missing data occur at random, conditional on the other variables included in 
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the model (in this case, gender), and, still conditional on these variables, that 
they are independent of the values of the response variable. Provided that 
gender is measured and included in the model, missingness does not constitute 
a problem. Again quoting Wothke, one could say: “missing and observed 
distributions of y are identical, conditional on a set of predictors or stratifying 
variables x, that is, P (Y|y missing, X) = P (Y|y unobserved,X)” (2000, p. 224).  
 
When data are MCAR or MAR the property or mechanism that caused some 
data points to be missing does not endanger the interpretation of the results, 
because it is either unrelated to the observed values (MCAR) or taken up into 
the model by the inclusion of a predictor (MAR). Finally, a third and more 
problematic scenario can be faced: The one in which “the probability of a non-
response depends on the unobserved value of the observation itself”. One can 
imagine, for example, that participants with the poorest driving skills produce 
more missing values because the risk of them being involved in a crash is 
larger, making them more likely to be unavailable for further tests in the course 
of the study, because of hospitalisation - or worse - death. In such a case, 
missing data cannot be said to occur at random any more and, in contrast to 
MAR data, the “mechanism” underlying missingness is ignored and cannot be 
controlled for34.  
 
Multilevel models assume data to be Missing At Random (MAR). On this point 
they differ from other statistical models, such as Multivariate Analysis of 
Variance, which assume data to be missing completely at random. MANOVA is 
used not only to assess effects of predictors on panels of dependent variables, 
but also on repeated measurements. Yet multilevel models, when applied to 
either type of data offer the additional advantage of being able to handle 
missing values, because they assume MAR rather than MCAR data. 
“Individuals with incomplete response vectors may be included in the analysis 
on the basis of the assumption that the association between their responses 
will, on average, mimic that which is observed for individuals with complete 
response vectors”. (Goldstein & Woodhouse, p. 25). A note of caution is 
nevertheless necessary: Incomplete responses on the explanatory variables 
cannot be included in the analyses. This problem is, obviously, more likely to be 
encountered when time-varying predictors or covariates are included in the 
model. The only solution, in this case, is to proceed to a “completer analysis”, 
just as in MANOVA, and to exclude all cases with missing values on 
explanatory variable(s) from the analyses. 
 

2.4.4 Research problem  

Given the lack of appropriate data, the present analyses are based upon a 
fictitious example study for which a dataset had to be simulated. Although the 
tests and predictions presented here are coherent with existing literature and 
empirical evidence on the topic assessed - namely, the evolution of driving skills 

                                            
34 Strategies for dealing with non-random missing data are discussed in 
Goldstein & Woodhouse, 2001. 
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with age and the experience acquired - the results of the analyses reported 
here thus remain to be interpreted as hypothetical.  
 
Accident records unequivocally indicate that young drivers have considerably 
higher risks of being involved in a crash than older drivers do. This risk declines 
most dramatically during the first years following the acquisition of the driving 
license, the trend then becomes smoother. Although the phenomenon itself is 
well documented, the factors that determine the overrepresentation of younger 
drivers in accident records are still poorly understood. The relative importance 
of age on the one hand, and of driving experience, on the other is the object of 
many discussions (see Catchpole, Macdonald, and Bowland, 1994, and 
Vlakveld, 2005 for reviews). Empirically distinguishing these two factors is, of 
course, uneasy a task: The older one gets, the more one has driven, the more 
experience acquired and the better developed one’s driving skills! The empirical 
problem which is focused on in this section is the one of the relative impact of 
age and experience (here understood as the number of kilometres a driver 
drives in his/her daily life) on the evolution of driving skills among newly 
licensed drivers. Is age important in itself, or is it the intensity of the drivers’ 
training that counts?  
 
The design of this fictitious study would be the following: Upon reception of their 
brand new driving license, a large panel of 500 young drivers was invited to 
take part in a 7-year long study. The first test of their driving skills took place 1 
to 4 weeks after obtainment of the driving license. During six years afterwards, 
the participants took every year the same practical evaluation of their driving 
skills. A single “driving skills” score was calculated on the basis of the test. The 
occasion variable was coded as “0” for the first measurement occasion; the 
others were assigned numbers 1 to 6. A similar coding scheme was adopted for 
the “experience” predictor, which was defined as the number of km driven 
before each measurement occasion. It was coded “0” at the first measurement 
occasion and corresponded to the cumulative number of km driven for all the 
others. In order to avoid as much as possible confounding effects between the 
age, occasion and experience predictors, age was defined as the “initial age”, 
i.e., the individuals’ age when they started to drive. Defined in this way, age is 
made an individual-level predictor and tracks are kept of the only meaningful 
“age aspect” from the point of view of the study described35. For this reason, 
and for the sake of clarity, the term “initial age” will be used from now on to refer 
to this predictor. 
 

                                            
35

 Defined as a time-varying covariate of the kind of the « occasion » or « experience » one, the 
age coefficient would have indicated how driving skills vary with 1-unit increase in age (i.e.: a 
one year increase). This would have been an information identical to the one conveyed by the 
“occasion” predictor. The way the age predictor is currently defined, on the opposite, indicates 
the change in driving skills associated with a one-unit increase of the age the individual has 
when starting to drive… 
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2.4.5 Dataset 

The total number of participants in the simulated data-set is n = 500. The total 
number of observations amounts to N = 3500. The driving skills score ranges 
from 0 to 15 (mean 6.54, SD 2.5). The effects of the following predictors were 
assessed: “occasion measurement”, “experience”, and “initial age”36.  
 
 

Parameter 
Model 0  
“Empty model” 

 
Model 1 
Fixed “occasion” 
effect 

Model 2 
“Occasion” and 
“Experience”  

 Estimate (s.e.) Estimate (s.e.) Estimate (s.e.) 

Fixed    
  Intercept 6.54 (0.08) 5.10 (0.09) 5.05 (0.10) 
  Occasion 
  Experience 
 

/ 
/ 
 

0.50 (0.01) 
/ 
 

0.03 (0.04) 
0.95 (0.07) 
 

Random    
  Level 2    

    2

0uσ  (intercept) 2.86 (0.21) 3.03 (0.21) 3.02 (0.30) 

   
10uuσ  

(covariance) 
/ / / 

    2

1uσ  (occasion) / / / 

  Level 1    

    2

0eσ  

 
3.40 (0.09) 2.25 (0.06) 2.14 (0.06) 

-2xloglikelihood 15182.69 13947.38 13784.95 

Deviance test / 2

1χ =; p < .000 
2

2χ = 0.6; p = .74, 

n.s. 
    
Table 2.4.1: Models fitted and associated estimates 

 

                                            
36

 The data were simulated as follows: For each individual for each year an experience value 
was created by adding a random number between 0 and 1 to the experience value from the 
preceding year (starting with 0 at telaps=0). In this way experience was highly correlated to 
telaps (0.89). For the simulation of the skill score, there was a random number for each 
individual that constituted this persons intercept (driving skill at telaps=0). To calculate the 
increase of the driving skill, the experience value was multiplied by a slope-value. The slope 
value consisted of the following summation: 1) a constant, 2) the same random number as that 
for the intercept, so that intercept and slope would be moderately correlated, 3) the initial age 
value for that individual (a random number between 18 and 54, with 75% between 18 and 23), 
so that the increase in driving skill per experience unit would be higher for persons with a higher 
initial age and 3) another random number unique to the slope of that particular individual. By 
construction, driving skills are therefore directly related to experience (r=.42), while the relation 
between driving skills and telaps (r=.40) runs exclusively via experience. 
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2.4.6 Model fit and diagnostic 

The simplest model that can be fitted to account for the evolution of drivers’ 
skills is the empty model (model 0). No explanatory variable is included in this 
model, and the average skill value is merely defined as being determined by 
two sources of random variation: one taking place between individuals and the 
other taking place within individuals, between each occasion measurement. 
Table 2.4.1 provides the estimated parameters associated with each model 
fitted. As it indicates, the average skill value at the first measurement occasion 
is 6.54. The random variation around this value is lower at level 2 – or at the 
individual level – than at level 1.  
 
Taken at face value, this result would suggest that there is more variation 
between the driving skills of the same individual measured at two different time-
points than between the average driving skills of two different individuals. This is 
simply due to the fact that the time effect (i.e., the “occasion” variable that also 
indicates how many years have passed since the acquisition of the driver’s 
licence) has not been included in the model yet. Once the “time effect” will be 
included in the analyses and that the occasion-level variance will be properly 
modelled, the estimate for the individual-level variance will become much more 
realistic. This is what is done in model 1, and in this case the level 1 variance 
estimate is indeed lower than the level 2 variance estimate.  
 
The results associated with model 1 reveal a significant effect of the “occasion” 
predictor (Z = 50, p < .000). However, once the fixed effect of experience is also 
included in the model, the occasion coefficient decreases substantially and 
turns out not to be significant any more (Z = 0.75, p = .22, n.s.). This suggests 
that occasion affected the participants’ driving skills essentially because it 
shared an important part of variance with experience. This is not surprising; 
given the way the two predictors were respectively coded (see section 2.4.6). 

The correlation between these predictors is indeed extremely high ( exp,occr = .89, 

p < .000). For this reason, the occasion predictor was dropped from subsequent 
analyses, experience then constituting the only time-varying predictor remaining 
in the model (model 3).  
 
Table 2.4.2 presents the estimated coefficients for the models fitted once the 
occasion predictor is excluded from the analyses. The fixed effect of experience  
 
on skills is highly significant (Z = 33, p < .000). The slope coefficient reveals that 
a 1-unit increase in the number of km driven is associated with a 1-unit increase 
in driving skills.  
 
Model 5 specifies this effect as being random at the individual level. The 

estimate for the random variation of the experience slope at level 2 ( 2

1uσ ) is 

small, but significant (Z = 45, p < .000). The intercept-slope covariance (
10uuσ ) 

is positive and also significant (Z = 48, p < .000). This indicates that the effect of 
experience was larger among the drivers who had good driving skills from the 
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start. In other words: The higher the initial driving skills, the faster progresses 
are made as a function of the number of kilometers one drives.  
 
How does age affect the evolution of driving skills over the years? Model 6 was 
specified to assess the effect of initial age on driving skills. It also includes the 
“initial age x experience” cross-level interaction. The deviance test comparing 
this model to model 6 indicates a significant fit improvement, although the 
cross-level interaction is the only significant effect (Z = 5, p < .000). The 
coefficient for this interaction is positive; suggesting that the experience effect 
increases with the individual’s age at the time he/she has begun to drive. The 

slope variance of the experience effect ( 2

1uσ ) also decreased substantially in 

model 6 as compared to model 5, suggesting that the “experience x age” 
interaction explains part of the random variation of the experience effect among 
individuals.  
 
 

Parameter 
Model 4  
“Experience 
only” 

 
Model 5 
Random slope for 
“experience”  

Model 6 
“Experience, age, 
and their 
interaction” 

 Estimate (s.e.) Estimate (s.e.) Estimate (s.e.) 

Fixed    
  Intercept 5.06 (0.09) 5.06 (0.08) 5.06 (0.08) 
  Experience 
  Age 
  Age x Experience 

1.00 (0.03) 
 
 

1.00 (0.03) 
 
 

1.00 (0.03) 
0.01 (0.02) 
0.05 (0.01) 

Random    
  Level 2    

    2

0uσ  (intercept) 3.02 (0.21) 2.09 (0.19) 2.09 (0.19) 

   
10uuσ   

(covariance) 
/ 0.24 (0.05) 0.24 (0.05) 

    2

1uσ  (occasion) / 0.09 (0.02) 0.04 (0.02) 

  Level 1    

    2

0eσ  

 
2.14 (0.06) 2.03 (0.06) 2.03 (0.06) 

-2xloglikelihood 13785.50 13700.75 13634.49 

Deviance test / 
2

2χ = 84.75; p < 

.000 

2

2χ = 66.26; p < 

.000 
    
Table 2.4.2: Models fitted and associated estimates 

 

2.4.7 Model interpretation 

The application of multilevel techniques is also truly beneficial for the analysis of 
longitudinal data. The theoretical developments made earlier in this section 
made several points pleading for the statistical advantages of conceptualising 
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longitudinal measurements into a multilevel structure (relaxed variances-
covariances assumptions…).  
 
The fictitious example dataset and the results presented above in addition 
illustrated the conceptual interest of doing so. These results clearly indicate that 
driving skills do increase over time, but that this was mostly a function of the 
additional practice that the driver acquires over the years. Should single-level 
modeling have been used, however, the heterogeneity of this effect among 
individuals would have go unnoticed, and no attempt could have been made at 
determining what individual-related factors affect the impact of the experience 
acquired over time on the driving skills of individuals. The present analysis in 
contrast allows concluding that older individuals, as well as those who already 
are “gifted” for driving (those with an initially high level of skills), will benefit from 
intensive driving practice to a larger extent.  
 



   

2.5 Multivariate models 

George Yannis, Eleonora Papadimitriou and Constantinos Antoniou (NTUA) 

 
 
2.5.1. Objectives of the technique 
 
All the models described in the previous sections considered only a single 
response variable. In this section, models that allow the inclusion of several 
responses simultaneously as functions of explanatory variables are examined. 
Interest in these data lies in the relationship between the responses at various 
hierarchical levels, in whether there are significant differences in this 
relationship explained by other variables, and in whether the variability differs 
among responses. 
 
The analysis has the following objectives: 
▪ Present the assumptions and properties of multivariate Normal multilevel 

models in relation to univariate models 
▪ Describe the assumptions and particularities of multivariate models for 

Poisson responses 
▪ Use the above techniques to explore the regional effect of police 

enforcement on the number of road accidents and road accident fatalities in 
Greece, testing both Normal and Poisson assumptions for the two 
responses. 

 
 
2.5.2. Model definition and assumptions 
 
In order to define a multivariate model, the individual component should be 
treated as a level 2 unit and the "within-component" measurements (e.g. the 
different responses) as level 1 units. Each level 1 entry has a response, which 
is one of the multiple responses. The basic explanatory variables are a set of 
dummy variables that indicate which response variable is present. Further 
explanatory variables are defined by multiplying these dummy variables by unit 
level explanatory variables (Rasbash et al, 2000).  
 
In particular, in the simplest case of a Normal bivariate model, each level 1 
entry would consist of either of the two responses, with dummy variables 
indicating which of the two variables is present (for each response there is a 
dummy that is one whenever the level-1 value belongs to that particular 
response variable and 0 otherwise). Further explanatory variables would be 
created by multiplying their values with the dummy variables indicating which 
response variable is present (Table 2.5.1).  
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Individual Given 

Response 
Intercepts Explanatory Variable (X) 

  Response 1 Response 
2 

X.R1 X.R2 

1 Response 1 0 1 0*x 1*x 
1 Response 2 1 0 1*x 0*x 
2 Response 1 0 1 0*x 1*x 
2 Response 2 1 0 1*x 0*x 
3 Response 1 0 1 0*x 1*x 
3 Response 2 1 0 1*x 0*x 

Table 2.5.1: Data matrix structure for the simple bivariate model 

 
 
The statistical formula for the two level basic Normal bivariate model, including 
one explanatory variable, is written as follows: 
 
 yij = b0z1ij + b1z2ij + b2z1ijxj + b3z2ijxj+ u1jz1ij+ u2jz2ij (2.5.1) 
 

Where   z1ij = 








2 response if      0
1 response if       1 ,  z2ij = 1 - z1ij,  

 
Var(u1j)=σ

2
u1, Var(u2j)=σ

2
u2, covar(u1j, u2j)=σu12 

 
It is interesting to note that there is no level 1 variation specified, as level 1 
exists solely to define the multivariate structure. The level 2 variances and 
covariance are the (residual) between-units variances. In the case where only 
the intercept dummy variables are fitted and in the case where every unit has 
both responses, the model estimates of these parameters become the usual 
estimates of the between-units variances and covariance. The multilevel 
estimates are statistically efficient even where some responses are missing 
(Rasbash et al. 2000). 
 
It should be noted that the estimates obtained are not necessarily the same as 
those that would be obtained by fitting two separate univariate models. If there 
is a tendency, for instance, to report or measure only one of the responses, or if 
the occurrence rate of one response is different from the occurrence rate of the 
other response, the omitted values of the other response are not missing 
completely at random. In the univariate analysis there is no way to correct for 
this bias, as it is considered that any absent values are missing completely at 
random (MCAR). The multivariate model contains the covariance between the 
responses, assuming that the absent values are missing at random given the 
value of the other response (MAR), which is a weaker assumption (Hox, 2002). 
 
Thus, the formulation as a 2-level model allows for the efficient estimation of a 
covariance matrix with missing responses, where the missingness is at random. 
This means, in particular, that multilevel analyses are particularly suited to 
analyse research designs in which not every unit (e.g., not every individual) has 
a value on every measurement but rather measurements are randomly 
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allocated to units. Such "rotation" or "matrix" designs are common in many 
areas and may be efficiently modelled in this way.  
 
A third level can be incorporated and this is specified by inserting a third 
subscript, k, and two associated random intercept terms: 
 
yijk = b0zijk + b1z21jk + b2z1ijkxjk + b3z2ijkxjk+ v0kz1ikj+ v1kz2ijk + u0jkz1ikj+ u1jkz2ijk (2.5.2) 
 

Where  z1ijk = 








2 response if      0
1 response if       1 ,  z2ijk = 1 - z1ijk,  xjk= 









 0
  1  

 










k1

k0

v

v
~ N (0, Ωv) Ωv= 








2
ν101ν

2
0ν

σ   σ

σ
  

 







jk1

jk0

u
u ~ N (0, Ωu) Ωv= 








2
u101u

2
0u

σ   σ

σ
 

 
The 2 by 2 covariance matrix between response 1 and response 2 is partitioned 
into a level-2 between-units component Ωv and a level-3 between-units 
component Ωu.  
 
This model could be extended further, by allowing the effect of the explanatory 
variable for each response to vary on level 3. Further explanatory variables can 
be added and their coefficients can vary randomly at either level. It should be 
noted that, multiplying each explanatory variable with all the dummy variables, 
each regression coefficient in the model is different for each response. In a 
considerably simplified model, one could impose an equality constraint across 
all response variables, which is equal to adding the explanatory variables 
directly, without multiplying with the available dummies of level 1. This produces 
common coefficients for the two responses, resulting in a model that can be 
considered as "nested" within the above detailed model. 
 
It should be noted that formulae 2.5.1 and 2.5.2 concern the bivariate Normal 
multilevel case. However, in most cases in road safety the level 1 response is 
discrete (Binomial, Poisson etc.). In this case, the two-level bivariate model can 
also be specified in the usual way, by assuming e.g. a Poisson distribution at 
the lowest level of the multilevel structure and a multivariate Normal distribution 
at the higher levels of the multilevel structure, as follows:  
 

Log (yij) = b0z1ij + b1z2ij + b2z1ijxj + b3z2ijxj+ u1jz1ij+ u2jz2ij  (2.5.3) 
 

Where   z1j = 








2 response if      0
1 response if       1 ,  z2j = 1 - z1j,  

 
covar(y1j, y2j /  u1j, u2j)= 0 

covar(y1j, y2j )= σ12 
covar(yj /  z1j, z2j)= ρ 
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It should be underlined though that this formulation is not the formulation of a 
(full) bivariate Poisson model, in which the variation in all levels is assumed to 
be Poisson, and whose formulation is much more complex. This case of 
multilevel models could be considered as a hybrid Normal - Poisson bivariate 
model, where the bivariation comes from the normal side of the random factors, 
i.e. is estimated at the 3rd level of the multilevel structure. 
 
 
A typical example to illustrate the multilevel normal multivariate response model 
is given by Rasbash et al. (2000) and concerns the scores on two components 
of a science examination taken in 1989 by 1905 students in 73 schools in 
England. The first component is a traditional written question paper, and the 
second consists of coursework. Interest in these data centres on the 
relationship between the component marks at both the school and student level, 
whether there are gender differences in this relationship and whether the 
variability differs for the two components. 
 
An example of fitting multivariate models with Poisson responses can also be 
found in Langford et al. (1999), where deaths from cancer and cardiovascular 
diseases in Glasgow are examined simultaneously in a spatial model. 
 
Another, interesting example of multilevel multivariate modelling is given in 
Duncan et al. (1999); the first response is a binary response indicating whether 
or not an individual smokes, and the second response is only present for those 
individuals who smoke and is the number of cigarettes smoked. This model has 
two interesting features. Firstly, if the number of cigarettes smoked was 
modelled as a continuous univariate response, there would be a large spike at 
zero, which would violate any simple Normal theory. However, in the 
multivariate framework, these individuals are properly included by the first 
binary response. Secondly, the covariance between the two responses at 
higher levels can be very informative. In Duncan et al. the individuals were 
nested within neighbourhoods. A positive covariance at the neighbourhood level 
means that smokers who are in an area where the probability of smoking is high 
will tend to smoke more cigarettes than smokers in an area where the 
probability of smoking is low. In other words: if you are a smoker and a lot 
people around you are smoking you will smoke greater numbers of cigarettes 
than if you are not surrounded by smokers. 
 
 
 
2.5.3. Research problem and dataset 
 
In Section 2.3.4 a Poisson multilevel model was fitted to the counts of road 
accidents to identify within-county and within-region variability of the effect of 
speeding and drinking-and-driving police controls on road accidents. An offset 
term was included (see section 2.3.4), in order to model the accident rates per 
population. Results had indicated a significant regional variation in road 
accident occurrence, as well as a significant effect of both types of police 
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enforcement explaining the accident reduction within the examined period.  
Additionally, models with extra-Poisson variation assumptions (overdispersion) 
and Negative Binomial assumptions were proved to be more flexible in relation 
to standard Poisson variation assumptions, correcting for the overestimation of 
the significances of parameter estimates due to overdispersion. 
 
In this section, the effect of alcohol enforcement on both road accidents and 
road fatalities is examined. The interest of this analysis lies in the fact that road 
accident severity (number of fatalities) may or may not be related to accident 
frequency (number of accidents). In particular, an improved road environment or 
an increase in traffic may be the causes of fewer fatalities within the same 
number of accidents. Accordingly, the intensification of police enforcement may 
or may not have the same effect on the number of accidents as on the number 
of related fatalities. 
 
Therefore, the dataset presented in Section 2.3.4. is used to demonstrate 
bivariate multilevel modelling. This dataset includes the number of road traffic 
accidents and related fatalities in 49 counties nested within 12 regions of 
Greece for the period 1998-2002. As mentioned in Section 2.3.4, this period 
corresponds to a considerable intensification of police enforcement. 
 
Bivariate models are therefore developed, with the following variables (Table 
2.5.2): 
 
region 1-12 regions of Greece 
county 1-49 counties of Greece 
accidents The number of accidents of each county 
killed The number of fatalities in the road accidents of each county 
alcontrol (1000) The number of alcohol controls of each county 
Pop (10000) The population of each county 
Cons The constant term 

Table 2.5.2. Variables and values considered in the analysis 

 
It should be noted that, as in the example of univariate Poisson models, the 
Athens and Thessalonica metropolitan areas, where a disproportional high 
number of accidents and police controls are observed, were not included in the 
dataset. Additionally, only the number of alcohol controls is examined as 
explanatory variable, since in the previous example (section 2.3.4) it was 
proved that alcohol and speed enforcement are significantly correlated and 
therefore they should not be examined jointly. 
 
In order to demonstrate the particularities of multivariate multilevel models in 
case of non - normal responses, two examples are shown: 
● An example concerning the Normal bivariate multilevel model; on that 

purpose, the rates of accidents and fatalities per population were log-
transformed and assumed to be normally distributed 

● An example concerning the hybrid Poisson - Normal model, by assuming 
extra-Poisson distributions for the counts of accidents and fatalities and 
Normal distribution for the higher-level variation. It should be noted that all 
the assumptions of Poisson multilevel models described in Section 2.3.4 
also apply in this case. 
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2.5.4. Model fit, diagnostics, and interpretation of results 
 
2.5.4.1. A Normal multivariate multilevel model 
 
In this example, the rates of accidents and fatalities per county population were 
log-transformed, allowing assuming a Normal distribution for the two responses. 
The initial stage of the analysis concerns a two-level model, which is specified 
in order to define the bivariate response variable. In particular, level 1 is defined 
as a dummy variable indicating the presence of each response and level 2 is 
defined as the respective value of each response. Therefore, a response 
variable of 98 units (counties) is created; 49 units corresponding to the 1st 
response (accidents per population) and 49 units corresponding to the 2nd 
response (fatalities per population). Results are presented in Table 2.5.3. 
 
 Model 1 

 Log (accs/pop) Log (killed/pop) 
Fixed effects   
constant 2.691 (0.029) 0.739 (0.026) 
Level 2   
Random effects   
σu0j

2
 (constant) 0.213 (0.019)  

σu1j
2
 (constant)  0.168 (0.015) 

σu01j
2
 (constant/constant) 0.077 (0.013) 

   
-2*Log - likelihood 528.92 

Table 2.5.3: Effects of the basic two-level Normal bivariate model (intercept only) 

 
 
The intercept terms of the two responses are both highly significant. 
Additionally, a significant between-response covariance indicates that the two 
responses follow similar trends. When proceeding in adding a fixed slope for 
alcohol controls, the results presented in Table 2.5.4 indicate that, although the 
effect of alcohol enforcement is intuitive (i.e. a negative parameter is obtained) 
for both responses, it is significant only for accidents. Moreover, the variance of 
the effect across counties is marginally significant for both responses and no 
covariance of the effect of enforcement between responses is obtained. 
 
Given that the higher-level variation for the two-level model is not significant, it 
is unlikely that a three-model would be more efficient (i.e. further partitioning of 
the random variation would not be meaningful). Moreover, convergence 
problems were encountered, not allowing for the estimation of the three-level 
Normal bivariate model, whose results could confirm this assumption. In the 
following section, the same research problem is estimated under extra-Poisson 
assumptions for the two responses. 
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 Model 2 

 Log (accs/pop) Log (killed/pop) 
Fixed effects   
constant 2.776 (0.036) 0.757 (0.033) 
Alcontrols -0.014 (0.003) -0.003 (0.003) 
Level 2   
Random effects   
σu0j

2
 (constant) 0.237 (0.029)  

σu1j
2
 (constant)  0.190 (0.024) 

σu2j
2
 (alcontrols) 0.000237 (0.000117)  

σu3j
2
 (alcontrols)  0.000125 (0.000087) 

σu01 (covariance constant/constant) 0.080(0.020) 
σu02 (covariance constant/alcontrols) -0.006 (0.002)   
σu03 (covariance constant/alcontrols)  0.000 (0.000) 
σu12 (covariance alcontrols/constant) -0.003 (0.003)  
σu13 (covariance alcontrols/constant)  -0.003 (0.002) 
σu23 (covariance alcontrols/alcontrols) 0.00013 (0.00009 ) 
  
-2*Log - likelihood 479.16 

Table 2.5.4:  Effects of the two-level Normal bivariate model (intercept and slope) 

 
 
 
2.5.4.2. A hybrid Poisson - Normal multivariate multilevel model 
 
In this case, the untransformed accidents and fatalities counts are used , and 
assumed to be extra - Poisson37 distributed. However, the higher level variation 
is assumed to be Normally distributed. As previously, a two-level model is 
initially considered, in order to define the bivariate response variable. The 
natural logarithm of the population is used as an offset in both responses, and 
so the accident rates per county population are modelled. It should be noted 
that extra-Poisson distributional assumptions are made so as to allow for more 
flexibility in the estimations. In particular, the basic assumption of Poisson 
multilevel models, being that the "real" level-1 variance is assumed to be known 
(i.e. the variance at the county level), reduces the number of fixed and random 
parameters that need to be estimated.  
 
The modelling results for the simple examination of variability between 
responses (two-level model with fixed intercept) are presented in Table 2.5.5.It 
is noted that conceptually this is the equivalent of a single-level bivariate model. 
 
It is interesting to notice that the intercept terms of the two responses are both 
highly significant. Additionally, a significant between-response covariance 
indicates that the two responses follow similar trends. When proceeding in 
adding a fixed slope for alcohol controls, the results presented in Table 2.5.6 
indicate that the effect of alcohol enforcement is significant both for the number 
of accidents and for the number of fatalities. 
 

                                            
37

 In section 2.3.4, extra-Poisson distributional assumptions were found to be suitable for 
modeling this data 
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At the next stage, it is examined whether the regional effect on the responses is 
significant, by adding a 3rd level to the model (which would correspond to the 2nd 
level of the respective univariate model) and introducing a random intercept. 
 
 Model 3 

 Accidents Killed 
Fixed effects   
constant -6.471 (0.025) -8.380 (0.023) 
   
Cov (accs/killed) 4.691 (0.042) 

Table 2.5.5:. Effects of the basic two-level Poisson - Normal bivariate model 
(intercept only) 

 
 

 Model 4 

 Accidents Killed 
Fixed effects -6.455 (0.023) -8.372 (0.023) 
constant   
alcontrols -0.019 (0.003) -0.006 (0.002) 
   
Cov (accs/killed) 4.139 (0.657) 
   

Table 2.5.6. Effects of the two-level Poisson - Normal bivariate model (intercept and 
slope) 

 
 

The results presented in Table 2.5.7 show a significant regional variation of both 
accidents and fatalities, as well as a significant covariance between the two 
intercepts. Additionally, the regional variability of the intercept is higher for the 
number of accidents, as indicated by the values of the related mean variances. 
Moreover, it is interesting to notice that the covariance between responses and 
its significance is reduced in comparison to those of Model 4. It can be deduced 
that the variation of accidents and persons killed also follows the same trend 
within different regions, i.e., some of the covariance between accidents and 
persons killed is situated at the regional level.  
 
 

 
 Model 5 

 Accidents Killed 
Fixed effects   
constant -6.453 (0.044) -8.382 (0.028) 
alcontrols   
Random effects   
Level 3   
σu0

2
 (constant) 0.092 (0.021) 0.016 (0.008) 

σu1
2
 (alcontrols)   

σu01
2
 (covariance) 0.025(0.010) 

   
Cov (accs/killed) 2.898 (0.556) 

Table 2.5.7. Effects of the three-level Poisson - Normal bivariate model (random 
intercept only) 
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By adding a random slope to the model, the results shown in Table 2.5.8 are 
obtained (Model 6). It is noted that, for practical reasons, only variances 
(diagonal matrix) are presented. It appears that the mean effect of enforcement 
on the number of accidents is higher compared to the related effect on persons 
killed. However, the regional variation of alcohol enforcement effects is very low 
as far as both number of accidents and persons killed are concerned and only 
significant as far as the number of accidents is concerned. 
 

 
 Model 6 

 Accidents  Killed  
Fixed effects   
Constant  -6.475 (0.038) -8.381 (0.026) 
alcontrols -0.025 (0.004) -0.004 (0.002) 
Random effects   
Level 3   
σu0

2
 (constant) 0.053 (0.014) 0.010 (0.007) 

σu1
2
 (alcontrols) 0.0004 (0.0002) 0.0001 (0.002) 

   
Cov (accs/killed) 3.313 (0.556) 

Table 2.5.8. Effects of the three-level Poisson - Normal bivariate model (random 
intercept & slope) 

 
At this stage, there is enough evidence that road accidents and road fatalities 
present a significantly different regional variation. Additionally, the increase of 
alcohol controls is associated to a significantly different reduction on accidents 
and persons killed at national level. However, while the effect of alcohol controls 
on accidents varies significantly between regions, the respective effect on 
persons killed does not. .  
 
The above example concerns a multivariate modelling process under Poisson - 
Normal assumptions. A significant regional variation was observed in both 
responses. However, a significant variation related to the effect of alcohol 
controls was observed for accidents only. A less complex univariate model was 
successfully fitted on the accidents data in Section 2.3.4, and the results had 
indicated a somewhat higher regional effect of enforcement than the one 
obtained in the present bivariate analysis. It should be underlined that, for 
validation purposes, a univariate Poisson model for the number of persons 
killed was also fitted to the data and the non-significant regional variation of the 
effect of alcohol enforcement was confirmed. Additionally, the magnitude of 
fixed effects was also slightly different. 
 
Summarizing, the multivariate structure provides slightly different results as far 
as the magnitude of the examined effects is concerned, which is due to the fact 
that dependencies among the two responses are taken into account. In the 
present example, the number of persons killed in accidents is strongly related to 
the number of accidents. However, the alcohol enforcement mainly affects the 
number of accidents. It can therefore be deduced that an increase of alcohol 
controls is related to a significant decrease of accidents. The number of persons 
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killed probably decreases because the number of accidents decreases and not 
because of a direct effect of alcohol controls. 
 
The results seem to indicate that the nationwide intensification of enforcement 
had an important effect mainly on severe accidents (which may resulting from 
more risk-taking behaviour, such as speeding). In particular, drivers may have 
perceived an overall increase of the presence of the Police and adopted their 
behaviour accordingly, resulting in a significant decrease of severe accidents at 
national level, and a related decrease on fatalities. However, the effect of 
enforcement on less severe accidents (resulting from less risk-taking behaviour) 
varies significantly among regions, and appears to be more dependent to the 
regional / local presence of the Police on the road network. 
 
 
2.5.5. Conclusions over techniques 
 
In this section, a multivariate multilevel modelling process was demonstrated. 
The main interest of the examples presented lies in the illustration of the lower-
level structuring to build a multiple response model. In particular, the basic 
multilevel model structure is exploited to create a multivariate analysis, by 
shifting the hierarchical structure one level higher and substituting the bottom-
level with dummy variables to account for the multiple responses. This process 
provides several interesting features, mainly concerning the treatment of 
missing values and the consideration of dependencies among responses. 
 
The examples presented above concerned the effect of alcohol enforcement on 
the number of road accidents and related casualties. Two approaches were 
explored as far as the distributional assumptions of the responses are 
concerned: a bivariate Normal model (resulting from a log-transformation of the 
responses) and a bivariate hybrid Poisson - Normal model (in which extra-
Poisson assumptions were considered for the two responses, with the variation 
at higher levels to be assumed as Normal). It is underlined that the latter 
approach is different from the full Poisson bivariate model, in which the variation 
at all levels is Poisson. 
 
The bivariate Normal modelling approach was proved to be less efficient for the 
investigation of the research question examined, as convergence problems 
were encountered in the more complicated (and more interesting) models. On 
the other hand, a three-level hybrid Poisson - Normal model was successfully 
fitted to the data, providing some insightful results. It can be said that this 
model, having fewer parameters to be estimated, is more parsimonious and 
thus more flexible. 
 
The multivariate modelling processes described above can be applied 
accordingly to normal, binary, count or mixed responses. Some of the 
particularities of multivariate multilevel modelling of discrete responses in 
relation to Normal responses were briefly discussed in the framework of the 
above examples. However, it is always recommended to begin by fitting simple 
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univariate models for each response, in order to explore the variability of 
regional or other effects and the explanatory power of variables, before 
proceeding to a more complex structure. 



   

2.6 Structural equations models 

Christian Brandstaetter and Michael Smuc (KfV) 

 

2.6.1 Objective of the technique 

In this chapter, we will introduce concepts for latent dimensions. Often the most 
important variables are not directly observable. This is true especially for most 
concepts in psychology, e.g. attitudes, motives or personality traits. In these 
cases the underlying construct cannot be measured directly, but nevertheless 
can be assessed indirectly by measuring a number of relevant indicators. 
Furthermore, the interdependency between these latent dimensions should be 
analysed. Structural equation modelling, and the special case of factor analysis, 
was developed for this purpose.  
 
It is important to carry out such analyses where individuals are grouped within 
hierarchies in a multilevel framework. For example, one may be interested in 
attitudes with regard to new technologies relevant for traffic safety correlated 
with driver characteristics. Data on such indicators may be available in different 
countries and one can postulate a model whereby the underlying attitudes and 
characteristics vary from country to country (level 2) and also vary randomly 
over individuals within countries (level 1).  

2.6.2 Model definition and assumptions 

The theory and application of single level structural equation models, including 
the special cases of observed variable path models and factor analysis models, 
is well known (Joreskog and Sorbom, 1979, McDonald, 1985). In this chapter, 
we look at multilevel generalisations of these models. We will not give details of 
estimation procedures that are set out in Goldstein and McDonald (1987), 
McDonald and Goldstein (1988) with elaborations by Muthen (1989) and 
Longford and Muthen (1992). McDonald (1994) presents an informal overview. 
 
One first considers a basic 2-level factor model where  a set of measurements 
for each person within a sample of countries is available. For the i level 1 
responses, we first write a multivariate model with i responses, where in general 
some may be randomly missing. 
 

    ∑+=
i ijiijij zeXy )( β   (2.6.1) 

 
One may wish to identify some of these factors as the ‘same’ factors at each 
level, for example by constraining certain loadings to be zero. This means for 
example that he observe variables for each level have the same correlation with  
the underlying factor, the latent variable. 
 
A straightforward and consistent procedure for estimating the parameters of this 
factor model is to perform it in two stages. The first stage involves the 
estimation of the separate level 1 and level 2 residual covariance matrices. The 
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second stage involves the factor analysis of these separate matrices using any 
standard procedure. 
All structural equation models, in short SEM, have important assumptions, 
which have to be known when applying such a concept.   

2.6.2.1. Multivariate normal distribution of the indicators  

Each indicator whih means he observed variables should be normally 
distributed for each value of each other indicator. Even small departures from 
multivariate normality can lead to large differences in the chi-square test, 
undermining its utility. In general, violation of this assumption inflates chi-
square, but under certain circumstances may deflate it. Use of ordinal or 
dichotomous measurement is a cause of violation of multivariate normality. 
Please note that multivariate normality is required by maximum likelihood 
estimation (MLE), which is the dominant method in SEM for estimating structure 
coefficients. Specifically, MLE requires normally distributed endogenous (i.e. 
latent or factor)  variables.  
 
The Bollen-Stine bootstrap and Satorra-Bentler adjusted chi-square are used for 
inference of exact structural fit when there is reason to think there is lack of 
multivariate normality or another distributional misspecification. Other non-MLE 
methods of estimation exist; some  do not require the assumption of multivariate 
normality. 
 
Under conditions of severe non-normality of data, SEM parameter estimates 
(ex., path estimates) are still fairly accurate, but corresponding significance 
coefficients are too high. Chi-square values, for instance, are inflated. Recall for 
the chi-square test of goodness of fit for the model as a whole, the chi-square 
value should not be significant if there is a good model fit; the higher the chi-
square, the more the difference of the model-estimated and actual covariance 
matrices, hence the worse the model fit. Inflated chi-square could lead 
researchers to think that their models were more in need of modification than 
they actually were. Lack of multivariate normality usually inflates the chi-square 
statistic such that the overall chi-square fit statistic for the model as a whole is 
biased toward Type I error (rejecting a model which should not be rejected). The 
same bias also occurs for other indexes of fit besides the chi-square model. 
Violation of multivariate normality also tends to deflate (underestimate) standard 
errors moderately to severely. These smaller-than-they-should-be standard 
errors mean that regression paths and factor/error covariances are found to be 
statistically significant more often than they should be.  

2.6.2.2. Multivariate normal distribution of the latent dependent variables 

Each dependent latent variable in the model should be normally distributed for 
each value of the other latent variables. Dichotomous latent variables violate 
this assumption. In this case, other classes of models should be used. 

2.6.2.3. Linearity 

SEM assumes linear relationships between indicator and latent variables, and 
between latent variables themselves. However, as with regression, it is possible 
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to add exponential, logarithmic, or other non-linear transformations of the 
original variable to the model.  
 
One might think SEM's use of MLE estimation means that linearity is not 
assumed, as in logistic regression. However, in SEM, MLE estimates the 
parameters that best reproduce the sample covariance matrix, and the 
covariance matrix assumes linearity. That is, while the parameters are 
estimated in a non-linear way, they are in turn reflecting a matrix requiring linear 
assumptions. 

2.6.2.4. Indirect measurement 

Typically, all variables in the model are latent variables. Multiple indicators 
(three or more) should be used to measure each latent variable in the model. 
Regression can be seen as a special case of SEM in which there is only one 
indicator per latent variable. Modelling error in SEM requires there should be 
more than one measure of each latent variable. If there are only two indicators, 
they should be correlated so that the specified correlation can be used, in effect, 
as a third indicator and thus prevent under-identification of the model.  

2.6.2.5. Low measurement error 

Multiple indicators are part of a strategy to lower measurement error and 
increase data reliability. Measurement error attenuates the correlation and 
covariance on which SEM is based. Measurement error in the exogenous 
variables biases the estimated structure (path) coefficients, but in unpredictable 
ways (up or down) dependent on specific models. Measurement error in the 
endogenous variables is biased towards underestimation of structure 
coefficients if exogenous variables are highly reliable, but otherwise bias is 
unpredictable in direction.  

2.6.2.6. Complete data or appropriate data imputation 

As a corollary of low measurement error, the researcher must have a complete 
or near-complete dataset, or must use appropriate data imputation methods for 
missing cases.  

2.6.2.7. Not theoretically under-identified or just-identified  

A model is just identified or saturated if there are as many parameters to be 
estimated as there are elements in the covariance matrix. For instance, 
consider the model in which V1 causes V2 and also causes V3, and V2 also 
causes V3. There are three parameters in the model, and there are three 
covariance elements (1,2; 1,3; 2,3). In this just-identified case, one can compute 
the path parameters, but in doing so, uses up all the available degrees of 
freedom. Therefore, one cannot compute goodness of fit tests on the model. 
AMOS and other SEM software will report degrees of freedom as 0, chi-square 
as 0, and then p cannot be computed.  
 
A model is under-identified if there are more parameters to be estimated than 
there are elements in the covariance matrix. The mathematical properties of 
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under-identified models prevent a unique solution to the parameter estimates 
and prevent goodness of fit tests on the model.  
 
In most cases, researchers want an over-identified model, which means one 
where the number of known (observed variable variances and covariances) is 
greater than the number of unknowns (parameters to be estimated). When one 
has over-identification, the number of degrees of freedom will be positive (recall 
AMOS has a DF tool icon to check this easily). Thus, in SEM software output, 
the listing for degrees of freedom for the chi-square model is a measure of the 
degree of over-identification of the model.  
 
The researcher is well advised to run SEM on pre-test or fictional data prior to 
data collection, since this will usually reveal under-identification or just-
identification. One good reason to do this is because one solution to under-
identification is adding more exogenous variables, which must be done prior to 
collecting data.  

2.6.2.8. Recursivity  

Recursive models are never under-identified (that is, they are never models 
which are not solvable because they have more parameters than observations). 
A model is recursive if all arrows flow one way, with no feedback looping, and 
disturbance (residual error) terms for the endogenous variables are 
uncorrelated. That is, recursive models are ones where all arrows are 
unidirectional without feedback loops and the researcher can assume 
covariances of disturbance terms are all zero, meaning that unmeasured 
variables that are determinants of the endogenous variables are uncorrelated 
with each other and therefore do not form feedback loops. Models with 
correlated disturbance terms may be treated as recursive only as long as there 
are no direct effects among the endogenous variables. Note hat recursivity is 
just a guarantee for identification and that non-recursive models may also be 
solvable (not under-identified) under certain circumstances.  

2.6.2.9. Not empirically identified due to high multicollinearity  

A model can be theoretically identified but still not solvable due to such 
empirical problems as high multicollinearity in any model, or path estimates 
close to zero in non-recursive models. There are some signs of high 
multicollinearity: 

o Since all the latent variables in a SEM model have been assigned a 
metric of 1, all the standardized regression weights should be within the 
range of plus or minus 1. When there is a multicollinearity problem, a 
weight close to 1 indicates the two variables are close to being identical. 
When these two nearly identical latent variables are then used as causes 
of a third latent variable, the SEM method will have difficulty computing 
separate regression weights for the two paths from the nearly-equal 
variables and the third variable. As a result it may well come up with one 
standardized regression weight greater than +1 and one weight less than 
-1 for these two paths.  

o Likewise, when there are two nearly identical latent variables, and these 
two are used as causes of a third latent variable, the difficulty in 
computing separate regression weights may well be reflected in much 
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larger standard errors for these paths than for other paths in the model, 
reflecting high multicollinearity of the two nearly identical variables.  

o Likewise, the same difficulty in computing separate regression weights 
may well be reflected in high covariances of the parameter estimates for 
these paths - estimates much higher than the covariances of parameter 
estimates for other paths in the model.  

o Another effect of the same multicollinearity syndrome may be negative 
error variance estimates. In the example above of two nearly identical 
latent variables causing a third latent variable, the variance estimate of 
this third variable may be negative.  

2.6.2.10. Interval data are assumed 

Unlike traditional path analysis, SEM explicitly models error, including error 
arising from use of ordinal data. Exogenous variables may be dichotomies or 
dummy variables, but unless special approaches are categorical, dummy 
variables may not be used as endogenous variables. Use of ordinal or 
dichotomous measurement to represent an underlying continuous variable is, of 
course, truncation of range and leads to attenuation of the coefficients in the 
correlation matrix used by SEM.  

2.6.2.11. High precision  

Whether data are interval or ordinal, they should have a large number of values. 
If variables have a very small number of values, methodological problems arise 
in comparing variances and covariances, which is central to SEM.  

2.6.2.12. Small, random residuals  

The mean of the residuals (observed minus estimated covariances) should be 
zero, as in regression. A well-fitting model will have small residuals. Large 
residuals suggest model misspecification (i.e. paths may need to be added to 
the model, AMOS or LISREL provide tools to help the researcher in model 
building based on tests of size of the residuals). 
 
Uncorrelated error terms are assumed, as in regression, but if present and 
specified explicitly in the model by the researcher, correlated error may be 
estimated and modelled in SEM.  

2.6.2.13. Uncorrelated residual error 

The covariance of the predicted dependent scores and the residuals should be 
zero.  

2.6.2.14. Multicollinearity  

Complete multicollinearity is assumed to be absent, but correlation among the 
independents may be modelled explicitly in SEM. Complete multicollinearity will 
result in singular covariance matrices, on which one cannot perform certain 
calculations (e.g. matrix inversion) because division by zero will occur. Hence 
complete multicollinearity prevents a SEM solution. Also, when the correlation 
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between indicator variables r>=0.85, multicollinearity is considered high, and 
empirical under-identification may be a problem. Even when a solution is 
possible, high multicollinearity decreases the reliability of SEM estimates. 
Strategies for dealing with covariance matrices that are not positive definitely 
add a ridge constant, which is a weight added to the covariance matrix diagonal 
(the ridge) to make all numbers in the diagonal positive. However, this strategy 
can result in markedly different chi-square fit statistics. Other strategies include 
removing one or more highly correlated items to reduce multicollinearity: using 
different starting values, using different reference items for the metrics, using 
ULS rather than MLE estimation (ULS does not require a positive definite 
covariance matrix), replacing tetrachoric correlations with Pearsonian 
correlations in the input correlation matrix, and making sure to handle missing 
data list-wise rather than pair-wise because otherwise the result is often a non 
positive definite correlation matrix. 

2.6.2.15. Non-zero covariances 

Measures of fit compare model-implied covariances with observed covariances, 
measuring the improvement in fit compared to the difference between a null 
model with covariances as zero, on the one hand, and the observed 
covariances on the other. As the observed covariances approach zero, there is 
no "lack of fit" to explain it (the null model approaches the observed covariance 
matrix). More generally, "good fit" will be harder to demonstrate as the variables 
in the SEM model have low correlations with each other. That is, low observed 
correlations often will bias model chi-square and other fit measures towards 
indicating good fit.  

2.6.2.16. Sample size 

Sample size should not be small as SEM relies on tests that are sensitive to 
sample size, as well as to the magnitude of differences in covariance matrices. 
In the literature, sample sizes commonly run 200-400 for models with 10-15 
indicators. With over ten variables, sample size under 200 generally means 
parameter estimates are unstable and significance tests lack power. 
 
One rule of thumb found in the literature is that sample size should be at least 
50 more than 8 times the number of variables in the model. Another rule of 
thumb is to have at least 15 cases per measured variable or indicator. The 
researcher should go beyond these minimum sample size recommendations, 
particularly when data are non-normal (skewed, kurtotic) or incomplete. Note 
also that to compute the asymptotic covariance matrix, one needs k(k+1)/2 
observations, where k is the number of variables. 

2.6.3 Dataset and research problem  

Many expectations are connected with new technical developments, both from 
the safety side and from the consumer side. SARTRE 3 will yield data that tells 
us about the acceptance of various systems and also how realistic the drivers 
will perceive the effects of such systems. This is of great importance as new 
features in road traffic may change the perception of risk and safety; this know-
how is important for designing measures to counteract wrong safety beliefs. We 
will use data from the SARTRE 3 survey to investigate if there are any factors 
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that support the acceptance and use of safety relevant systems, which might 
even restrict some freedom of the drivers. Acceptance of new technologies, 
driving experience, nationality, profession and economic status will be relevant 
factors of special interest. A multivariate SEM analysis was applied to take the 
complex relationship of these factors into account. 
 
The aim of this is to describe how characteristics of the drivers and 
characteristics of specific technologies are related. When considering the 
introduction of new measures in traffic it is important to know if different types of 
drivers will react in a different way to these changes, or if there will be a 
common effect. This issue also applies to the introduction of new technologies. 
Still, the qualities of new technologies are also quite different from a 
psychological perspective. 
 
Therefore the analysis undertaken distinguishes three different aspects of 
drivers and three different aspects of new technologies: 
  
Driver (User) characteristics 
- Emotional driving 
- Professional car use 
- Socio-economic characteristics 
 
These three aspects have been extracted by principal component analysis from 
the SARTRE 3 questionnaire data and can shortly be described as follows: 
 
Emotional driving covers a mix of driving habits and feelings when driving. 
Professional car use is a description of exposure characteristics. Emotional 
driving and professional car use are dimensions that are related to some extent. 
Socio-economic characteristics bring in another dimension, which is more or 
less independent from the other dimensions. 
 
Technology characteristics (benefits) 
- Assistance and guidance systems 
- Warning and intervention systems 
- Enforcement systems 
 
LISREL was used (software AMOS, v5.0) for data analysis. LISREL stands for 
linear structural relation. By analysing the covariance matrix, the tool allows for 
the estimation of the weights of paths for defined models. Goodness of fit 
characteristics show how well the model represents the data. 
 
The goal of this type of analysis was to aggregate data with factor analysis from 
many questions of the survey to a few distinct latent dimensions on the driver 
and on the technology side. This leads to a reduction of effect parameters to a 
manageable size. The relations between the factors – called the structural 
equation model in LISREL terms – can then be interpreted as an underlying, 
inner structure between driver and technology characteristics. 
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2.6.4 Model fit diagnostics and interpretation 

 
In practice, the multilevel software available at this point in time offers only 
limited possibilities to estimate structural equation models. On the contrary, 
LISREL, which is the most appropriate software for structural equation 
modelling, does not allow the inclusion of multiple levels. Therefore, the model 
presented in the following research example, is not really a dedicated multilevel 
analysis. To illustrate the consequences of a multilevel structure, a two-step 
analysis was conducted:  
 
First, data from all available 23 countries was put together to find a general 
model that fits to all countries. In the next step, a confirmatory analysis was 
conducted for every single country. Various goodness of fit statistics were 
calculated to indicate whether the factor-structure given by the general model 
could be applied to the country in question. This was the case for 19 countries. 
For the UK and the Czech Republic, an alternative model with extrapolated 
missing cases produced an acceptable fit. For four countries, the given factor 
structure did not lead to an acceptable fit. Their results are not considered in the 
following analysis. These countries were Belgium, Ireland, Portugal and Croatia.  
 
In the future, especially with the newer versions of LISREL it will be possible to 
do real multilevel analysis of SEM models. 
 
It is proposed that there are clearly defined relations between the six 
characteristics (arrows, whose weights point out the influence between factors) 
– the three driver characteristics and the three technology characteristics – in 
the following graph (Figure 2.6.1.), displayed as ellipsis.  
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Figure 2.6.1: Proposed relations between driver and technology characteristics and 
questions used for operationalisation of those characteristics (short description of 
abbreviations/questions in the next section). Small circles represent the error terms. 

 
These “true“ dimensions are operationalised - measured by items of the 
SARTRE 3 questionnaire. In the graph, a set of questions is displayed on the 
left side; each question is presented by a box. These questions were used for 
measuring driver characteristics. The boxes on the right side are those that are 
used for distinguishing technology characteristics. 

2.6.4.1. Measuring driver characteristics 

There were only a few items in the questionnaire that really helped to 
distinguish different characteristics of drivers. We have chosen the following 10 
items to identify the three proposed driver characteristics: 
 

� car usage (Q48: What applies most to you? I drive for my profession; I 
need to drive during my work; I drive to and from work) 
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� private situation (Q43: Which of the following applies best to you at the 
moment? Single; Living under common law marriage; Married; Separated 
or divorced; Widowed) 

� How much do you agree with the following statements: 
� annoyed by other drivers (Q29a: I sometimes get very annoyed with 

other drivers) 
� enjoy driving fast (Q29b: I enjoy driving fast) 
� driving without a break (Q54: What is the longest period of time in hours 

you would spend driving without taking a break?) 
� exposure (In total about how many kilometres/miles have you driven in 

the last 12 months? in classes of 5,000 km) 
� engine size (Q50: About the car you usually drive, is it a car with engine 

size of...? in classes of 1,000 CC) 
� income (Q55: total annual income level per family unit) 
� vehicle age (Q53: How old is the vehicle you normally drive?) 

2.6.4.2. Measuring technology characteristics 

For distinguishing technology characteristics, we used the following items from 
the SARTRE 3 questionnaire: 

� manufacturers should modify their vehicles to restrict their maximum 
speed (Q28b) 

� Do you find it useful to have a device like: 
o navigation system (Q30a) 
o congestion warning system (Q30b) 
o system which prevented from exceeding the speed limit (Q30c) 
o alcometer (Q30d) 
o system which detected 'fatigue' (Q30e) 

� Are you in favour of: 
o speed limiting device (Q31a: Speed limiting devices fitted to cars that 

prevented drivers exceeding the speed limit) 
o black box to record...speeding (Q31c) 
o black box to identify...accident causes (Q31b) 
o electronic identification to give access to services (Q31d) 
o electronic identification for police enforcement (Q31e) 
o cameras for red light enforcement (Q34a) 
o speed cameras (Q34b) 

 
The results for the measurement model of the driver characteristics (left side of 
Figure 2.6.1.) and technology characteristics (right side of Figure 2.6.1.) are 
collected in Table 2.6.1.: 
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driver characteristics Mean StdDev

annoyed (q29_a)  <---  emotional driving -0,2 0,2

enjoy fast (q29_b)  <---  emotional driving -0,5 0,2

priv. situation (q43)  <---  emotional driving -0,3 0,1

without break (q54)  <---  emotional driving 0,2 0,1

without break (q54)  <---  profession 0,3 0,1

exposure (kilom_cl)  <---  profession 0,7 0,1

enjoy fast (q29_b)  <---  profession -0,2 0,2

car usage (q48)  <---  profession -0,6 0,2

engine size (q50)  <---  profession 0,3 0,3

engine size (q50)  <---  low economic status -0,2 0,3

income (q55)  <---  low economic status -0,4 0,1

vehicle age (q53_cl)  <---  low economic status 0,2 0,1

technology characteristics Mean StdDev

navigation (q30_a)  <---  assistance & guidance -0,7 0,1

traffic jam warning (q30_b)  <---  assistance & guidance -0,8 0,0

speed delimiter (q30_c)  <---  assistance & guidance -0,2 0,1

alcohol meter (q30_d)  <---  assistance & guidance -0,3 0,1

fatigue (q30_e)  <---  assistance & guidance -0,3 0,1

electronic services (q31_d)  <---  assistance & guidance -0,2 0,1

speed delimeiter (q30_c)  <---  warning & intervention -0,7 0,1

alcohol meter (q30_d)  <---  warning & intervention -0,3 0,1

fatigue (q30_e)  <---  warning & intervention -0,4 0,1

speedlim. device (q31_a)  <---  warning & intervention -0,9 0,0

manufact. modify (q28_b)  <---  warning & intervention -0,5 0,2

black box to record (q31_c)  <---  enforcement -0,7 0,0

electronic services (q31_d)  <---  enforcement -0,4 0,1

electronic serv. for police (q31_e)  <---  enforcement -0,7 0,1

autom. cams f. red light (q34_a)  <---  enforcement -0,4 0,1

surveill. f. autom. cams (q34_b)  <---  enforcement -0,6 0,1

black box to identify (q31_b)  <---  enforcement -0,6 0,1 : 

Table 2.6.1.: Mean factor loadings and standard deviations for the general model. For 
technology characteristics, high negative values indicate higher support. For driver 
characteristics, high negative values, i.e. q29a,b, indicate more emotional driving, 
higher positive values in exposure more profession. 

 
The dimension assistance and guidance systems represents, with high weights, 
the support for navigation (0.7) and congestion warning with 0.8. But this 
dimension also represents systems that were previously classified in the 
technologies “that impose behaviours” - alcohol meter and fatigue warning (0.3) 
and speed limiting device and electronic services (0.2). 
 
The dimension Support for warning and intervention largely represents the 
previous classification of systems that impose behaviour. It represents the 
questions about the usefulness of speed limiting devices (0.7), alcohol meter 
(0.3), and fatigue warning (0.4). These variables are also considered in the 
dimension assistance and guidance systems. Furthermore, the answers are 
represented in the dimension if speed-limiting devices (0.9) are favoured, and if 
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car manufacturers should modify their vehicles to restrict their maximum speed 
(0.5). 
 
Support for enforcement systems, the third dimension, corresponds with the 
previously used classification of enforcement systems. It represents the 
questions about black box to record drivers’ behaviour (0.7) or to identify what 
caused an accident (0.6), electronic identification to give access to services 
(0.4; also in dimension assistance and guidance) and electronic identification for 
enforcement by the police (0.7). Also, the questions about automated cameras 
for red light surveillance (0.4) and speed excess (0.6) have been taken into 
account. 
 
In the central, structural part of the model, all dimensions between the driver 
and the technology part are connected to each other. Due to technical, LISREL-
specific reasons, the driver characteristics relate to each other by covariance. 
While the covariance values between emotional driving and profession (0.1) and 
economic status (0.0) are low, the interrelation between profession and low 
economic status are weighted higher by -0.6. 
 
Compared to the outer parts of the model, which consist of factor weights from 
specific questions, dimensions behave almost stable over different countries. 
There is little variation in driver characteristics and even less variation in 
technology characteristics (see Table 2.6.1.); much more variation could be 
found in the central part of the model. These findings were taken into 
consideration in the following part of this report, which takes the structure 
between drivers and technology as a starting point. 
 
Overall, the main results in the structural pattern for all technological systems 
are: 

o Low economic status drivers are most supportive, 
o Professional drivers are also supportive, though less so than the above 

group, and 
o Emotional drivers do not support new technologies (except assistance 

and guidance systems). 
 
Driver characteristics derived from various variables by principal component 
analysis are interrelated in the following way: The covariance between low 
economic status and professional driving (mean -0.6 for general) is very high in 
Cyprus (0.8). Emotional driving and profession (mean 0.1) are highly 
interrelated in France, Spain and the UK. Low relations can be found in 
Germany and Slovakia. Low economic status and emotional driving do not show 
any coherence in the general model (0.0). Above-mean values can be found in 
Greece, the Netherlands and Finland. Poland and the UK have below mean 
values. 
 
If we take a closer look at similarities in driver characteristics between countries, 
emotional drivers show, in general, similar patterns in France and Spain (Table 
2.6.2.). Neither supports any new technology. In contrast, the support of new 
technologies from Polish and Slovakian emotional drivers lies clearly above the 
average, whose support is even at the highest level. 
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enforcement  <---  low economic status – + + – – + + 1,0

warning & intervention  <---  low economic status – + – + – + 1,0

assistance  <---  low economic status – – + + + + 0,8

enforcement  <---  profession – – + + – – – – + + + + 0,7

warning & intervention  <---  profession – – – – + + 0,6

assistance  <---  profession – – + + + + – – 0,6

enforcement  <---  emotional driving – – + + + + – – – – -0,5

warning & intervention  <---  emotional driving + + – – – – + + + + – – -0,6

assistance  <---  emotional driving – – – – + + + + – – + + 0,2

goodness of fit (chi-square/df) 3,19 4,02 3,93 2,63 4,85 3,13 2,60 3,67 3,41 2,15 3,13 3,66 3,06 3,71 3,53 4,14 2,78 3,37 3,96  
 

Table 2.6.2.: Weight differences in the structural part of the model for 19 countries in comparison to the general model. The ‘+’ symbol stands 
for higher support, ‘-’ for lower support, where a difference in standard deviation can be found. If standard deviation is higher than 0.5, ‘++’ and 
‘- -’ are used instead. The highest values are marked in orange; the lowest values are marked in blue. Means of weights for the general model 
can be found in the last column on the right hand side, goodness of fit statistics in the bottom row. 
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Another distinct pattern can be found for drivers characterised by low economic 
status. In Finland and the UK, there is high support for warning and intervention 
systems as well as enforcement systems in this driver group. 
 
Cyprus and Germany often show similar patterns: The low economic status 
group and the professional drivers group do not support new technology 
systems. A possible explanation could be that Cypriot drivers’ scepticism 
concerning new technologies might be affected by the fact that these 
technologies are not easily affordable in their country. In contrast, German 
drivers’ expectations might have been scaled down due to experience. There 
are, however, many differences in driver characteristics in both countries, hence 
these results do not support the “saturation effect” hypothesis. To conclude, 
because the differences regarding driver mentalities between these two 
countries seem to be very decisive, the experience effect cannot easily be 
separated. 
 
Nevertheless, there are still some arguments for the “saturation by experience 
effect”. Many traffic experts see Germany as a prime example for the spread of 
traffic-related new technologies. German drivers have similar characteristics to 
the general model and they show the highest saturation effect. Cypriot driver 
characteristics show that prestige plays an important role. Furthermore, the 
strong support from the low economic status group reinforces the saturation 
hypothesis: The less affordable these systems are, the higher expectations are. 
 
In conclusion, a short summary of the application of structural equation models 
is introduced using the relationship of driver characteristics and their 
acceptance of new technologies in traffic. 
 
For this analysis we have used a LISREL model, which led to an acceptable fit 
for 19 countries. With this method, it was possible to carry out a detailed 
analysis about support for different characteristics of new technologies in 
relation to different driver characteristics. 
 
Drivers were characterised by dimensions of “emotional driving”, “professional 
driving” and drivers with “low economic status”. For new technologies, the 
dimensions were distinguished between for “assistance/guidance systems”, 
“warning/intervention systems” and “enforcement systems”. 
 
Three main results in driver characteristics can be seen regarding support of 
new technologies: 

• Low economic status drivers are most supportive of all new technologies, 
with their highest support for warning and interventions systems, as well 
as for enforcement systems. 

• Professional drivers are also supportive, although in general they are 
less supportive than the low economic status group. This group shows 
the highest support for enforcement systems and slightly lower support 
for assistance/guidance and warning/intervention systems. 

• Emotional drivers do not support new technologies (except moderate 
support for assistance/guidance systems). 
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2.6.5 Conclusion 

Structural equation modelling offers one of the most complex data analyses in 
multivariate research methods. It connects confirmatory factor analysis with 
linear regression, creating a latent structure of the analysis. Hypothetical 
constructs are taken as latent variables in this approach. 
 
On one hand, this chapter shows the basic form of such models in the multilevel 
case, dealing mainly with assumptions on data. On the other hand, this chapter 
discusses the necessary theoretical concepts of these models. 
 
Analysis with structural equation models places high requirements on data. The 
requirements depend on the selected method of estimation of the unknown 
parameters. Assumptions can be divided into general conditions and statistical 
conditions. General assumptions consist of: the relationships between the 
variables is linear, the effects of explanations on dependant variables is 
additive, the relationship between the variables is stochastic. The most 
important statistical assumptions are: the variables have to be measured 
continuous and are interval-scaled, and they can be represented by the mean, 
variance and covariance which is known as a multivariate normal distribution. 
 
At first these models seem ideal to use with a large variety of data but in 
practice they turn out to be difficult to implement. One is generally successful if 
data collection is carried out with a theoretically-based structural equation model 
already in mind. These models are not appropriate for use with exploratory 
approaches. 
 
 
 



 

2.7 More complex data structures 

Eleonora Papadimitriou, Constantinos Antoniou, George Yannis (NTUA) 

 
  

2.7.1 Introduction 

 
In the previous sections the concepts of multilevel modelling were introduced 
and it was shown how to develop simple models under Normal distribution 
assumptions for hierarchical data structures in the context of transport and road 
safety. It was demonstrated how multilevel models can be applied in the 
framework of generalized linear modelling, i.e. under non Normal distributional 
assumptions. Moreover, more advanced multilevel models were presented, 
including multivariate models, factor analysis and structural equations models. 
In these sections the emphasis was on the theoretical background, the models 
assumptions and the interpretation of results, by means of modelling examples.  
 
It was shown that the motivation for multilevel modelling in road safety analysis 
is that the processes we wish to model often take place in the context of a 
hierarchical structure (Rasbash et al., 2000), each level of this hierarchy 
contributing to a random variation of the variable of interest. Accordingly, all the 
examples presented in the previous sections concerned classical hierarchical 
data structures e.g. accidents and fatalities nested into regions, speed 
measurements nested into different road sites etc. However, the assumption 
that the structures we wish to model are purely hierarchical is often an over-
simplification (Rasbash et al., 2000). Individuals or cases may be classified 
according to more than one group at a given higher level of a hierarchy (cross-
classification) and each group can be a source of random variation. For 
example, in a mobility analysis, individuals may be classified according to the 
transport mode they use and the area they live, while each area may include all 
transport modes and each transport mode may serve all areas. Moreover, 
individuals or cases may belong to more than one sub-groups of the higher level 
group (multiple memberships). For example, in a longitudinal study, individuals 
may change area and finally belong to more than one area in the study. These 
special cases of hierarchical data structure and the resulting multilevel models, 
often referred to as "non-hierarchical" multilevel models (Browne et al., 2001), 
are described in the following sections. 
 

2.7.2 Cross - classified data 

 
An example of cross-classified hierarchical structure in the context of road 
safety may be the following: within a mobility survey, both the area type an 
individual lives in and the travel mode an individual uses have an important 
effect on mobility. Therefore, there are two possible higher level classifications 
of the individuals examined in the survey and these classifications are not 
mutually exclusive.  
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While a classical nested multilevel structure can be described as in Figure 
2.7.1.A, a crossed multilevel structure can be described as in Figure 2.7.1.B. 
 

Areas 

 (Level 2) 

Individuals 

(Level 1) 

Areas 

(Level 2) 

Transport modes 

(Level 2) 

Individuals 

(Level 1) 

 
A. Nested multilevel structure  B. Crossed multilevel structure 

Figure 2.7.1. Nested and crossed multilevel structures 

 
 
In this case, however, each area includes individuals using different transport 
modes and each transport mode also includes individuals from different areas. 
Consequently, not only are there two different higher level classifications of the 
individuals, but also these two classifications are not mutually exclusive. No 
pure hierarchy can be found and individuals are contained within a cross-
classification of transport modes by areas, as shown in Figure 2.7.2. 
 

Transport mode M1 M2 M3 M4

(Level 2)

Individual I1 I2 I3 I4 I5 I6 I7 I8 I9 I10 I11 I12

(Level 1)

Area A1 A2 A3

(Level 2)  
Figure 2.7.2. Cross-classification of individuals within transport modes and areas 

 
It is obvious that individuals can be sorted by transport modes within areas or 
areas within transport modes, but not both. The consequences of ignoring an 
important cross-classification are similar to those of ignoring an important 
hierarchical classification (Rasbash et al. 2000). A simple model describing this 
situation can be formulated as: 
 
 yi(jk) = α+ uj + uk + ei(jk) (2.7.1) 
 
Where 
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yi(jk)   is the mobility of the ith individual from the (jk)th area type / transport 
mode combination 

α is the overall mean 
uj is a random departure due to transport mode j 
uk is a random departure due to area k 
ei(jk) is an individual level random departure  
 
 
Obviously, the model can be further elaborated by adding level-1 explanatory 
variables, whose coefficients may vary across areas or modes. Also, level-2 
variables can be incorporated to explain variation across areas or modes. 
 
Starting from the above baseline model, more complex models can also be 
formulated, which may include multiple cross-classifications, and/or mixed 
nested-and-crossed structures. The following example shows the different 
structures and the related formulations of the multilevel equations, which can be 
considered according to the specifications of the problem: Within a mobility 
survey, individuals (i) are interviewed by interviewers (j); the individuals come 
from (k) transport modes and (l) area types.  
 
If each individual is interviewed by a more than one interviewers (in case, for 
instance, that a survey has more than one questionnaire and each 
questionnaire is processed by a different interviewer), there is an individual / 
interviewer cross-classification at Level 1. Moreover, if a different set of 
interviewers operates in each transport mode, the Level-1 individual/interviewer 
cross-classification is nested within transport mode at level 2. A model 
describing this situation can be formulated as: 
 
 Y(ij)k = α+ uk + eik + ejk (2.7.2) 
 
The interviewer and interviewee (individual) effects are modelled by the level-1 
random variables eik and ejk, while the transport mode random effects are 
modelled by the level-2 random departure uk (note that the area type effects are 
not considered in this model). It should be noted that, in such a model, the 
cross-classification does not need to be balanced i.e. some individuals may not 
be interviewed by all the interviewers.  
 
If each individual is interviewed by only one interviewer and the same set of 
interviewers is used for all transport modes, interviewers are cross-classified 
with transport modes. An equation such as (2.7.1) can be used to model this 
situation (in this case though, k would refer to interviewers rather than areas). If 
transport modes are also crossed by area types, then individuals are nested 
within a three-way interviewer/transport mode/area type classification. In this 
case, equation (1) can be extended by adding a term ul for the interviewer 
classification:  
 
 yi(jkl) = α+ uj + uk  + ul + ei(jkl)  (2.7.3) 
 
Where now i refers to individuals, j refers to interviewers, k refers to transport 
mode, and l refers to area type. 
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Furthermore, if interviewers are not crossed with transport modes (i.e. a 
different set of interviewers is used in each transport mode), but transport 
modes are crossed with areas (i.e. the same transport mode is used in different 
areas), the formulation would become: 
 
 yi(jkl) = α+ uk + ul  + ei(kl) + ej(kl) (2.7.4) 
 
 
It is obvious that, according to the context of the problem, different structures 
can be considered; a cross-classification may be present at any level of the 
hierarchy, from the lowest (equation 2.7.2) to the highest level (equation 2.7.1). 
Moreover, a cross-classification may be multiple (equation 2.7.3). Finally, a 
higher level classification may include one cross-classification and one simple 
higher level classification (equation 2.7.4). In any case, a related multilevel 
formulation is available. 
 
In order to fit a cross-classification multilevel model, a special procedure is 
required. For instance, in a level 2 cross-classification with 10 transport modes 
drawing individuals from 30 areas (as in equation 1), if the data is sorted by 
transport mode and the cross-classification with areas is ignored, the transport 
modes impose a block-diagonal structure38 on the N by N covariance matrix of 
responses, where N is the number of individuals in the data set. In order to 
account for the cross-classification of transport modes and areas, a non-block-
diagonal covariance structure needs to be estimated (Rasbash et al. 2000).  
 
This can be achieved by setting a third (higher) level in the model. First, a 
"constant" variable is created, with one unit value which covers the entire data 
set, and this variable is declared as the third level. Then, thirty dummy variables 
are created, one for each area, and their coefficients are set to vary randomly at 
level 3, with a separate variance for each of the 30 area. Finally, all 30 
variances are constrained to be equal (Rasbash et al, 2000). This constraint is 
necessary in order to obtain one common estimate of the level-3 variance. 
Other coefficients can be set to vary randomly across modes, as level-2 random 
parameters, in the usual way.  
 
However, if a coefficient of a slope is set to vary randomly across areas, the 
procedure becomes more complicated, as thirty additional variables need to be 
created; these would be obtained as the product of the area dummy variables 
and the examined slope. The new variables are set to vary randomly at level 3, 
with the respective equality constraint in order to obtain a common estimate. 
Furthermore, in order to examine the covariance between intercept and slope, 
90 random parameters are needed at level 3: an intercept variance, a slope 
variance and an intercept/slope covariance for each of the 30 areas, each set of 

                                            
38

 A block matrix is a matrix that is defined using smaller matrices, called blocks. A block 
diagonal matrix is a block square matrix, having main diagonal blocks square matrices, such 
that the off-diagonal blocks are zero matrices.  
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them (30 intercept variances, 30 covariances and 30 slope variances) 
constrained to produce 3 common (level-3) estimates, and so on. 
  
It should be noted that, although a 3-level structure is defined, conceptually only 
a 2-level model is considered, in which transport mode and area are crossed at 
level 2. The third level is only used as a tool to convert the crossed structure 
into a nested structure and allow for estimation of the crossed structure 
(Rasbash, Goldstein, 1994).  
 
 

2.7.3 Multiple membership models 

 
Multiple membership models refer to a situation where, in a 2-level model for 
instance, level-1 units belong to two or more level-2 units. Thus, for example, in 
a longitudinal study, some individuals (i) may change region and may finally 
"belong" to more than one region (j) during the study. This kind of classification 
is graphically presented with a double arrow, as in Figure 2.7.3: 
 

 
Figure 2.7.3. Multiple membership structure 

 
When modelling such data, level-2 effects are shared between all the units 
(regions) to which an individual belongs. It is therefore necessary to allocate a 
set of weights for each individual to attach to these units (Rasbash et al, 2000). 
First, it is assumed that an individual belongs to more than one region and this 
set of regions is defined as j2. If the weight πij2, associated with the j2

th region for 
individual i, is known, (e.g. the proportion of time spent in that region) with: 
 

 
j2=1

J2

∑πij2 = 1 

  
a simple variance components model can be formulated as:  
 

 yi(j2) = (Xβ)i(j2) + ∑
2j

uj2
(2) πij2 + ei(j2) (2.7.5) 

 

 ∑
2j

uj2
(2) πij2 = πi u

(2) 

 
 u(2)T= { u1

(2), …, uj2
(2)} 
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 π = {π1, ..., πj2} 
 
 πj2

T = { π1j2, …, πΝj2 } 
 
 

Var (uj2
(2)) = σu2

2,  Cov (uj1
(1), uj2

(2)) = 0,  Var (∑
2j

uj2
(2) πij2) = σu2

2 ∑
2j

πij2 

 
In the above formulae, N is the total number of individuals and u(2) is the (J2 x 1) 
vector of the regions j2 effects. This is therefore a 2-level model, in which the 
level 2 variation among regions is modelled using j2 sets of weights for 
individual i (πi1, ..., πiJ2) as explanatory variables, with πj2 the (N x 1) vector of 
individuals weights for the j2

th region.  
 
For a basic example, we may consider five individuals and three regions 
according to the weights of Table 2.7.1 (proportion of time spent in each region): 
 
 Region 1 (j=1) Region 2 (j=2) Region 3 (j=3) 

Individual 1 (i=1) 0.5 0 0.5 
Individual 2 (i=2) 1 0 0 
Individual 3 (i=3) 1 0 0 
Individual 4 (i=4) 1 0 0 
Individual 5 (i=5) 0 0.25 0.75 

Table 2.7.1. Multiple membership weights 

 
In this case, individual 1 spent half of his time in region 1 and half of his time in 
region 3, and individual 5 spent 25% of his time in region 2 and 75% of his time 
in region 3. If we use these weights into formula (2.7.5), we obtain the following 
set of formulae:  
 
Y1 = Xβ + 0.5 u1

(2) + 0.5 u3
(2) + ei 

Y2 = Xβ + u1
(2) + ei 

Y3 = Xβ + u1
(2) + ei 

Y4 = Xβ + u1
(2) + eiY5 = Xβ + 0.25 u2

(2) + 0.75 u3
(2) + ei  

 
The above example, where an individual sequentially moves from one region to 
another is the most frequent case of multiple membership. However, it may also 
be the case that individuals alternate between regions and may be considered 
as simultaneously belonging to more than one region. This case can also be 
dealt with, by using weights which reflect time spent within each region 
(Goldstein et al. 2000). 
 
In order to fit a multiple membership model, a process similar to the one used 
for the cross-classified models is adopted. Considering the above example, in 
which individuals change regions over time, it is necessary to create a set of 
variables to attribute the weights corresponding to each region for each 
individual. As in cross-classified models, level-2 is defined by a "constant" unit 
value variable, which covers the entire dataset. Then, a set of weighted 
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indicator variables are created, showing the proportion of time spent in each 
region by each individual. For example, if there are 20 regions, 20 new variables 
will be created, one for each region, providing the proportion of time spent in 
each region by each individual. These weighted indicator variables are set to 
randomly vary at level-2. In order to obtain one single variance estimate for all 
regions, an equality constraint is imposed for the variances of the 20 regions 
(Browne et al. 2001). 
 
It is obvious that, technically, this two-level structure is different from the 
classical one; the higher level is not defined by a "real" variable (but from a 
"constant" variable) and the higher level variation is not estimated on this higher 
level itself (but obtained from a set of variances constrained to be equal). 
However, this structure allows for an efficient estimation of higher-level variance 
in multiple membership models. For details of these models and examples see 
also Hill and Goldstein (1997), Browne et al. (2001). 
 
An interesting sub-case of multiple membership models is the case of spatial 
modelling with neighbourhood matrix. In section 2.3.4.6, the applications of 
ecological and aggregate spatial analysis in road safety research were briefly 
presented. In some of these applications (e.g. MacNab, 2004) spatial variability 
is expressed on the basis of neighbourhood (instead of e.g. distance, as in other 
studies). The multiple membership structure arises from the fact that each unit 
of analysis (e.g. county) neighbours with more than one other unit, leading to a 
neighbourhood matrix in which each diagonal element is equal to the number of 
neighbours of the corresponding area, and the off-diagonal elements in each 
row are equal to −1 if the corresponding areas are neighbours and 0 otherwise, 
allowing to weight the data accordingly. These models are mainly fitted by 
means of Bayesian approaches (see chapter 2.8). 
 
 

2.7.4 Summary 

 
The multilevel models described in the previous Chapters of this document were 
proved to be capable of dealing with a wide variety of hierarchical data 
structures within the context of road safety analysis (accidents analysis, road 
users' behaviour, monitoring of road safety measures etc.). These models allow 
for both continuous and discrete responses to be modelled, as well as for 
different levels of hierarchies to be considered (spatial, qualitative etc.). They 
can also handle multiple responses (multinomial responses or multivariate 
analyses), as well as longitudinal data (e.g. repeated measurements). 
 
In this section, cases of data having a structure which is not purely hierarchical 
were briefly presented. It was shown that level-1 units may be clustered not only 
into hierarchically ordered units (e.g., individuals nested within regions, within 
countries etc.), but may also belong to more than one type of unit at a given 
level of a hierarchy (cross-classification). Moreover, individuals may belong to 
more than one sub-groups of a given higher level group (multiple 
memberships). It was shown that multilevel models can be extended to handle 
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such complex "non-hierarchical" data structures, and the basic formulation of 
these models was presented by means of simple indicative examples. 
 
These models allow for such complex structures to be defined and explored, 
which would be a difficult or impossible task with conventional techniques. It 
should be noted, however, that in practice difficulties may be encountered when 
fitting such complex models, both in terms of obtaining satisfactory numerical 
convergence and interpreting results (Goldstein et al. 2000). In particular, 
conventional estimation methods like maximum likelihood or quasi-likelihood, 
which exploit the nested structure of the data in multilevel hierarchical models, 
are not efficient in this case. As these two types of structures are not purely 
nested, they need to be converted into nested (purely hierarchical) structures, 
with a set of constraints reflecting the particularities of the structure (Browne et 
al. 2001). More advanced (simulation-based) estimation methods, which are 
presented in the next section, apart from their other advantages compared to 
the default estimation methods, are also more powerful in dealing with these 
complex structures. 



 

2.8 Bayesian estimation in multilevel modelling  

Eleonora Papadimitriou, Constantinos Antoniou, George Yannis (NTUA) 

 

2.8.1 General 

 
In all the models presented in the previous sections, conventional default 
estimation methods were used in the modelling process and little or no mention 
was given to alternative approaches to fitting multilevel models. These default 
estimation methods are either maximum likelihood or some approximation of 
maximum likelihood (e.g. quasi-likelihood), which are based on Generalized 
Least Squares (GLS) estimation. In the present document, maximum likelihood 
values were used for Normal models and quasi-likelihood methods were used 
for generalized linear models, according to the common practice (Browne et al. 
2001).  
 
However, it was mentioned that an important problem rises from the use of 
approximation methods; the estimated likelihood ratio is very approximate and 
can not be used for the assessment of models fit. Moreover, when default 
methods are applied to more complex data structures, such as the "non-
hierarchical" structures mentioned above, numerical and convergence 
difficulties are often encountered.  
 
In this section, a group of alternative estimation methods for multilevel models 
are described, namely the Markov Chain Monte Carlo (MCMC) and the 
bootstrap methods. These advanced estimation methods are both based on 
simulation techniques and the estimates they produce are dependent on 
randomly generated numbers (Rasbash et al. 2000). In contrast to the default 
estimation methods, where a single estimate (described by a mean and a 
variance) for a parameter is obtained by a single sample, these simulation 
methods generate a large number of samples from the initial sample, and yield 
thus a sample of means and a sample of variances, allowing for the calculation 
of intervals for parameter estimates. For this reason, they are also able to 
provide accurate likelihood statistics. 
 
More specifically, a single sample gives one estimate for the mean and one 
estimate for the variance of each parameter. Obviously, the larger the sample 
size, the more accurate the mean estimate will be. Accordingly, if a sample of 
means estimates and a sample of variances estimates could be available, 
interval estimates for the parameters could be calculated. This idea of 
generating a large number of samples to create interval estimates is the 
motivation behind most simulation methods (Rasbash et al. 2000). In the 
following sections two groups of simulation methods that can be used in 
multilevel modelling, namely MCMC methods and bootstrap methods, are 
presented.  
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2.8.2 MCMC methods and Bayesian modelling 

 
In this section, the aim is to provide some background for understanding the 
general concepts behind Bayesian statistics (Barnett, 1999) and MCMC - Monte 
Carlo Markov Chain methods (see e.g. Casella and George, 1992, Smith and 
Gelfland, 1992), as well as their use in the context of multilevel analysis. 
 
The motivation for MCMC comes from the need to obtain accurate statistics 
(such as point estimates and confidence intervals) with small samples. 
 
The Generalized Least Squares methods (IGLS - Iterative Generalized Least 
Squares and RIGLS - Restricted Iterative Generalized Least Squares) were 
considered and used in the previous sections of this document in order to 
parameter estimates. As the random variables were assumed to have a 
multivariate Normal distribution at each level, IGLS gave maximum likelihood 
estimates and RIGLS gave restricted maximum likelihood estimates. These 
methods are based on iterative procedures and the process involves iterating 
until two consecutive estimates for each parameter are sufficiently close 
together and hence convergence has been achieved. These methods give point 
estimates for all parameters of the model, estimates of the parameter standard 
errors and large sample hypothesis tests and confidence intervals (Rasbash et 
al., 2000).  
 
Markov chains (or processes) are a way of representing multi-state stochastic 
systems, whose states (discrete or continuous) are defined by a transition 
probability. In a Markov chain of order n, the current state depends on the n 
previous states. For example, in the most commonly used 1st order Markov 
chain, the state only depends on the previous state. A Markov chain can be 
represented by a transition matrix, with the (i,j) cell representing the transition 
probability that the current state will be (j) given that the previous state was (i). 
Monte Carlo is used to describe sampling techniques that are based on random 
variables (equivalent to draws of a fair dice).  
 
MCMC is a general technique for the generation of fair samples from a 
probability distribution using random numbers from uniform probabilities. The 
idea behind MCMC is to draw a sample from the full posterior distribution and 
make inferences using the sample (instead of the posterior distribution). For 
example, instead of computing the mean and variance of a parameter of a 
distribution, the sample mean and sample variance of the parameter is 
calculated from the sample. A posterior distribution of a parameter can be 
obtained by a histogram/empirical density function of the distribution of the 
parameter in the sample (Rasbash et al., 2000). 
 
MCMC is particularly interesting in the context of Bayesian statistics (Barnett, 
1999). The simple Bayes rule dictates that the posterior is equal to the prior 
times the likelihood of available data: 
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 P(A | B) =
P(B | A)P(A)

P(B)
 (2.8.1) 

 
where P(A) and P(B) are the prior (or marginal) distributions of A and B 
respectively, and P(B|A) (respectively P(A|B)) is the posterior (or conditional) 
distribution of B given A (respectively A given B). 
 
A simple variance components multilevel model can be written as follows: 
 
 yij = β0ij x0 + β1 x1ij (2.8.2) 
 
 β0ij = β0 + u0j + e0ij 
 
 u0j ~ N(0,σu0

2) 
 
 e0ij ~ N(0,σe0

2) 
 
In a Bayesian formulation of this model, prior information about the fixed and 
random parameters, β0, β1, σu0

2, σe0
2, are combined with the data (Rasbash et 

al., 2000). These parameters are regarded as random variables described by 
probability distributions, and the prior information for a parameter is 
incorporated into the model via a prior distribution. After fitting the model, a 
posterior distribution is produced for the above parameters, which combines the 
prior information with the data. MCMC methods make a large number of 
simulated random draws from the joint posterior distribution of all the 
parameters, and use these random draws to provide a summary of the 
underlying distribution. From the random draws of the parameter, it is then 
possible to calculate the posterior mean and standard deviation, as well as 
density plots of the complete posterior distribution. 
 
It should be noted that, in Bayesian statistics, every unknown parameter must 
have a prior distribution, describing all information known about the parameter 
prior to data collection. Often little is known about the parameters a priori, and 
so default prior distributions are required to overcome this lack of knowledge. 
The most natural distribution for this application is the conceptual equivalent of 
a uniform distribution, i.e. a distribution that assumes that all states have equal 
probability of occurring or, in other words, that a parameter has the same 
probability of taking each value. These rather uninformative priors are 
sometimes called diffuse or vague priors. 
 
Multilevel models contain many unknown parameters and the objective of 
MCMC estimation of these models is to generate a sample of points in the 
space defined by the joint posterior distribution of these parameters. In the 
Normal variance components model, this consists of generating samples from 
the distribution  
 
P (β0, β1, u0, σu0

2, σe0
2 | y),  where u0 is the vector of u0j’s. 

 
Unfortunately, to calculate this distribution directly would involve integrating 
many parameters, which can be extremely complicated; however, an alternative 
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approach is available. This is due to the fact that although the joint posterior 
distribution is difficult to simulate from, the conditional posterior distributions for 
each of the unknown parameters often have forms that can be simulated from 
easily (Rasbash et al., 2000). 
 
MCMC is not a new concept. The ideas have actually been around for several 
decades. However, as these techniques are computationally very demanding, 
widespread use followed the emergence of computing. These techniques have 
been in widespread use for some 15 years and have made Bayesian statistics 
more practical and accessible to researchers and practitioners. Metropolis-
Hastings sampling is based on the seminal paper by Metropolis et al. (1953), 
which was later expanded by Hastings (1970). Gibbs sampling was first 
described in Geman and Geman (1984). The name Gibbs is associated with 
statistician J. Willard Gibbs (1839-1903). Even though Metropolis-Hastings 
sampling precedes Gibbs sampling, Gibbs sampling is the simpler and more 
easily implemented sampling method for MCMC.  
 
 
A) The Gibbs Sampling method 
 
Gibbs sampling works by simulating a new value for each parameter in turn 
from its conditional distribution, assuming that the current values for the other 
parameters are the true values. For example, in the Normal variance 
components model, the parameters and level 2 residuals would be split up into 
4 subsets: β, u0, σu0

2, and σe0
2, where β = (β0, β1).

39 
 
Firstly, it is necessary to choose starting values for each set of parameters, β(0), 
u0(0), σu0

2(0), and σe0
2(0). These can be taken from fitting a multilevel model 

with the standard estimation methods before MCMC estimation is applied. In 
fact, it is common practice to use IGLS or RIGLS methods before using MCMC 
estimation, in order obtain good starting values. The method then works by 
sampling from the following conditional posterior distributions, firstly 
 
▪ P (β | y, u0(0), σu0

2(0), σe0
2(0))   to generate β(1), and then from 

▪ P (u0 | y, β(1), σu0
2(0), σe0

2(0))   to generate u0(1), and then from 
▪ P (σu0

2 | y, β(1), u(1), σe0
2 (0))   to generate σu0

2(1), and then 
from 

▪ P (σe0
2 | y, β(1), u0(1), σu0

2(1))   to generate σe0
2(1). 

 
By performing all 4 steps, all of the unknown quantities in the model are 
updated.  
 
A random walk is generated from this initial point by propagating in a similar 
way. For k=2…n: 

                                            
39

 It should be noted that, given the values of the fixed parameters and the level 2 residuals, the 
level 1 residuals e0ij can be calculated by subtraction. Therefore, they are not included in the 
algorithms. 
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▪ β(k) ~P (β | y, u0(k-1), σu0
2(k-1), σe0

2(k-1))    
▪ u0(k)~P (u0 | y, β(k), σu0

2(k-1), σe0
2(k-1))    

▪ σu0
2(k)~P (σu0

2 | y, β(k), u(k), σe0
2 (k-1))    

▪ σe0
2(k)~P (σe0

2 | y, β(k), u0(k), σu0
2(k))    

 
where ~ means that the left-hand value is drawn from the right-hand distribution. 
When a new value is drawn, it immediately replaces the previous one and 
therefore only one set of values is stored at any given time. The resulting 
sequence is a Markov chain, as the values at the k-th step only depend at the 
values in the previous step. This chain tends to a stationary distribution that 
corresponds to the desired distribution P (β0, β1, u0, σu0

2, σe0
2 | y). 

 
This method is very efficient when the conditional posterior distributions are 
easy to simulate from, as in the case for Normal models. However, when the 
conditional posterior distributions do not have simple forms, a second MCMC 
method should be considered, called Metropolis Hastings sampling.  
 
 
B) The Metropolis Hastings sampling 
 
In general MCMC estimation methods generate new values from a "proposal" 
distribution that determines how to choose a new parameter value given the 
current parameter value. As the name suggests, a "proposal" distribution 
suggests a new value for the parameter of interest. This new value is then either 
accepted as the next iteration or rejected and the current value is used as the 
next iteration. The Gibbs sampler, discussed above, has as its "proposal" 
distribution the conditional posterior distribution, and is a special case of the 
Metropolis Hastings sampler where every proposed value is accepted. 
 
In the case of the Metropolis Hastings sampler, almost any distribution can be 
used as a "proposal" distribution. In most cases (e.g. in the MLwiN software), 
the Metropolis Hastings sampler uses Normal "proposal" distributions centred at 
the current parameter value. This is known as a random-walk proposal. This 
"proposal" distribution for parameter θ has the property that it is symmetric in 
θ(t-1) and θ(t), that is: 
 
 P (θ (t) = a| θ (t-1) = b) = p (θ (t)=b| θ (t-1) = a) 
 
MCMC sampling with a symmetric proposal distribution is known as pure 
Metropolis sampling. The proposals are accepted or rejected in such a way that 
the chain values are indeed sampled from the joint posterior distribution 
(Rasbash et al., 2000).  
 
As an example of how the method works, the procedure for the parameter β0 at 
time step t in the Normal variance components model is as follows: 
 
▪ Draw β0* from the proposal distribution β0(t) ~ N(β0(t-1),σp

2) where σp
2 is the 

proposal distribution variance. 
▪ Define rt = p (β0*, β1, u0, σu0

2,σe0
2 | y) / p (β0(t-1), β1, u0, σu0

2,σe0
2 | y) as the 

posterior ratio and let at = min(1,rt) be the acceptance probability. 
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▪ Accept the proposal β0(t) = β0* with probability at, otherwise let β0(t) = β0(t-1). 
 
In this algorithm, the method either accepts the new value or rejects the new 
value. The difficulty with Metropolis Hastings sampling is finding a "good" 
proposal distribution that generates a chain with low autocorrelation. The 
problem is that, since the output of an MCMC algorithm is a realisation of a 
Markov chain, autocorrelated (rather than independent) draws from the 
posterior distribution are made. This autocorrelation tends to be positive, which 
can mean that the chain must be run for many thousands of iterations to 
produce accurate posterior summaries. When using the Normal proposals as 
above, reducing the autocorrelation to decrease the required number of 
iterations corresponds to finding a "good" value for the "proposal" distribution 
variance σp

2.  
 
As the Gibbs sampling is a special case of the Metropolis Hastings sampling, it 
is possible to combine the two algorithms so that some parameters are updated 
by Gibbs sampling and other parameters by Metropolis Hastings sampling.  
 
It should be underlined that there is a restriction on the MCMC techniques that 
can be used on discrete response models for a different reason. In the previous 
sections, where discrete response models were discussed, it was noted that we 
could no longer use simple maximum likelihood based techniques, but instead 
had to use quasi-likelihood techniques. The Normal models discussed above 
are a special set of models, as all the parameters in these models have 
conditional posterior distributions that have standard forms. This means that the 
standard Gibbs sampling method can be used for all parameters. For discrete 
response models the conditional posterior distributions for both the fixed effects 
and the residuals do not have standard forms and consequently Metropolis 
Hastings sampling must be used for these parameters. 
 
 

2.8.3 Bootstrapping 

 
Bootstrap can be used to estimate the parameters of a model and their standard 
errors strictly from the sample, without assuming a theoretical sampling 
distribution. A number of n samples are drawn with replacement from the 
available sample. The statistics of interest are then estimated for each of the n 
samples, and the observed distribution of the n statistics is used as an empirical 
sampling distribution, from which estimates of the expected value and the 
variability of the statistics of interest can be obtained. For an introduction to 
bootstrap, cf. e.g. Efron, 1982, Efron and Tibshirani, 1993, or Davidson and 
Hinkley, 1997. An overview of bootstrapping in the context of multilevel models 
can be found in Hox, 2002.  
 
Bootstrapping relies on the available sample for the inference about the 
population statistics. Therefore, the original sample must have a reasonable 
sample size. Based on a review of available literature, Yung and Chan (1999) 



Chapter 2 – Multilevel Modelling 
 
 

 

 

conclude that a general recommendation for the minimum sample size required 
for the sample size is not possible. Good (1999) suggests a minimum sample 
size of 50 in the case of non-symmetric underlying distributions. Nevitt and 
Hancock (2001) on the other hand suggest that for accurate results despite 
large violations of normality assumptions, the bootstrap needs an observed 
sample of more than 150. The number of bootstrap iterations n is typically in the 
order of thousands (Booth and Sarkar, 1998, Carpenter and Bithell, 2000).  
 
Bootstrap also has some assumptions and restrictions. A key assumption of the 
bootstrap is that the resampling properties of the statistic resemble the sampling 
properties (Stine, 1989). It is also not ideal for properties that involve only a 
narrow subset of observations, such as the maximum value (Stine, 1989). 
Another assumption that is particularly relevant to the use of bootstrap in 
multilevel modelling commands that the resampling scheme that is used must 
reflect the actual sampling mechanism used to collect the data (Carpenter and 
Bithell, 2000). This last property is important and must be followed so that the 
hierarchical sampling mechanism of multilevel models bootstrap procedure is 
simulated correctly. 
 
Bootstrapping can be either based on resampling complete cases or resampling 
residuals (Stine, 1989, Mooney and Duvall, 1993). Resampling complete cases 
is perhaps the most intuitive approach, but also more difficult in practice, 
especially in the context of multilevel models. When sampling residuals, it is 
assumed that the predictor variables have exactly the same value for each 
case, and therefore the only difference is in the residuals. To bootstrap 
residuals one first needs to run a multiple regression to estimate the regression 
coefficients and a set of residuals. In each bootstrap iteration the fixed values of 
the regression coefficients are used to predict outcomes, to which bootstrapped 
sets of residuals are added. The resulting bootstrapped responses are used to 
estimate the required statistics. 
 
Bootstrapping cases is more complicated in multilevel models because it implies 
bootstrapping units at all available levels. This does not only change the values 
of the explanatory and outcome variables, but also the way the variance is 
partitioned over the different levels (Hox, 2002). This redistribution of the 
variance affects all other estimates. Two bootstrap approaches can be used: 
parametric and non-parametric. 
 
Parametric bootstrapping uses assumptions about the distribution of the data to 
construct the bootstrap datasets, usually the multivariate normality assumption. 
For instance, for a sample of 100 cases with mean µ and standard deviation of 
σ, parametric bootstrap would draw a large number n of samples of size 100 
from a Normal (µ, σ2) distribution. Then for each sample the parameter of 
interest would be calculated and used for the calculation of the statistics of the 
population. 
 
Non-parametric bootstrapping does not assume a distribution for the data but 
instead generates a large number of datasets by sampling (with replacement) 
from the original sample. In the above example, lots of samples of size 100 
would be generated, with replacement of the values of the initial sample. This 
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approach is called non-parametric, because it preserves the possibly non-
normal distribution of the original data. Obviously, if the data are normally 
distributed, then parametric and non-parametric bootstrap would be equivalent. 
  
Spiegelman and Gates (2005) describe a non-parametric double bootstrapping 
procedure for direct comparison of quantiles of two or more sample populations. 
The first bootstrap simulation is used to produce estimates of standard errors for 
the desired quantiles and thereby overcome the inability to make reasonable 
variance estimations. The second layer of bootstrap simulations is used to 
determine the threshold cut-off values based on a desired level of confidence 
for the test of hypothesis. The cut-off values also may be used to form 
confidence intervals. 
 
In multilevel modelling, bootstrapping can be used for two main purposes 
(Rasbash et al., 2000). Firstly, it can be used as an alternative procedure to 
MCMC methods, to make accurate inferences on the basis of simulated 
parameter estimates. Thus, for example, while in Normal response models we 
can construct confidence intervals for functions of the fixed parameters 
assuming Normality, this may not be appropriate for the random parameters, 
unless the number of units at the level to which the parameter refers is large. 
 
The bootstrapping methods are used to construct the bootstrap datasets and 
then the classical Generalized Least Squares estimation methods can be used 
to find estimates for each dataset. The parametric bootstrap works exactly as 
mentioned above, i.e. the datasets are generated (by simulation) based on the 
parameter estimates for the original dataset. Due to the multilevel structure, the 
simple non-parametric approach introduced above can not be used; a new 
approach is used, based on sampling from the estimated residuals (Rasbash et 
al., 2000). 
 
The second purpose for which bootstrap estimation can be used is to correct 
any bias in the parameter estimation (again as an alternative to MCMC 
methods). This is useful in models with discrete responses, where the standard 
estimation procedure based upon quasi-likelihood estimation produces 
estimates, especially of the random parameters, that are downwardly biased 
when the corresponding number of units is small (Goldstein and Rasbash, 
1996). The severity of this bias can be trivial in some data sets and severe in 
other data sets. A complicating feature in these models is that the bias is a 
function of the underlying "true" value so that the bias correction needs to be 
iterative.  
 
The following example, presented in Rasbash et al (2000), can be considered: 
suppose a data set for a simple variance components model is simulated, 
where the standard estimation procedure has a downward bias of 20% for the 
variance of level 2, and the true value for the variance of level 2 equal to 1. 
Then if this model is estimated for several simulated datasets using the 
standard procedure, an average estimate of 0.8 would be obtained. 
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If there is just one simulated data set with a level 2 variance estimate that 
happens to be 0.8, together with fixed parameter estimates to which the same 
procedure can be applied, a large number of new response vectors from the 
model with level 2 variances of 0.8 can be simulated (parametrically 
bootstrapped), and the average of the variance estimates across these new 
replicates can be estimated. A value of 0.64 would be expected, since the level 
2 variance is estimated with a downward bias of 20% (0.8*0.8 =0.64). If the 
downward bias of 0.16 is added to our starting value of 0.8, a bias corrected 
estimate of 0.96 would be obtained. Another set of simulations can be run then, 
taking the bias corrected estimates (0.96 for the variance) as the starting 
simulation values. Averaging across replicates, an average of 0.768 for the 
variance parameter would be expected, resulting in a bias estimate of 0.192. 
This estimated bias would then be added to 0.8 to give a new bias corrected 
estimate of 0.992. Another set of replicates from the latest bias corrected 
estimate could be then simulated; the process could be repeated until the 
successive corrected estimates converge40.  

2.8.4 Applications of simulation methods and Bayesian 
multilevel modelling in road safety 

 
The use of Bayesian approaches to highway safety research began with the 
introduction of empirical Bayes (EB) into the field by Hauer and colleagues (see 
e.g. Persaud and Hauer, 1984, Hauer, 1986, Hauer and Persaud, 1987, Hauer 
et al., 1988, Hauer, 1996a, Hauer, 1996b, Hauer, 1996c, Hauer, 1997, Hauer et 
al, 2002a, Hauer et al., 2002b, Hauer et al., 2004).  Since then, much research 
using EB has emerged. Over the past years, "full" Bayesian modelling in 
general, and MCMC methods in particular, are becoming increasingly popular, 
especially as computational power of recent computers makes them practical 
(Davis and Guan, 1996, Davis, 2000, Davis and Yang, 2001, Miaou and Lord, 
2003, MacNab, 2004).  
 
Qin et al. (2005) use crash and physical characteristics data for highway 
segments from several US states to investigate the relationship between crash 
count and traffic volume. A hierarchical Bayesian framework has been used to 
fit zero-inflated-Poisson regression models for predicting counts for each crash 
type as a function of the daily volume, segment length, speed limit and 
lane/shoulder width using Markov Chain Monte Carlo methods. 
 
Carriquiry and Pawlovich (2006) discuss the basic differences between various 
Bayes approaches to traffic safety data analysis and use data from a four-lane 
to three-lane conversion study to illustrate the implementation of these methods. 
 
Pawlovich et al. (2006) used Bayesian methods and MCMC estimation to 
assess whether the reduction of number of lanes (“road diets”) resulted in crash 
reductions on Iowa roads. Crash data at each site was collected before and 
after the conversions were completed. Given the random and rare nature of 

                                            
40

 In models where the bias is independent of the underlying true value (additive bias) only a 
single set of bootstrap replicates is needed for bias correction. 
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crash events, a hierarchical Poisson model was fit to crashes, where the log 
mean was expressed as a piece-wise linear function of time period, seasonal 
effects, and a random effect corresponding to each site. The posterior 
distributions of the parameters in the model were estimated using Markov chain 
Monte Carlo (MCMC) methods. 
 
As regards Bayesian multilevel modelling in road safety, several applications 
have been published in the last decade within the context of spatial analyses. 
The most important applications are briefly described below; nevertheless, a 
more detailed presentation of these applications is provided in section 2.3.4.6.  
MacNab (2004) examines ecological and contextual determinants of area-
aggregated motor vehicle accident injury in relation to socio-economic, 
residential and environmental indicators by means of Bayesian multilevel 
modelling (MacNab, 2004). Hewson (2005) examined child casualty rates 
aggregated within different areas and compared a simple generalized linear 
model, with an extension of it, in which a spatial structure is assumed for the 
random effects, and eventually with a Bayesian model, in which the “random 
effect” can be given a spatial prior structure and “shrink” the estimates of 
casualty rates across adjacent areas. 
 
McMillan et al. (2007) developed Bayesian hierarchical binomial regression 
models in order to measure county-level variability in changes in alcohol-related 
crash rates while adjusting for county socio-demographic characteristics, spatial 
patterns in crash rates and temporal trends in alcohol-related crash rates. 
Aguero-Valverde and Jovanis (2006) compared full Bayes hierarchical models 
(including spatial effects, temporal effects and space–time interactions) to 
traditional negative binomial estimates of annual county-level crash frequency in 
Pennsylvania, and found that, in general, highly significant variables in the 
negative binomial models were also significant in the Bayesian models; 
however, variables marginally significant in the negative binomial models were 
non-significant in the Bayesian models. Because the FB models address spatial 
correlation and take into consideration all sources of uncertainty, the authors 
believe the FB models more accurately associate covariates with crash risk and 
are better suited for this type of data. 
 

2.8.5 Summary 

 
It is obvious that both simulation techniques presented in these sections include 
a substantial amount of computation. For this reason bootstrapping, like MCMC 
estimation should not be used for model exploration, but rather to obtain 
unbiased estimates and more accurate interval estimates at the final stages of 
analysis. 
 
Moreover, it should be noted that the estimates these methods produce are 
dependent on random numbers. Consequently, using a different set of random 
numbers or a longer simulation run can produce (slightly) different estimates. 
For this reason, and because these methods are fairly new, compared to GLS 
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estimation methods, and have only recently started to be widely used in the 
context of multilevel analysis, it is important that they are implemented with 
care.  
 
 



 

2.9 Conclusion multilevel modelling 

Heike Martensen and Emmanuelle Dupont (IBSR) 

 
Throughout this chapter a number of examples have been shown for 
hierarchically structured road-safety data. Accident data have a hierarchical 
structure because accidents can involve several vehicles, which may contain 
several passengers. Road safety data that are sampled from larger populations 
are often structured hierarchically when a limited number of primary sampling 
units (e.g. road sites) are selected from which the secondary units (e.g. cars) 
are randomly sampled. Hierarchies can also arise due to administrative 
structures like counties that are nested in regions that are nested again in 
countries.  
 
Many researchers in road-safety are not aware of the consequences a 
hierarchical structure has for the appropriate analysis. The main goal of Chapter 
2 of this deliverable is therefore to give guidelines how to deal with hierarchical 
data of different types.  
 

2.9.1 Summary of multilevel techniques 

It has been shown how the multilevel approach can be applied to a wide range 
of analysis techniques to solve the problems inherent to hierarchically 
dependent data in a productive way. Multilevel versions of those techniques that 
are most commonly used in road safety research have been presented. 
 

2.9.1.1. Regression analyses 

The regression techniques described in sections 2.2 (linear regression of 
normally distributed data); 2.3.2 (logistic regression for binomial response data); 
and 2.3.4 (Poisson regression for count data) are powerful tools to link different 
types of variables to each other. They can help to describe how a number of 
observed predictor variables (e.g., number of police controls) affect a particular 
outcome (e.g. number of fatalities). The limitations inherent to the original 
analyses concern the distribution of the outcome data, the form of the function 
that links dependent and independent variable, the overlap between predictors, 
and the distribution of the residuals; all of which – if not taken into account 
correctly – can jeopardize the interpretation of the results. 
 
One of the most important assumptions is the independence of the residuals. 
Multilevel modelling is necessary in situations where this assumption is violated, 
as often the case when dealing with a hierarchical data structure. When data 
are collected from a nested structure (e.g. drivers nested in road site), the data 
coming from the same unit of the higher-order structure (e.g., all drivers 
checked at a particular road-site) are often more similar to each other than to 
those from another higher-order unit (e.g. the drivers checked at a different road 
site). While in traditional regression techniques such a hierarchical structure can 
cause violations of the independence assumption, this structure is explicitly 
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included in multilevel analyses by allowing the specification of sources of 
random variation at different levels of a hierarchy. Therefore, the most obvious 
advantage of multilevel analyses is to allow the researcher to respect one of the 
most important assumptions for regression techniques. 
 
Moreover, the hierarchical structure itself can be a source of information. It can 
be interesting to know whether there is variation between the units of a higher 
level. For example, by comparing models that include “region” as a higher order 
level and those who do not one can investigate whether there is regional 
variation with respect to a particular phenomenon. By conducting a residual 
analysis, it is also possible to identify higher order units that behave differently 
from the others.  
 
The multilevel structure of the analysis also allows investigating the relationship 
between variables that are situated at different levels of the hierarchy, for 
example the weather (a road site variable) might influence the effect that speed 
(a car specific variable) has on the probability of an accident. Another 
advantage concerns variables that are conceptually situated at a lower level 
(e.g. accidents, drivers, road sites, etc) but are available only at some higher 
aggregated level (e.g. county, region, country). As an example, traffic density is 
known to affect the risk of an accident. This density varies within a particular 
region but different regions also have different overall densities. Although in 
theory it would be preferable to include the density at the accident level, this 
information will often be unavailable. Multilevel modelling offers the solution to 
include traffic density as a regional characteristic, while still analysing the effect 
of some other variable at accident level. 
 

2.9.1.2. Multivariate responses and repeated measures 

Multilevel modelling was also introduced as a new way of dealing with more 
than one independent variable. This can be the case when several dependent 
variables of interest are analysed in parallel (Section 2.5) or with response types 
that are in fact represented by several variables. The latter case concerns, for 
example, multinomial responses, i.e. categorical variables that can take more 
than two different values (section 2.3.3). When such a variable forms the 
dependent variable, each response option is considered as a variable apart and 
they are jointly submitted to a multivariate analysis. When analysing multiple 
dependent variables, the lowest level of analysis consists of a dummy variable 
specifying to which response variable a particular value belongs, while the 
individual from which the values are obtained are coded at a higher level. 
 
In a similar way, multilevel modelling can be used to analyse repeated 
measurements from the same subject (section 2.4). Instead of regarding the 
different measurements as levels of a factor as in traditional repeated-
measurement approaches, one can enter all measurements simultaneously 
from each subject in the first level and consider the subject as a higher-level 
variable that groups the different measurements together. 
 
Defining the multivariate or repeated measurement structures as a level in a 
multilevel analysis allows an easier handling of missing values as compared to 
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traditional multivariate methods. Values yoked to the ones missing can be kept 
in the analysis. Moreover, the assumptions with respect to the cause of missing 
values are less strict. While traditional multivariate models are based on the 
assumption that all missing values are missing completely at random, multilevel 
models can cope with values not missing completely at random, as long as the 
source of non-randomness is specified in the model. 
 
The section on structural equation models (2.6) shows the basic form of such 
models in the multilevel case, dealing mainly with assumptions on data. On the 
other hand, this chapter discusses the necessary theoretical concepts of these 
models. Finally, a short summary of the application of structural equation 
models is introduced using the relationship of driver characteristics and their 
acceptance of new technologies in traffic. 
 

2.9.2 When is the use of multilevel modelling necessary? 

 
Generally, when dealing with a hierarchical data-structure, one should consider 
using multilevel modelling. In some cases the dependency among cases can be 
compensated by taking up higher order variables that cause this dependence 
without actually introducing a higher level into the analysis. As an example: The 
speed of cars is measured throughout the country by cameras at randomly 
selected road sites. The cars measured at the same road site will resemble 
each other more with respect to speed than those measured at different road 
sites. One might try to capture this dependency by taking up variables in the 
model equation that are responsible for the speed-differences between road 
sites. An obvious candidate is the speed limit which varies across road-sites 
and will indeed affect the speed of all cars at a particular road site in the same 
way. If the speed limit was the sole reason for the speed of cars resembling 
each other at the same road site, including it as a predictor would solve the 
dependency problem. The reason for this is that the assumption of 
independence must be applied to the residuals after all variables in the model 
have been accounted for. If one can include all sources of dependencies as 
variables into the models, there will be no dependency among the residuals 
anymore. 
 
Practically however, it is usually a large numbers of factors that lie at the basis 
of the dependence. To keep with our example, road sites do not only differ with 
respect to the speed-limit but also with respect to the number of lanes, road 
conditions, traffic density, viewing conditions and probably a number of other 
factors of which the researcher might not even be aware that they affect the 
driving-speed. Consequently, the attempt to capture the dependencies with 
higher-level variables taken up in a single-level model will often, if successful at 
all, result in a large number of predictors many of which in them selves are not 
of interest to the researcher. As mentioned before, including many predictors 
can create problems with respect to interpretation. Moreover, they reduce the 
degrees of freedom which might make it more difficult to get a clear picture 
about the variables concerning the actual research question. 
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Apart from these practical problems with the inclusion of many predictors, by 
applying a single-level model, one misses out on important information about 
the data structure. In the case of random intercept models, the variance partition 
coefficient gives information to what extent cases within a second-level unit 
resemble each other more than cases between units. In the case of models with 
random slopes and random intercepts, the covariance between these two 
sources of variance tells the researcher whether there is a relation between the 
general level of measurement in the second order units (i.e. the intercepts) and 
the slope of the variable of interest. In sum, capturing hierarchical structures in 
multilevel models is easier and more informative than capturing the hierarchy by 
including second-level predictors in a single-level model. 
 
While multilevel models offer an elegant solution to the problem of hierarchical 
data-structures, they inherit all other advantages and limitations of the 
regression models from which they are derived. An example is the treatment of 
correlated predictors. As demonstrated in Sections 2.3.3 and 2.4, the regression 
weights for correlated predictors are difficult to interpret. Non-significant weights 
can either mean that the variable has no effect, or that the effect is 
simultaneously captured by another variable included in the equation. A careful 
investigation of the correlation among the predictors and/or comparisons of 
various versions of the model (including each predictor singularly and then 
together) are necessary for a proper interpretation of the results. As the readers 
of this deliverable are expected to master the traditional analyses that each 
particular multilevel model is based on, it exceeds the scope of this document to 
give a full account of the possible limitations and problems in the interpretation 
that multilevel models inherited from traditional regression analyses. It must be 
kept in mind though that all other assumptions of a traditional model, except that 
of independent distribution of data, still have to hold in order to safely interpret 
the results of its multilevel version. 
 
It is also important to realise that the possibility to carefully check whether there 
are hierarchies in the data, is actually a two-way street. Sometimes, one might 
think of possible higher-level variables (e.g. regions or countries) but it turns out 
that there is little variation between the units. The great advantage of the 
multilevel approach is that it is possible to represent a hierarchical structure, but 
of course that only makes sense if that structure is actually present in the data. 
It should also be noted that models can grow very complex very quickly. This is 
already the case with traditional multiple regression models where the inclusion 
of many predictors can lead to patterns of results that are difficult to interpret. 
With the introduction of multilevel models each predictor can moreover be 
defined as having a random slope at each level in the model (or not). This way 
the set of possible models is growing very quickly. We advise to introduce 
random slopes for particular predictors very sparsely, preferably on the basis of 
theoretical reasons. 
 

2.9.3 Recommendations 

The most important message we would like the reader to take home is the 
following: Always check the assumptions your analysis model is based on. If 
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you have hierarchically dependent data, statistical tests conducted with 
traditional methods of analysis might be flawed. Use multilevel modelling to deal 
with these dependency issues and make optimal use of all the information 
present in the data. 
 
Multilevel modelling enables researcher to specify models that resemble 
complex hierarchical data-structures, allowing the parallel analysis of data at 
different levels of aggregation and the investigation of interactions between 
variables at different levels. With all these great opportunities, keep in mind, 
however, to make your model as complex as necessary but to keep it as simple 
as possible. 



 

Chapter 3 - Time series analysis 

3.1 Introduction to time series models 

F. Bijleveld (SWOV)and Ruth Bergel (INRETS) 

 
This chapter introduces the fundamentals of time series analysis as it is 
commonly used in road safety analysis and other fields. In road safety research, 
most time series are constructed by aggregating or averaging some quantity 
over a specific period of time, and then tabulating its value for subsequent 
periods. Probably the most common example of a time series used for road 
safety analysis is the annual or monthly number of fatalities in a country. For 
obvious reasons, the number of fatalities recorded every month at any space-
aggregated level is the risk indicator of interest for road safety analysis, But to 
give another example, a series consisting of the maximum temperature 
recorded in the day at some meteorological station, averaged over several such 
stations and per month is also a time series, and is also of interest as risk factor 
for road safety analysis. In road safety research as in other fields, for commodity 
reasons, the time periods are almost always taken equal in length.41 
  
A distinguishing feature of models for time series data over models for 
traditional cross-sectional data is that the order of observations is important: a 
linear regression on the data presented in reverse (or any other) order than the 
original one would yield exactly the same results. This will typically not be the 
case with time series analysis because effectively, an estimate for a particular 
observation may be dependent (among others) on the previous observation, 
which may be another observation in another ordering of the data.  
 
Time series analysis can be regarded as an extension of regression analysis. In 
particular, it extends regression analysis by allowing for a certain type of 
relations between the residuals of the regression model, while in regression 
analysis residuals have to be fully 'independent'.  
 
As discussed in the introduction (1.1.2), the error term of a model is assumed to 
be identically and independently (Gaussian) distributed. In practice, this 
assumption is tested with the help of the residuals of the model once a dataset 
of observations of the time series of interest is available and a model has been 
estimated on this dataset, and, as an extension, it is said that this assumption is 
related to the residuals. A similar, but more general concept has to be 
introduced for time series analysis: stationarity.  
 

                                            
41

 Technically this is often not true. A year has either 365 or 366 days, a difference that is mostly 
ignored, which is not the case for monthly data (28, 29, 30 or 31 days). However, such effects 
may be corrected for in the model or directly in the data.  
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In this document, stationarity42 is understood as follows: a time series is 
stationary if its expected value and covariance remain the same across and 
between time points. Although this seems restrictive, compliance with this (or a 
similar) assumption is essential for inferences to be made: you have to be able 
to assume your model is valid up to the year you want to make prognosis for. If 
you cannot do this, you cannot draw inferences for the future based on past 
observations. 
  
Many time series analysis techniques require the time series to be stationary, or 
at least its random structure to be homogenous. See further definitions in 
Section 3.4.2.2. 
 
A time series yt is a sequential series of measurements over time. A time series 
model is a model for such a time series. In the introduction (Section 1.1.1), a 
simple model for driving errors as a function of driving experience is introduced: 
 

.exp__ 10 iii eerienceyearsbberrorsdriving ++=  

 
Basically, a time series model may not be that different from this model. In fact, 
if the annual number of driving errors is recorded for one person over his or her 
driving carreer, we already have a time series model: 
 

,exp__ 10 ttt eerienceyearsbberrorsdriving ++=  

 
for t= the first year, the second year, and so on. Labelling these years by 1, 2, 
…, we obtain the familiar form: 
 

._ 10 tt etbberrorsdriving ++=  

 
At this point the model is in fact no different from an ordinary linear regression 
model. It is called a descriptive model, because no other variable than time is 
used to predict the driving errors. It would be called an explanatory model when 
additional variables were used (Section 3.3.1.1). The differences between 
ordinary linear regression models and time series models are determined by 
how the residuals et of the regression model are treated as a consequence of 
the correlation property described above, and the fact that past observations 
can be considered. Schematically (and slightly simplified), the treatment of the 
et and the fact that past observations can be considered can be added to the 
model formula as follows: 
 

,)(2)(1_ tttt epastfunctionpresentfunctionerrorsdriving ++=  

 
where function1 and function2 are generic -- but usually linear or at least 
additive -- functions and pastt is all information that became available in the past 

                                            
42

 This definition of stationarity is by far the most commonly used: it is called  covariance or 
second order sationarity, or also weak stationarity - in lieu of strict stationarity which assumes 
identical joint distributions.  
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(at times t-1, t-2, ..), whether they be driving errors, explanatory variables or 
residuals, and presentt is all new information at time t, Note that in most cases 
this distinction between pastt and presentt is more conceptual than practical, but 
in the end, the presence of the component which is a function of pastt in the 
model distinguishes time series models from cross-sectional models.  
 
Usually, the practical model representation is different from the one above. 
Instead of referring to the distinction present vs. past, it may be rearranged into 
components that have an interpretable role, such as for instance the trend, the 
general tendency of time series, and the periodic component in the case of a 
periodic pattern. The possibilities for the model specification in relationship with 
the components of interest, and in relationship with additional variables too, are 
numerous. A general model specification, referring to the nature of the variables 
used within the model, is discussed in Section 3.3.1. 
  
However, besides identifying components based on the role they play in a 
model, two other important categorisations can be considered: based on 
whether a component is observed or not and based on whether a component is 
deterministic (non-random) or random. In practice the potential combination, 
unobserved random components can be important. 
 
It is commonly said that that the dependent variable yt  is the observed one, and 
that its unobserved components are: the cycle, the trend, the seasonal 
component and the irregular component. In practice, some components may not 
be relevant, and for instance the cycle will never be considered in the 
applications to road safety analysis presented in this document. The seasonal 
component exists only in the case of a periodic (seasonal) pattern, and will 
mainly be estimated on the monthly datasets presented. See Section 3.3 for 
precise definitions. 
 
In its simplest form, it is possible to construct a linear trend component using a 
linear function of the time index at+b, and to construct a seasonal pattern using 
dummy variables or a trigonometric function. The real interest of considering 
such ‘parts’ as components emerges when such components can be regarded 
as being random. A component can be regarded as being random (also called 
stochastic) when it changes over time. It is not (necessarily) meant that its value 
changes with time - a trend for instance in general is supposed to – rather it is 
meant that its structure changes. For instance the slope (a in the linear trend 
at+b may level off or increase a little over time, or the seasonal pattern may 
change. Such a phenomenon may be modelled using a random component. 
See in Section 3.3 the discussion on decomposition models for precise 
definitions. 
 
In many cases, data are transformed before analysis. Although this is not strictly 
a time series feature, many time series in road safety are log transformed 
before analysis.  
 
In time series analysis two types of transform are most common: 
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1) at each individual time point, transformations where just one observation at a 
time is considered. The most common in traffic safety research being the 
logarithmic transform. In practice, one or both of two goals is intended to be 
achieved by applying the logarithmic transform: making a multiplicative model 
additive, and obtaining (approximately) equal observation error variances, 
attempting to satisfy second order stationarity requirements. The logarithmic 
transform, however, belongs to a special class of transforms called the Box-Cox 
transforms, which play for instance an important role in the DRAG-modelling 
context, but are also used in other contexts. 
 
2) along the time axis. This type of transform in addition considers observations 
at other (usually previous) time points. This type of transform is mostly used to 
remove certain properties from a time series before the time series is analysed, 
in order to have the transformed time series satisfy requirements imposed by 
the technique that is intended to be used, or because these components are not 
of immediate interest for the analysis. Usually the requirement to be satisfied is 
first order stationarity.  
 
Among these transforms, differencing is the most common. Differencing is 
performed to create a series of differences  
 

1−−=∇ ttt yyy  

 

If the resulting series ty∇  is not stationary, the process is repeated by 

differencing again. See Section 3.4 for more details.  
 
Nevertheless, some time series fail the stationarity assumption because for 
instance the expected value at a time point is a more complicated function than 
what can be removed by repeated differencing. Another reason for failing the 
stationarity assumption is non homogeneity in covariance, as it was said above. 
In such cases often a non-linear transformation is applied to the data before 
they are modelled and a time series analysis technique is performed on the 
residuals of this model. An example of a non-linear time series model is shown 
in Section 3.2.3. 
 
The remainder of this chapter is organised as follows: 
 
The linear regression model is used as a starting point, and treated in Section 
3.2.1. This type of model is deterministic as it only contains deterministic 
components. The same section also discusses the identification of dependence 
in more detail (as well as discussing the other assumptions). Although 
knowledge of linear regression models is assumed in this document, it is 
strongly advised to read this section.  
 
Due to the potential importance of the distributional assumptions, the 
generalised linear model (McCullagh & Nelder, 1989), which -- in particular its 
time series aspects -- is the topic of much ongoing research is treated in Section 
3.2.2. Nonlinear least squares models are the subject of Section 3.2.3. In both 
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sections the treatment of time dependence is informally introduced. In the 
generalised linear models section this is done using functions. In the non-linear 
least squares models section this is done using lagged residuals, thereby 
informally introducing autoregressive models, which are discussed in more 
detail in Section 3.4. 
 
The above-mentioned sections discuss the time series aspect by extending the 
GLM and nonlinear models approaches to time series. After a general 
introduction to dedicated time series models in road safety is given in Section 
3.3, two sections devoted to specific dedicated time series analysis approaches 
based on linear Gaussian models are given. Of the dedicated models, Auto 
Regressive Moving Average (ARMA) type models are discussed in Section 3.4. 
This type of model is by far the most often used for fitting stationary and not 
stationary data, and calling on additional variables as well. The following 
section, 3.5, discusses the closely related DRAG model (Demand for Road use, 
Accidents and their Gravity), a three level approach using many explanatory 
variables, where certain nonlinear transformations on the data, both dependent 
and independent, are considered. An alternative, based on state space 
techniques is the topic of Section 3.6. These models, which are unobserved and 
stochastic components models, and also referred to as structural time series 
models, are directed at decomposing the time series into interpretable 
(un)observed components structures. To conclude, in Section 3.7 the state 
space approach and the ARIMA approach are discussed in terms of similarity, 
and two examples of equivalences between well-defined specifications of 
models of these two classes are given, on datasets already modelled in 
Sections 3.4 and 3.6. Finally in section 3.8 the conclusions and 
recommondations of this chapter are summarized. 
 
 
 



 

3.2 Classical linear and non-linear regression models 

3.2.1 Classical linear regression models 

Christian Brandstaetter and Michael Gatscha (KfV) 

 

3.2.1.1 Objective of the technique 

In the field of social science, no other statistical procedure has offered so many 
impulses as the procedures of analysing correlations. The knowledge of a 
correlation between two variables is an essential pre-condition in order to draw 
conclusions by predicting one variable through another. 
 
Time series data are often used in conjunction with linear regression techniques 
in terms of predicting statistical trends. In time series analysis, the independent 
variable x is given as time. The equation of a straight line is used to calculate 
the trend that the dependent variable y adheres to as time passes: 
 
y = bx + a  (3.2.1) 

 

where y represents the dependent variable, x is the independent variable, b 
describes the gradient of the straight line and a the altitude in geometrical 
terms. The gradient b of a straight line can be positive or negative. If the 
gradient is positive, the y-values increase with increasing x-values. In the case 
that b is negative, y-values decrease with increasing x-values. 
When time is used as the independent variable, a number of complications that 
are introduced to the regression method are expected. The most important 
complication is caused by the time dependencies between the values of y. 
However, there is also an influence affected by the units that are used to 
measure time. For example, if annual data are used, it will be impossible to 
identify the seasonal factors that may well influence the data. So, when looking 
at data with regard to accidents, one would probably want to view quarterly 
figures rather than merely annual data, as one would expect there to be an 
increase in accidents e.g. in the summer quarter when analysing motorcycle 
accidents. 
However, in order to identify a trend value of the time series data that is 
analysed, a linear regression line can be drawn by using averages over periods 
of time to smooth out fluctuations and, as a result, show the general trend. 

3.2.1.2 Model definition and  assumptions 

The most basic relationship between two or more interval-scaled variables is 
explained by the following equation to determine the regression: 
 

 iippii exbxbby ++++= ...110  (3.2.2) 
 
where  
yi is the i th value of the dependent scale variable 
p is the number of predictors 
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bj is the number of the jth coefficient, j=0,…,p 
xi is the value of  the ith case of the j th predictor 
ei is the error in the observed value for the ith case 
 
For visualization reasons in the following text, the equation can be simplified to 
formula 3.2.1. 
 
If one has obtained n pairs of observations xi, yi (i =1, . . ., n), it is possible to 
illustrate these observations by means of a scattergram (see Figure 2.15).  
Graphically, the principle of a linear regression is to construct a straight line in a 
two-dimensional system of coordinates such that all data points within the 
system of coordinates lie as near as possible to this line, as measured in the 
direction parallel to the y-axis: 
 

 

Figure 3.2.1 Scattergram with regression line 

 

In Figure 2.15, yi is the observed value and ŷi is the predicted value. As a 
consequence, the general term (yi –ŷi) describes the size of the “prediction 
error”. One could assume now, that the regression line with the best fit to 
describe the data is characterized through the minimization of the sum of (yi –
ŷi). However,it is also possible that this sum is a negative value and therefore it 
can also be assumed that many regression lines exist for which the sum of the 
differences (yi –ŷi) is zero. Hence, the best criterion for the fit of a regression line 
is not the sum of the differences, but the sum of squared differences, or in other 
words: the minimized sum of squared distances between the individual 
observation points and the regression line measured in the direction parallel to 
the y-axis: 
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using (bxi + a) instead of ŷi, the equation looks like: 

 min)]²([
1

=+−

=
∑ abxy ii

n

i

 (3.2.4) 

 
With that criterion in mind, it is possible to generate n values to draw the 
regression line, but one has to hope that the calculated values are as small as 
possible. It is also possible that another regression line, based on squared 
differences, describes the observed values even better. For this reason, 
variables a and b are defined by a differential equation, f(a,b), partially 
differentiated with respect to a and b. Solving this equation yields to the 
following explicit solution for a and b: 
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In the equations mentioned above, n is the number of data points in the time 
series, e.g. the number of months. That is to say, y-values exist only for the 
natural numbers ( i = 1, …, n) on the x-axis. Thus, the regression line of the time 

series arises through the connection of all points 
i

y
^

 (for i = 1, …, n). 

If a and b are calculated through these equations, the result is a regression line 
for which the sum of squared differences is really minimized. This estimation 
procedure is called ordinary least squares, or OLS, and is one of the basic 
concepts of linear regression. The Gauss-Markov Theorem shows that: 

� b is an unbiased estimate of the regression coefficient β, which means 

that on repeated estimates, the distribution of b will be centred around β. 
� The sampling distribution of b will be normal if the samples are large and 

a sufficient number of samples are taken. 

� OLS provides the best linear unbiased estimate of β (BLUE). 

� “Best” means: OLS provides the most efficient unbiased estimate of β. 

Efficiency refers to the size of the standard error of b (σb));  
 
Most commonly, regression is used to predict the value of one variable from the 
value of another, if the two are related. Therefore, one variable is normally 
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defined as a predictor, whereas the other is determined by a criterion. This 
categorization is quite similar to the definition of a dependent and independent 
variable, although the latter relationship characterizes a narrower, causal 
relationship. 
 
In order to fit a simple linear regression model to a set of data, one has to find 
estimators for the unknown parameters a and b, which are expected to have a 
linear relationship of the shape y = bx + a. Since the sampling distributions of 
these estimators will depend on the probability distribution of the random error 
e, it is necessary to make several specific assumptions about its properties. The 
mean of the probability distribution of the random error is 0. That is, the average 
of the errors over an infinitely long series of experiments is 0 for each setting of 
the independent variable x. This assumption implies that the mean value of y for 
a given value of x is y = bx + a. 
 
For estimated linear regression following the OLS procedure shown above, we 

have four basic assumptions about the prediction error ε. Corresponding to the 
above-mentioned Gauss-Markov Theorem, they are called Gauss-Markov 
assumptions: 

1. The prediction error ε is uncorrelated with x, the independence 
assumption. 
 

2. The variance of the error term is constant across cases (x) and 
independent of the variables in the model. This is called 

homoscedasticity, or homogeneity of the variance of ε. An error term 
with non-constant variance is said to be heteroscedastic. 

 
3. The value for the error term associated with any different observations 

is independent. The error associated with one value of y has no effect 
on the errors associated with other values. This means that all observed 
autocorrelations of the errors are near 0. 

 
4. The random errors are distributed normally. 

 
As mentioned earlier, when it comes to analysing time series with regard to 
accident data, one can suppose that at least one of the listed assumptions is 
often violated in practice, e.g. the assumption of nonautocorrelated. 
 
The first assumption was the independence of the prediction errors and x. We 
can find three different possibilities of problems: 

� Spurious relationship: ε and x may be correlated because z is a common 
cause of x and y. In this case b is a biased estimate of the regression 

coefficient β. 
� Collinear Relationship: If x2 is correlated with x1 and y, but is not the 

cause of either, b1 will be a biased estimate of β1. 
� Intervening Relationship: x2 intervenes in the relationship between x1 and 

y. In this case b1 will not be a biased estimate of β, but it will reflect both 
the direct and indirect effects of x1 on y. 
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The second assumption is the homoscedasticity of the residuals. Here we can 
find four different conditions (see Figure 3.2.2.; the lines represent the pattern of 
the dispersion of the residuals. In all three conditions with heteroscedasticity, b 

will be an unbiased estimate of β, but σb (σ is standard deviation) will be 
incorrect - too large or too small. This yields wrong significance tests because 
significance is tested with the Student's t-statistic t=(b/σb). 
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Figure 3.2.2 Overview of patterns of homoscedasticity und heterocsedasticity 

  
In the case of Heteroscedasticity (+), SEb is underestimated and a type I error 
may occur. In the case of Heteroscedasticity (-), in contrast, SEb is 
overestimated and a type II error may occur. 
 
White  (1980) has published a direct test for heteroscedasticity: 

χ2 (df)= R2n, 
where n is the number of cases, R2 is the squared multiple correlation 
coefficient for the regression of the squared residuals on predictor? x, and the 
number of degrees of freedom df is the number of independent variables. The 
null hypothesis is that the residuals are homoscedastic.  
 
Another widely used test for homoscedasticity is given by the following test 
statistic: 
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where h is some time point in the series cutting the series in two parts: one 
before and one after time point h. This statistic can be tested against an F(h,h)-
distribution. 
 
The third assumption of non-autocorrelated errors is most often violated in time 
series regression. Plotting the residuals of the classical regression analysis 
against time can confirm that the observations are not independent. Since these 
residuals are assumed to be completely independent, they should be randomly 
distributed.  
 
A useful diagnostic tool for investigating the randomness of a time series is 
called the correlogram. The correlogram is a graph containing the correlations 
between an observed time series and the same time series shifted t time points 
into the future, for a (limited) number of t. Thus, the correlogram of the residuals 
ei consists of the correlation between ei and ei+1, the correlation between ei and 
ei+2, the correlation between ei and ei+3 and so on. Using a more general 
notation, the correlogram contains the correlations between ei and ei+k, for k = 1, 
2, 3, etc. Since k equals the distance the observations are set apart in time, it is 
called the lag. Moreover, since the correlations are computed between a 
variable and itself (albeit shifted in time), they are called autocorrelations. 
 
When the first order residual autocorrelation (i.e., the residual autocorrelation for 
lag 1) is positive and significantly deviates from zero, a positive residual tends to 
be followed by one or more further positive residuals. As pointed out in the 
literature (see Ostrom, 1990, and Belle, 2002), the error variance for standard 
statistical tests can be seriously underestimated in this case. This in turn leads 
to a large overestimation of the F- or r-ratio, and therefore overly optimistic 
conclusions from the analysis. 
 
On the other hand, when the first order residual autocorrelation is negative and 
significantly deviates from zero, then a positive residual tends to be followed by 
a negative residual, and vice versa. In this case, the error variance for the 
standard statistical tests is seriously overestimated, leading to a large 
underestimation of the F- or r-ratio, and therefore overly pessimistic 
conclusions. 
 
The Ljung-Box test (Ljung and Box, 1978) is based on the autocorrelation plot. 
However, instead of testing randomness at each distinct lag, it tests the "overall" 
randomness based on a number of lags. More formally, the Ljung-Box test can 
be defined as follows. The test statistic is   

 ∑
= −
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j
nnQ
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ρ
 (3.2.8) 

with n the sample size, ρ(j) the autocorrelation at lag j, and h the number of lags 
being tested. The null hypothesis of randomness is rejected if  

 χ
α

2

;1 h
LBQ

−
>  (3.2.9) 

where χ2 is the percent point function of the chi-square distribution. 
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Excursion: The sample autocorrelation and partial autocorrelation  
(F. Bijleveld, SWOV). 
A plot of the sample (partial) autocorrelation (the word sample is often dropped 
in applied studies) is often used to identify time dependence in residuals. It is 
also used to identify the order of dependence, where the partial autocorrelation 
is used to determine the order of the autoregressive dependence and the 
autocorrelation is used to determine the order of the moving-average 
dependence. See the "ARMA type models" section (3.4) for details. All 
introductory time series books cover this subject extensively, including 
Brockwell and Davis (1998, page 57 and 136) and Box and Jenkins (1976, page 
32 and page 64). 
 
Following the introduction of this document, it is argued that the presence of 
time dependence in the residuals of road safety models is discovered by the 
phenomenon that adjacent residuals tend to have the same sign, or tend to 
have the opposite sign. It may also occur that, for instance the residuals of 
winter-time observations share the same sign. For that reason, not only the 
immediate adjacent residuals are compared, but in addition also residuals at 
reasonable distance in time (lag). For instance, when monthly data are 
analysed, it is common to compare a january residual with the january residual 
the year before, february with february the year before, and so on, in order to 
identify seasonal patterns. The maximum considered lag is usually determined 
by the problem at hand. For monthly data, the maximum lag considered is 
longer than 12, but often not longer than 24.  
 
The sample autocorrelation coefficients from the residuals et are computed as 
follows: 
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where n is the total number of observations and ē is the average of  the ei. 
 
Please note that rk differs slightly from what would be obtained when the 
classical correlation coefficient between {e1,…,en-k} and {ek+1,…,en} would be 
calculated. Also note that r0 is always equal to one. Also note that rk= r-k. Finally 
note that the autocorrelations for larger lags (larger values of k) are calculated 
using less terms in the numerator, while the (number of terms in the) 
denominator remains the same. 
 
Once calculated,  the sample correlations are then displayed like in Figure 1.2.3 
in the introduction and Figure 3.2.7 later in this section. These figures are called 
autocorrelation plots and often abbreviated to ACF plots. Approximate 
confidence intervals (usually 95%) for each k are indicated by two lines (± 0.343 
in Figure 1.2.3). For the confidence intervals it is assumed that under the null 
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hypotheses of no autocorrelation at all, each rk has a standard error of 

approximately 1/√n. Please note that these tests for all rk are not independent. 
 
However, for very large lags compared to the total number of observations 
these approximate confidence intervals may not be accurate. Therefore, in the 
plot in Figure 2.18 (produced by SPSS, a different approximation is used (see 
SPSS algorithms, page 4): 
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Obviously, in most practical cases this correction can be ignored.  
 
It is important to note that these tests on the (partial) autocorrelations are only 
valid for stationary residuals, which is usually the case with residuals of a 
satisfactory fitting model. However, the plot of the autocorrelation function is 
also used as an indicator for non-stationarity. 
 
The sample partial autocorrelation (PAC) indicates what correlation cannot be 
accounted for by the sample autocorrelation. It is computed by means of linear 
equations from the sample autocorrelations. The partial autocorrelations for the 

residuals are usually assumed to have a standard error of approximately 1/√n 
(similar to the autocorrelation). How precise to compute the partial 
autocorrelations is relatively complicated and can be found in introductory time 
series books, for instance Brockwell and Davis (1998, page 136) and Box and 
Jenkins (1976, page 64), Chatfield (2004, page 61). 
 
Although the ACF and PACF are well suited to determine at what lags 
significant correlations exist (and other conclusions to be discussed in the 
Section ARMA type models), they may not be very practical to capture the 
whole picture in one test. To that end, the Box-Ljung statistic is often used. 
 
Sample (partial) autocorrelation can be contrasted with a theoretical (partial) 
autocorrelation. The same is true for, autocovariances. In general, for simplicity 
focussing on covariance instead of correlation  here, two stochastic variables X 
and Y have a theoretical covariance EXY-EX.EY.  
 
In a sample, this quantity if mostly estimated by  
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where it is assumed that the Xi and Yi all have identical distributions (this 
assumption can be weakened somewhat). Obviously, the figure SXY is not very 
meaningful when this (in practice a weaker) assumption cannot be upheld. In 
fact, it is only useful when all Xi and Yi have the same theoretical covariance 
and we can thus talk about the covariance. In a similar fashion, the correlation is 
defined.  
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Please note that, like the estimate SXY of the theoretical covariance above, 
sample estimates (the final outcomes) tend to differ from theoretical "true" 
values, and only if the estimates are unbiased, will they on average, if the 
samples get larger, tend to the true value.  
 
The issue of Xi and Yi having the same theoretical covariance extends to time 
series analysis in a more complicated way. In time series analysis, the notion of 
stationarity, already briefly mentioned above, is defined for this purpose. It is 
discussed in the "ARMA-type models" section below.  
End of excursion: The sample autocorrelation and partial autocorrelation 
 
For testing the last assumption about normality, most statistical packages 
provide both estimates of skewness and kurtosis and standard errors for those 
estimates.  One can divide the estimate by it’s standard error to obtain a z test 
of the null hypothesis that the parameter is zero (as would be expected in a 
normal distribution). There are other tests that in this situation are more 
powerful, for example the Kolmogorov-Smirnov statistic (for larger samples) or 
the Shapiro-Wilks statistic (for smaller samples).  These have very high power, 
especially with large sample sizes, in which case the normality assumption may 
be less critical for the test statistic whose normality assumption is being 
questioned.  
 
Table 3.2.1 shows a summary of the different assumption violations and their 
consequences. 
 
It has to be mentioned that some assumptions are more important than others. 
In the case of linear regression in time series applications, the most important 
violation concerns the independence assumption. The second most important 
assumption is the homogeneity of the residuals. The least important assumption 
is that the residuals are normally distributed. 
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Assumption Violation 

 
Consequences 

 
Errors correlated with x 

 

 
Spurious relationship 
 

 

b biased estimate of β 

Collinear relationship 
 

b biased estimate of β 

Intervening relationship b unbiased estimate of β, 
but reflects both direct & indirect effects 

 
Heteroscedasticity 

(RXSe
2 ≠ 0.0) 

b unbiased, but not efficient; SEb too 
small/large; Type I or II error may result 

 
Autocorrelated errors 

b unbiased but not efficient; SEb too 
small/large; Type I or II error may result 

 
Errors non-normally distributed 

b may be unbiased if homescedasticity 
& independence assumptions meet & n 
is large; if n is small, t distribution may 
be biased 

Table 3.2.1 Summary of assumptions and consequences of violations 

  

3.2.1.3 Dataset and research problem 

The dataset used is based on accident data from Austria and shows the 
development of fatal accidents all over the country from 1987 to 2004 on a 
monthly observation basis.  
 
In this example, the distribution and development of people who were killed in 
accidents based on monthly observations is shown in Figure 3.2.3.: 
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Figure 3.2.3 Scatterdiagram of the monthly number of fatalities in Austria from 1987 to 
2004 

3.2.1.4 Model fit, diagnostics, and interpretation 

 
The model estimation of the example dataset was calculated with SPSS 
(www.spss.com). First, the ANOVA table test procedure tests the acceptability 
of the regression model. It shows that the unexplained variation (sum of 
squares, residual row) is higher than the explained variation (sum of squares, 
regression row). 

  

Table 3.2.2 ANOVA table of the linear regression analysis applied to the monthly 
number of fatal accidents in Austria in the period 1987-2004 

 
The significance value of the F-statistic is less than 0.05, which means that the 
variation explained by the model is not due to chance. While the ANOVA table 
is a useful test of the model's ability to explain any variation in the dependent 

ANOVA b

46129,857 1 46129,857 79,228 ,000 a

124600,5 214 582,245 
170730,3 215 

Regression 
Residual 
Total

Model 
1

Sum of 
Squares df 

Mean 
Squares F Sig. 

Predictors: (Constant), TIME a. 

Dependent variable: KILLED b. 
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variable, it does not directly address the strength of this relationship. Table 3.2.3 
shows the coefficients of the regression:  

Coefficientsa

1259,417 130,558 9,646 ,000

-8,91E-08 ,000 -,520 -8,901 ,000

Constant

TIME

Model

1

B

Standard

error

Non standardized

coefficients

Beta

standardized

coeffizients

T Sig.

Dependent variable: KILLEDa. 

 

Table 3.2.3 Coefficients table of the linear regression analysis applied to the monthly 
number of fatal accidents in Austria in the period 1987-2004 

 
The gradient of the regression line is negative, whereas the beta-coefficient (i.e. 
the coefficient of correlation) between x and y is –0.520. The gradient of the 
regression line is checked by a t-test, which is equal to the square root of the F-
test in the ANOVA table mentioned before. The result suggests a highly 
significant decrease in the number of fatalities in Austria since 1987. 
 
Finally, the model summary table reports the strength of the relationship 
between the independent and the dependent variable (Table 3.2.4)  
 

,520a ,270 ,267 24,130

Model
1

R R Square

Adjusted

R Square

Std. Error of

the Estimate

Predictors: (Constant), Year/Montha. 

 

Table 3.2.4 Model summary table of the linear regression analysis applied to the 
monthly number of fatal accidents in Austria in the period 1987-2004 

 
R, the multiple correlation coefficient, is the linear correlation between the 
observed and model-predicted values of the dependent variable. Its value (0.52) 
indicates a moderate relationship. The R Square value (the coefficient of 
determination) is the squared value of the multiple correlation coefficient. It 
shows that 27 percent of the variation in the number of fatalities is explained by 
time.  
 
The results shown above are only true if the basic conditions stated in the 
Gauss-Markov assumptions hold. Based on the fact that linearity is only 
assured if the residual value varies unsystematically, one can check the validity 
of the model. All model checks are based on the assumption that the error term 
is independent of the variables (x, y). So, when checking the plot, it must not 
show any systematic relationships. If this is the case, the use of the linear 
regression is not justified due to non-linear relationships in the data.  
 
The histogram of the residuals reveals that the assumption of normality of the 
error term is justified (the standard Kolmogorov-Smirnov test yields a z-value of 
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0.594, which indicates no significant deviation from the normal distribution): see 
Figure 3.2.5. 
 

Regression Standardized Residual
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Figure 3.2.5 Histogram and P-P Plot of standardized residuals (in other chapters also 
the Q-Q Plot is used) 

 
The shape of the histogram approximately follows the shape of the Gaussian 
curve; the P-P plotted residuals also follow the 45-degree line (Figure 3.2.5). 
Therefore, it can be concluded that the histogram is acceptably close to the 
normal curve. Again, the assumption of normal distribution of the example data 
is reasonable. 
Additionally, a (shortened) table of residual statistics (Table 3.2.5) shows the 
following:  
 

 Minimum Maximum Mean Std. Deviation N 
Stud. Deleted Residual -3,191 2,527 -,001 1,006 216 
Cook's Distance ,000 ,097 ,004 ,008 216 
Centred Leverage Value ,000 ,046 ,005 ,006 216 

Table 3.2.5: Table of selected residual statistics 

 
One can find the most important indices of the residuals in the row “Studentized 
Deleted Residuals”. In the example dataset, the maximum for this value is 
2.527. As a consequence, there is no evidence for extremely high or low 
observation values. Furthermore, the values of “Cook's Distance” and “Centred 
Leverage Value” are also good checks for very influential values (Stevens, 
1996). As both are around zero, this also indicates that there is also no sign of 
outliers. For testing the assumption of homoscedasticity, there are some 
heuristic ways by looking at different scatterplots (Figure 3.2.6.). 
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Figure 3.2.6: Table of selected residual plots for identifying heteroscedasticity 

 
All plots in the table above show no indication of the presence of 
heteroscedasticity except the one in the lower left, in which slightly higher 
squared residuals in the early years are found. By using the previously 

introduced White’s test, we find a χ2 = 11.232 (R-Square of the regression of the 
squared standardized residuals on the date variable is 0.052, the number of 
time points in the analysis is 216, df is 1) which is highly significant and shows 
the presence of heteroscedasticity in the data.  
 
Finally, we are looking at the problem of autocorrelated errors, which is the most 
likely violation in time series regression. This is also true in the data example 
used in this chapter, as shown in figure 3.2.7. 
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Autocorrelations up to lag 16 for the 
original series of Austrian fatalities (The 
lines indicates two standard errors) 

Autocorrelations of the same month over 
the entire series 

Figure 3.2.7: Table of autocorrelations and seasonal adjusted autocorrelations 

 

The two plots in figure 3.2.7 show very high dependencies of consecutive 
errors. Despite the fact that b will remain an unbiased estimate of β, the 
significance tests shown above in the outlined example are wrong. When the 
first order residual autocorrelation (i.e., the residual autocorrelation for lag 1) is 
positive and significantly deviates from zero, a positive residual tends to be 
followed by one or more further positive residuals, and a negative residual tends 
to be followed by one or more further negative residuals. The error variance for 
standard statistical tests is seriously underestimated in this case. This leads to 
an overestimation of the F- or r-ratio, and therefore overly optimistic conclusions 
from the analysis.  
 
The above results are not an artefact of the seasonal component in the data 
series, which is shown in the right-hand plot in Figure 3.2.7 and will be outlined 
a bit more by performing two more analyses. Firstly, the regression equation will 
be expanded by adding dummy variables for the month as a second set of 
predictors in the model (the 11 variables feb thru dec are 0/1 dummys, January 
is collinear with the 11 others) . Secondly, aggregated yearly data will be used 
as dependent variable. 
 
The model fit statistic (R Square) in Table 3.2.6 shows a much better fit of the 
linear regression model including the dummy predictors for the month effect  
compared to the simple model above (0.856 vs. 0.27).   
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a  Predictors: (Constant), dec, YM, jun, jul, mai, aug, apr, sep, mar, feb, oct, nov 
 Model Summary 
 

Model R R Square 
Adjusted R 

Square 
Std. Error of the 

Estimate 

1 ,846(a) ,716 ,699 15,456 

a  Predictors: (Constant), dec, Year/Month, jun, jul, mai, aug, apr, sep, mar, feb, oct, nov 

Table 3.2.6: Model summary table of multiple linear regression analysis applied to the 
monthly number of fatal accidents in Austria in the period 1987-2004 with dummy 
variables for the month of year as a second predictor. 

  

Model   
Sum of 

Squares df Mean Square F Sig. 

1 Regression 122233,758 12 10186,147 42,638 ,000(a) 

  Residual 48496,570 203 238,899     

  Total 170730,329 215       

a  Predictors: (Constant), dec, Year/Month, jun, jul, mai, aug, apr, sep, mar, feb, oct, nov 
 

Unstandardized 
Coefficients 

Standardized 
Coefficients 

 
Model   B Std. Error Beta t Sig. 

(Constant) 1286,700 83,738   15,366 ,000 

Year/Month -9,28E-008 ,000 -,541 -14,451 ,000 

feb -9,474 5,152 -,093 -1,839 ,067 

mar -6,136 5,152 -,060 -1,191 ,235 

apr 7,502 5,152 ,074 1,456 ,147 

mai 28,020 5,153 ,275 5,438 ,000 

jun 39,324 5,153 ,387 7,632 ,000 

jul 41,454 5,153 ,408 8,044 ,000 

aug 48,869 5,153 ,480 9,483 ,000 

sep 30,784 5,154 ,303 5,973 ,000 

oct 36,525 5,154 ,359 7,086 ,000 

nov 18,218 5,155 ,179 3,534 ,001 

1 

dec 16,570 5,155 ,163 3,214 ,002 

Table 3.2.7 ANOVAa and coefficientsb table of multiple linear regression analysis 
applied to the monthly number of fatal accidents in Austria in the period 1987-2004 with 
dummy variables for the month of year as a second predictor. 

 
The results in Table 3.2.7 are very similar to the results in Tables 3.2.2 and 
3.2.3 The inclusion of the predictor 'month' in the model significantly improves 
neither the F-test nor the parameter tests. But the change in the model fit is 
highly significant: the R2 increases from .270 to .716 (F-Change=28.96, df=11). 
 
The previous result on monthly data (see Table 3.2.6 and 3.2.7.) is replicated on 
yearly data again. The number of fatalities in road accidents has been 
decreasing since 1987 (see Table 3.2.8). The result of the regression on the 
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yealy data is more significant than in the case of the monthly fatalities in the 
above regressions because there are no seasonal artefacts in the yearly data 
which introduce high variation not due to the general trend in the model.  
 

YEAR

20052000199519901985

K
IL

L
E

D
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 Model Summary

,933a ,870 ,862 74,77443

Model

1

R R Square

Adjusted

R Square

Std. Error of

the Estimate

Predictors: (Constant), Yeara. 

 
 

ANOVAb

598633,5 1 598633,499 107,067 ,000a

89459,445 16 5591,215

688092,9 17

Regression

Residual

Total

Model

1

Sum of

Squares df Mean Square F Sig.

Predictors: (Constant), Yeara. 

Dependent Variable: Fatalitiesb. 

 
 

Coefficientsa

71312,108 6778,903 10,520 ,000

-35,151 3,397 -,933 -10,347 ,000

(Constant)

Year

Model

1

B Std. Error

Unstandardized

Coefficients

Beta

Standardized

Coefficients

t Sig.

Dependent Variable: Fatalitiesa. 

 
  
  

Table 3.2.8: Plot of Yearly Fatality Data in Austria from 1987 to 2004 and regression 
results 

 

On the other side, we find that the distribution assumptions are also met in this 
case, but not as close as in the monthly model (see Figure 3.2.8). 
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Figure 3.2.8: Histogram and P-P Plot of standardized residuals for the regression 
model on yearly Austrian fatalities data. 
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Figure 3.2.9 Table of selected residual plots for identifying heteroscedascity 

 
All plots (see Figure 3.2.9) show a light trend of smaller residuals in the later 

years. This cannot be proven by White’s test: χ2 = 2,057, df=1, therefore we can 
assume homoscedastiscity in the yearly fatalities data in Austria. 
As expected from the previous analysis of the monthly data corrected for the 
season, we find seriously high autocorrelations in the yearly data as well.  
 
The one of the four Gauss-Markov assumptions about exogenous independent 
variables has not been covered yet in this paper. This is because this cannot be 
done with the limited dataset used in this section about introducing linear 
regression. However, this is also true for most research problems in time series 
analysis. It is not feasible in practical work to include all possible factors in 
multivariate models and analyse the problem by co-linearity analysis or factor 
models. So, the researcher needs a good theoretical understanding of the 
context of the data on which he wants to fit a model. This is not only true for 
simple linear regression models, but also for more sophisticated extensions 
covered in other sections of this book.   



  3.2.1 Classical linear regression models 
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Figure 3.2.10 Table of autocorrelations 

 
As already mentioned in the introduction to the time series analysis section, in 
principle there is nothing wrong in fitting a classical regression model with 
Austrian fatality data to obtain a rough idea of the linear trend in the series. The 
results show a negative relation between the number of Austrian fatalities and 
time, suggesting that the number of fatalities have decreased over the last 18 
years. However, as soon as standard statistical tests are applied to ascertain 
whether or not the relationship should be attributed to chance, serious problems 
arise. As noted above, the F-test (or, equivalently, the t-test for the regression 
weight) would lead one to conclude that the negative relationship between the 
number of driver fatalities and time is highly significant. These tests are based on 
the fundamental Gauss-Markov assumptions. In the examples shown, 
especially the most important assumption of randomly distributed errors was 
clearly violated, implying that the results of the statistical tests regarding the 
regression could not be trusted.  

3.2.1.5 Conclusion 

For most studies, the fit of a linear regression model is a good start to examine 
the different properties of the data, and if all conditions hold true, it is the most 
efficient way to estimate a trend in a time series. This is true not only from a 
statistical viewpoint, but also for communicating the solution. The parameters in 
the model are simple and also non-statisticians can have an intuitive 
understanding of the results. This is an important issue in road safety work, 
where people have to make decisions which are costly both in terms of money 
and fatalities. 
 
In a risk management environment, not only the general trend is important, but 
decisions are most often based on statistical inference. Therefore, it is important 
to analyse all the model assumptions. This analysis is also a good start to 
decide the direction of more advanced modelling of the data. In the example 
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shown above with time dependent errors, further investigation of the data will 
lead to dedicated time series models, which can handle this problem much 
better than classical regression. Other violations of the assumptions may lead to 
alternate estimation procedures. Weighted least squares or maximum likelihood 
techniques are options in the case of heteroscedastic data. 
 
Other sections in this chapter on time series analysis will lead to an in-depth 
view of the various options to handle the specific properties of accident data in 
more sophisticated model environments. 
 
 
 
 
 



 

3.2.2 Generalized linear models (GLM) 

George Yannis, Constantinos Antoniou and Eleonora Papadimitriou 
(NTUA)  
 

3.2.2.1. Objective of the technique 

 
While the linear regression model is simple (to run and interpret), elegant and 
efficient, it is subject to the fairly stringent Gauss-Markov assumptions 
(Washington et al., 2003). The Gauss-Markov assumptions require: 

• Linearity (in the parameters; nonlinearity in the variables is acceptable); 

• Homoscedasticity; 

• Exogenous independent variables; 

• Uncorrelated disturbances; and 

• Normally distributed disturbances 
 
If these assumptions hold, it can be shown that the solution obtained by 
minimizing the sum of squared residuals (‘least squares’) is BLUE, i.e. best 
linear unbiased estimator (in other words, it is unbiased and has the lowest total 
variance among all unbiased linear estimators). These assumptions, however, 
are often violated in practice. In this research, two of these violations -that are 
relevant to road safety data- are considered, in particular correlated 
disturbances; and non-normal error structures. 
 
Generalized linear models (GLM), a generalization of the linear regression, can 
be used to overcome these restrictions (McCullagh and Nelder, 1989, Dobson, 
1990, Gill, 2000). The objective of GLM is to allow for more flexible error 
structures (besides the Gaussian which is assumed by –linear and nonlinear– 
regression). The allowable distributions belong in the exponential family. In this 
section, we investigate the suitability of each distribution for road safety data 
that are temporally correlated. 
 

3.2.2.2. Model definition and assumptions 

 
Generalized linear models facilitate the analysis of the effects of explanatory 
variables in a way that closely resembles the analysis of covariates in a 
standard linear model, but with less confining assumptions. This is achieved by 
specifying a link function, which links the systematic component of the linear 
model with a wider class of outcome variables and residual forms (McCullagh 
and Nelder, 1989, Dobson, 1990, Gill, 2000). 
 
A key point in the development of GLM was the generalization of the normal 
distribution (on which the linear regression model relies) to the exponential 
family of distributions. This idea was developed by Fisher (1934). Consider a 
single random variable y whose probability (mass) distribution (if it is discrete) or 

probability density function (if it is continuous) depends on a single parameterθ. 
Probability (mass) distribution is the set of values x taken by a discrete random 
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variable X (the domain of the variable) and their associated probabilities. If X is 
a continuous random variable, the probability associated with any particular 
point is zero; therefore, positive probabilities can only be assigned to intervals in 
the range over which x is defined. In that case, the probability density function is 
defined by the area under the distribution in the range of the interval of interest. 
 
The distribution belongs to the exponential family if it can be written in the form: 
 

 ( ) ( ) ( ) )()(
;

θθθ bya
etysyf =  (3.2.13) 

 

where a, b, s, and t are known functions. The symmetry between y and θ 
becomes more evident if we rewrite it as: 
 

 ( ) ( ) ( )[ ]ydcbyayf ++= θθθ )()(exp;  (3.2.14) 

 

where s(y)=exp[d(y)] and t(θ)=exp[c(θ)]. If a(y)=y then the distribution is said to 
be in the canonical form. Furthermore, any additional parameters (besides the 

parameter of interest θ) are regarded as nuisance parameters forming parts of 
the functions a, b, c, and d, and they are treated as though they were known. 
Many well-known distributions belong to the exponential family, including –for 
example– the Poisson, normal, and binomial distributions. On the other hand, 
examples of well-known and widely used distributions that cannot be expressed 
in this form are the student’s t-distribution and the uniform distribution. 
 
The generalized linear model can be defined in terms of a set of N independent 
random variables y1, … , yN, each with a distribution from the exponential family 
with the following properties: 
1. The distribution of each yi is of the canonical form and depends on a 

single parameter θi (not necessarily the same parameter for all variables): 
 

 ( ) ( ) ( )[ ]iiiiiiiii ydcbyyf ++= θθθ )(exp;  (3.2.15) 

 

2. The distributions of all the yi s are of the same form (e.g. all normal or all 
binomial) so that the subscripts on b, c, and d are not needed. 
 
The joint probability density function of y1, … , yn is then 
 

 ( ) ( ) ( )( )







++= ∑

=

N

i

iiiiii ydcbyyf
1

)(exp; θθθ  (3.2.16) 

 

When specifying a model, the N parameters θi are usually not of direct interest 

(the number of parameters θ is N, since there is one for each y). Instead, for a 

GLM, a smaller set of p parameters β1, …, βp is considered (where p < N), such 

that a linear combination of the βs is equal to some function of the expected 

value µi of yi, i.e.  
 

 g(µi) = x i

Tβ     (3.2.17) 



  3.2.2 Generalised linear models 
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where,  
g is a monotonic, differentiable function called the link function;  
xi is a (p x 1) vector of explanatory variables (covariates and dummy variables 
for levels of factors); and  

ββββ=[β1, …, βp]
T is the (p x 1) vector of parameters.  

 
To recapitulate, in the univariate case, a generalized linear model has three 
components: 
1. A response variable y assumed to follow a distribution from the 
exponential family; 

2. A set of parameters ββββ and explanatory variables X=[x1
T, …, xp

T]T 
3. A monotonic link function g such that  
 

  g(µi) = x i

Tβ  (3.2.18) 

 

 where µi=E(Yi)  
 
 
Generalized linear models require uncorrelated observations. Time-series data 
require special consideration, since the observations typically fail to meet this 
assumption, as neighbouring observations are likely to be correlated. It is often 
possible to include a large number of explanatory variables in a linear 
regression model, resulting in seemingly serially uncorrelated residuals (and, 
therefore, the linear model theory would apply). There are, however, two 
problems with such a strategy. First, it may not be easy to identify the 
appropriate explanatory variables that would reflect the serial correlation. 
Second, and perhaps more important, the additional variables included in the 
model to reduce the serial correlation may dilute the effects of the main 
variables of interest, thus potentially affecting the power and the interpretation of 
the model. 
 
In a very different (with respect to road safety) context, Zeger (1988) introduced 
a method for regression when the outcomes are a time series of counts (as is 
often the case in road safety applications). The critical point about this model is 
that the serial correlation in the observed data is captured through some 
unobserved (or latent) process and conditional on this unobserved process, the 
counts are independent. This is a reasonable assumption for road safety data, 
since the occurrence of an accident (or a fatality or injury) is usually not directly 
caused by another.  
 
The data, however, are serially correlated because they are ordered in time, 
and other factors (also ordered in time) are affecting the underlying risk. A 
discussion on these properties, albeit in a totally different context, can be found 
in Campbell (1994), who also presents a practical application of the approach, 
where the only assumption that is made on the distribution of the error structure 
is that it is mean stationary. Davis et al. (2000) developed a practical approach 
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to diagnose the existence of a latent stochastic process in the mean of a 
Poisson regression model.  
 
For the Poisson model, the covariance matrix, and hence the standard errors of 
the parameter estimates, are estimated under the assumption that the Poisson 
model is appropriate. Occasionally one may observe more variation in the 
response than what is expected by the Poisson assumption. This is called 
overdispersion and implies that the estimates of the standard errors of the 
parameters will not be correct. Overdispersion typically occurs when the 
observations are correlated, and therefore it is very relevant in the context of 
time-series analysis. Underdispersion (less variation than expected) is also 
possible, although not as common. 
 
The Poisson distribution has been considered suitable to counts of car crashes 
for a long time (Nicholson and Wong, 1993). However, the Poisson model (while 
arguably more appropriate than the Gaussian) is not without weaknesses and 
technical difficulties. For example, the assumption of a pure Poisson error 
structure may prove inadequate in the presence of "overdispersed" data 
(Maycock and Hall, 1984). A straightforward approach to overcome this issue is 
to use a quasi-Poisson model (i.e. estimate a dispersion parameter for the 
Poisson model, thus allowing it to take values other than 1). Maycock and Hall 
(1984) showed that the negative binomial model could also be used as an 
extension to the Poisson. Miaou (1994) and Wood (2002) have also used the 
negative binomial model for road safety applications. Maher and Summersgill 
(1996) mention that, quite often, the two approaches (i.e. quasi-Poisson and 
negative binomial) may give very similar estimation results. One may then be 
tempted to think that the two models are equivalent and that it does not really 
matter which model is selected. Maher and Summersgill further warn that this 
may not be the case, as the two models may have different prediction 
properties, as measured, e.g. by the prediction error variance.  
 
Furthermore, few processes are adequately modelled by linear models in 
practice. For example, several researchers have shown that conventional linear 
regression models lack the distributional property to adequately describe 
collisions. This inadequacy is due to the random, discrete, non-negative, and 
typically sporadic nature that characterizes the occurrence of a vehicle collision. 
Several researchers (including Hauer et al.1988, Hakim et al., 1991; Cameron 
et al., 1993; Newstead et al., 1995), using road accident statistics, have 
presumed that the explanatory variables have a multiplicative effect on 
accidents (as opposed to e.g. additive).  
 
 

3.2.2.3. Introduction of dataset and research problem 

 
The use of generalized linear models for road safety research is demonstrated 
using accident casualties and police enforcement data from Greece (excluding 
the two largest cities, i.e. Athens and Thessalonica). Monthly data from January 
1998 to December 2003 have been used for this research (Figure 3.2.12). The 
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data of the first five years (60 observations) are used for the model estimation, 
while the data for the last year (12 observations) are used for validation. 
 

 
Figure 3.2.12: Dataset overview 

 
The model specification comprises three main effects: trend, seasonal effects, 
and explanatory variables. The trend captures the evolution of the dependent 
variable over time. This is captured in the specification by the addition of the 
"Month" variable, which ranges from 1 (for the first month, i.e. January 1998) to 
72 (for December 2003). Seasonal effects are captured by the incorporation of 
sinusoid components (similar to those used e.g. by Zeger, 1988, and Campbell, 
1994). Several frequencies have been investigated (from 1 to 15 months), but 
the most useful proved to be the annual and its first (six month) harmonic.  
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Furthermore, besides specifying trend and seasonal components, the impact of 
explanatory variables is also tested, with an emphasis on enforcement data 
(number of breath alcohol controls per month) and (the log of) vehicles in 
circulation. To account for the delayed impact of enforcement in road safety (as 
the word-of-mouth spreads) the number of breath alcohol controls has been 
lagged by two intervals, capturing the impact of enforcement intensification two 
months after it occurs.  The log of vehicles in circulation has been entered as an 
offset. This modeling decision was based on the comparison of this model and a 
model in which the vehicles in circulation were entered as a regular variable 
(however, that model led to counterintuitive parameter estimates). Naturally, the 
two major Greek urban areas excluded from the casualty data have also been 
excluded from the data of breath alcohol controls and registered vehicles. The 
number of registered vehicles has been interpolated from annual figures. 
Finally, a high number of casualties was observed during the month of August. 
Therefore, a binary dummy variable has been introduced, that takes the value of 
one for August and zero otherwise. Further exploration of the available monthly 
data did not reveal any new insight in the seasonality of the road safety 
phenomenon.  The "August phenomenon" remained predominant. 
 
Seasonality (August peak) observed mainly in the persons killed and seriously 
injured but also on the enforcement can be attributed to increased summer 
traffic in Greece as a holiday destination. The exceptional enforcement low 
value on December 2001 cannot be explained by any other reason than the 
internal enforcement programming of the Police. 
 
 

3.2.2.4. Model fit, diagnostics and interpretation 

 
In this section, different error structures -that are allowable within the GLM 
framework and are also theoretically supported- are applied. Model estimation 
and analysis has been performed using the R Software for Statistical Computing 
(RDCT, 2006). First, the Gaussian (Normal) distribution is used. A Poisson 
model is also fitted, along with a quasi-Poisson that relaxes the assumption that 
the dispersion parameter is equal to one. Finally, a negative binomial model is 
fitted. The link function used for all four models (Normal, Poisson, quasi-Poisson 
and negative binomial) is the log function. 
 
Estimation results and model fit for the four model families are shown in Table 
3.2.10 A sinusoid term with an annual frequency and its (6 month) harmonic 
capture periodicity. A negative coefficient value for the number of breath alcohol 
controls indicates that the number of persons killed and seriously injured 
decreases as the intensity of breath alcohol controls increases, which is an 
intuitive result.  
 
A binary dummy variable, taking the value of one for August and zero otherwise, 
was also found to be significant. Other explanatory variables (such as the 
number of speeding violations) were also originally entered into the model. 
However, explanatory variables relating to enforcement were highly correlated 
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(in particular the number of breath alcohol controls and speeding violations had 
a correlation of 0.97). Therefore, while using either variable resulted in intuitive 
results, their combination resulted in multicollinearity problems. 
 
The coefficient signs, however, are consistent for all models and all retained 
parameters are significant at the 1% level (with the exception of the 
enforcement data in the quasi-Poisson and negative binomial models, which are 
still significant at the 10% level). A comparison of the standard errors shows that 
the values obtained for the Poisson model are significantly lower than those 
obtained from the other three models. Therefore, the z-values obtained for the 
Poisson model seem unusually high. A closer look at the model statistics 
suggests that the data may be overdispersed.  
 
Potential overdispersion can be identified by dividing the residual deviance 
(defined -up to a constant- as twice the log-likelihood ratio statistic) by the 
residual degrees of freedom (i.e. the number of observations minus the number 
of parameters in the model). The resulting measure is an approximately 
unbiased estimator of the dispersion parameter (Venables and Ripley, 2002). If 
the deviance is equal to the degrees of freedom then there is no evidence of 
overdispersion.  Note that a dispersion parameter not equal to one does not 
necessarily imply overdispersion, but could also indicate other problems, such 
as an incorrectly specified model or outliers in the data. An incorrectly specified 
model can be due to an incorrectly specified functional form (an additive rather 
than a multiplicative model may be appropriate) or, more likely, that important 
explanatory variables (or interactions) are missing from the model. However, 
overdispersion can also be a property of the data, typically indicating a lack of 
independence or heterogeneity among observations, sampling issues, etc. 
 
The dispersion factor for the data at hand is equal to 151.11/51=2.96, which is 
significantly different from one. The assumption of a Poisson model (with a 
dispersion parameter equal to one) is therefore unlikely to be realistic. A quasi-
Poisson model (an extension of the Poisson model, in which the dispersion 
parameter is allowed to vary from one) has also been estimated. The estimation 
is based on the iterative algorithm proposed by Breslow (1984) for fitting 
overdispersed log-linear Poisson models. The magnitude of the estimated 
coefficient values is similar to that obtained by the Poisson model, and the signs 
are the same. The significance of the coefficients, however, has significantly 
decreased, indicating that in the Poisson model the standard errors were 
underestimated due to the overdispersion. As expected, the dispersion 
parameter for the quasi-Poisson model is 51.38/51=1.01, i.e. very close to one. 
 
Finally, a negative binomial model has been fitted. The estimated coefficients 
were similar to those obtained from the quasi-Poisson. This confirms the 
findings of Maher and Summersgill (1996) who state that the two approaches 
may provide similar estimation results. Slightly lower standard errors for the 
binomial, however, lead to more significant statistics. 
 
Further model diagnostics are presented in Figures 3.2.13 through 3.2.16. 
Normal scores plot (QQ plot) of standardized deviance residuals is presented in 
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the left subfigure of each figure. The x-axis represents the standardized 
deviance residuals, while the y-axis represents the quantiles of the standard 
normal. The dotted line in the QQ plot (left) is the expected line if the 
standardized residuals are normally distributed, i.e. it is the line with intercept 0 
and slope 1. If the deviance residuals are normally distributed, all points on the 
plot would fall on this dotted line. The deviance residuals of the normal model 
are far from normally distributed. The Poisson model is a slight improvement, 
but still far off. The quasi-Poisson and the negative binomial model deviance 
residuals, on the other hand, are practically normally distributed. While normality 
of the residuals is not a requirement of the generalized linear model, it is an 
indication of a well-behaved model specification. 
 
On the right subfigure is a plot of the Cook statistics against the standardized 
leverages. The standardized leverage of the i-th observation xi can be 
computed as (Belsley et al., 1980): 
 

hi =
1

n
+

x i − x i( )
n −1( )sx

2
 

 
where n is the number of observations, the overbar indicates the predicted 

value, and sx  is the standard error. There are two dotted lines on each plot. The 

horizontal line is at 8/(n-2p) where n is the number of observations and p is the 
number of parameters estimated. Points above this line may be points with high 
influence on the model. The vertical line is at 2p/(n-2p) and points to the right of 
this line have high leverage compared to the variance of the raw residual at that 
point. If all points are below the horizontal line or to the left of the vertical line 
then the line is not shown.  
 
A large number of points appear to be influential (i.e. above and to the right of 
the two dashed lines) in the Gaussian and the Poisson models, while only one 
point has a high leverage for the quasi-Poisson and negative binomial models. 
 
The estimation results and the model diagnostics suggest that the quasi-
Poisson and the negative binomial assumptions are more valid for the 
considered problem (while this may not be always the case). The output of the 
resulting models is very similar and therefore a clear decision regarding the 
most appropriate model cannot be made. One observation relates to the 
estimated standard errors, which are higher for the quasi-Poisson. Choosing to 
err in the side of caution, one could retain this model. 
 
It should be noted that the usual tests for comparing models, such as the Akaike 
Information Criterion, AIC, (Akaike, 1973) or the Schwarz/Bayesian Information 
Criterion, BIC, (Schwarz, 1978), are not suitable for comparison across these 
models. (While a detailed discussion is outside of the scope of this document, 
and there is a lot of specialized research on the topic, the AIC is best suited for 
the comparison of nested models and models with similarly computed log-
likelihood measures. In this application, for example, the quasi-Poisson model is 
not estimated using maximum likelihood.) 
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 Normal 

Coefficient Estimate Std. error t-value 
Intercept -7.9608 0.1175 -67.763 
 -0.0154 0.0017 -9.054 
August dummy 0.1995 0.0355 5.628 
sin(pi*Month/6) -0.2279 0.0215 -10.580 
sin(pi*Month/12) -0.5326 0.1826 -2.917 
cos(pi*Month/6) -0.4434 0.0781 -5.674 
Laggedx2 alcohol controls (x100,000) -0.2949 0.1481 -1.992 
Null deviance:  725 608 (57 d.o.f.) 

Residual deviance:  79 290 (51 d.o.f.) 

 Poisson 

Coefficient Estimate Std. error z-value 
Intercept -7.9881 0.0641 -124.548 
Trend -0.0157 0.0010 -15.921 
August dummy 0.1919 0.0241 7.963 
sin(pi*Month/6) -0.2229 0.0123 -18.162 
sin(pi*Month/12) -0.4859 0.0985 -4.932 
cos(pi*Month/6) -0.4214 0.0430 -9.803 
Laggedx2 alcohol controls (x100,000) -0.2629 0.0821 -3.201 
Null deviance:  2 042.30 (57 d.o.f.) 

Residual deviance:  168.42 (51 d.o.f.) 

 Quasi-Poisson 

Coefficient Estimate Std. error z-value 
Intercept -8.0038 0.1066 -75.068 
Trend -0.0159 0.0017 -9.470 
August dummy 0.1838 0.0466 3.949 
sin(pi*Month/6) -0.2206 0.0212 -10.427 
sin(pi*Month/12) -0.4582 0.1623 -2.824 
cos(pi*Month/6) -0.4087 0.0718 -5.692 
Laggedx2 alcohol controls (x100,000) -0.2410 0.1368 -1.761 
Null deviance:  568.12 (57 d.o.f.) 

Residual deviance:  51.41 (51 d.o.f.) 

 Negative binomial 

Coefficient Estimate Std. error z-value 
Intercept -8.0027 0.1007 -79.434 
Trend -0.0159 0.0016 -10.022 
August dummy 0.1843 0.0436 4.229 
sin(pi*Month/6) -0.2208 0.0199 -11.071 
sin(pi*Month/12) -0.4602 0.1534 -2.999 
cos(pi*Month/6) -0.4096 0.0678 -6.038 
Laggedx2 alcohol controls (x100,000) -0.2425 0.1293 -1.875 
Null deviance:  682.57 (57 d.o.f.) 

Residual deviance:  58.78 (51 d.o.f.) 

Table 3.2.10. Estimation results 



Chapter 3 – Time Series Analysis 
 
 

 

 

 

 
Figure 3.2.13: Model fit diagnostic plots (Gaussian distribution) 

 

 
Figure 3.2.14: Model fit diagnostic plots (Poisson distribution) 
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Figure 3.2.15: Model fit diagnostic plots (Quasi-Poisson distribution) 

 
 

 

 

 
Figure 3.2.16: Model fit diagnostic plots (Negative binomial distribution) 

 
 
Figure 3.2.17 shows the values predicted by the quasi-Poisson model. The 
dashed line shows the actual observed number of dead and seriously injured in 
Greece (excluding the two major metropolitan areas of Athens and 
Thessalonica). The thick solid line represents the model predictions and 95% 
confidence intervals are also shown with thinner solid lines.  
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Figure 3.2.17: Quasi-Poisson model predictions 

 

3.2.2.5. Conclusion 

 
The impact of different distributional assumptions for the dependent variables 
on the model estimation results is demonstrated in this research within the 
unified framework of generalized linear models. Due to the time-series nature of 
the data, a modelling approach to capture serial correlation through the 
introduction of sinusoid latent processes has also been demonstrated. 
 
The signs of the estimated coefficients for all models are consistent and 
intuitive. The estimated coefficients for the Poisson model are close to those 
estimated by the other three models, but the standard errors are severely 
underestimated (due to overdispersion), leading to artificially high t-statistic 
values. Even though these values were indeed significant in this application, this 
issue could have led to incorrect retention of insignificant variables in the 
Poisson model. As a result, the use of the Poisson model in this case is not 
recommended, and the quasi-Poisson or the negative binomial models should 
be used instead. However, even though the magnitude of the estimated 
coefficients for the quasi-Poisson and negative binomial is very similar, the 
different models may have different predictive properties and therefore may not 
be used interchangeably without further analysis.  
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3.2.3 Non-linear models 

George Yannis, Constantinos Antoniou and Eleonora Papadimitriou 
(NTUA) 
 

3.2.3.1. Objective of the technique 

 
While the linear regression model is relatively simple (to run and interpret), 
elegant and efficient, few processes are adequately modeled by linear 
regression models in practice. Linear regression models might have been a 
practical necessity in the past, but theoretical and computational developments 
have made the use of more elaborate (appropriate, accurate) methods practical. 
This can also be seen in road safety research, where while early work used 
multiple linear regression modeling (assuming normally distributed errors and 
homoscedasticity), over the past two decades there has been a departure from 
this model. Generalized linear models (GLM) allow for some nonlinear 
relationships to be modeled and relax some restrictions on the distributional 
assumptions of linear regression (McCullagh and Nelder, 1989, Dobson, 1990). 
Although many scientific and engineering processes can be described well 
using linear models, or other relatively simple types of models, there are many 
processes that are inherently nonlinear. Non-linear models need then be used. 
The biggest advantage of nonlinear regression over many other techniques is 
the broad range of functions that can be fit.  
 
Non-linear regression is widely used in road-safety related research. Several 
researchers (including Oppe, 1979, 1989, Hauer, 1988, Hakim et al., 1991, 
Cameron et al, 1993; Newstead et al., 1995), using road accident statistics, 
have presumed that the explanatory variables have a multiplicative effect on 
accidents (as opposed to e.g. additive). Henning-Hager (1986) presented a non-
linear regression model to express the relationship between road safety, traffic 
volumes and the quality of transportation supply and demand in urban areas. 
Qin et al. (2004) showed that the relationship between crashes and the daily 
volume (AADT) is non-linear and varies by crash type, and is significantly 
different from the relationship between crashes and segment length for all crash 
types. 
 
A commonly used macroscopic road-safety model is based on Smeed's original 
relationship (Smeed, 1968): 
 

Fn

Vn

= α
Vn

Pn

 

 
 

 

 
 

β

+ Zn  
(3.2.20) 

 
 
where F is the number of fatalities, V is the number of (motor) vehicles (in 

thousands), P is the population (in thousands), n indicates the country, α and β 
are model parameters to be estimated and Zn are the disturbances. Using data 
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for road fatalities, vehicles and population from 20 (mostly European) countries, 
Smeed (1968) estimated the values of a and b as 0.0003 and -0.66 
respectively. Jacobs (1986) repeated this analysis for a number of developed 
and developing countries using data between 1968 and 1975 and obtained 
values of 0.000204 and -0.84 for a and b respectively. Gharaybeh (1994) 
applied Smeed's formula to assess the development of road safety in Jordan, 
relative to that of other middle-eastern and developing countries. 
 
In this section, four different models are presented in the context of road safety. 
Using the model shown in Equation 3.2.20 as a starting point, a log-transformed 
version is developed. Autoregressive versions of these two models are also 
derived, to account for serially correlated disturbances. The four models are 
developed and estimated in parallel, and their results are compared. 
 
 

3.2.3.2. Model definition and assumptions 

 
A non-linear regression model is most commonly written as: 
 

Yn = f xn ,θ( )+ Zn  (3.2.21) 

 
where f is the expectation function, xn is a vector of associated regressor 
variables or independent variables for the nth case, Yn is the dependent 

variable, θ is a vector of parameters to be estimated and Zn are random 
disturbances. This model is of the same general form as the linear model, with 
the exception that the expected responses are nonlinear functions of the 
parameters. More formally, for non-linear models, at least one of the derivatives 
of the expectation function with respect to the parameters depends on at least 
one of the parameters. The presentation of non-linear models on the following 
sections relies on Bates and Watts (1988), while the following paragraphs 
presenting the advantages and disadvantages of non-linear regression are 
based on NIST (2006). 
 
Non-linear regression is estimated using "least squares" procedures, using the 
same underlying concepts as linear least squares regression. As a result, 
nonlinear least squares regression has some of the same advantages (and 
disadvantages) that linear least squares regression has over other methods. 
One common advantage is efficient use of data. Nonlinear regression can 
produce good estimates of the unknown parameters in the model with relatively 
small data sets. Another advantage that nonlinear regression shares with linear 
regression is a fairly well-developed theory for computing confidence, prediction 
and calibration intervals to answer scientific and engineering questions. In most 
cases the probabilistic interpretation of the intervals produced by nonlinear 
regression are only approximately correct, but these intervals still work very well 
in practice. 
 
The major cost of moving to nonlinear least squares regression from simpler 
modeling techniques like linear least squares is the need to use iterative 
optimization procedures to compute the parameter estimates. With functions 
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that are linear in the parameters, the least squares estimates of the parameters 
can always be obtained analytically, while that is generally not the case with 
nonlinear models. The use of iterative procedures requires the user to provide 
starting values for the unknown parameters before the software can begin the 
optimization. The starting values must be reasonably close to the as yet 
unknown parameter estimates or the optimization procedure may not converge 
to the optimal point. Bad starting values can also cause the software to 
converge to a local minimum rather than the global minimum that defines the 
least squares estimates. 
 
Disadvantages shared with the linear least squares procedure includes a strong 
sensitivity to outliers. Just as in a linear least squares analysis, the presence of 
one or two outliers in the data can seriously affect the results of a nonlinear 
analysis. In addition there are unfortunately fewer model validation tools for the 
detection of outliers in nonlinear regression than there are for linear regression. 
 
The flexibility of non-linear regression is also a caveat, since similarly good fits 
can be obtained with very different functional forms (whereas presumably only 
one of them captures the modeled process). These different models may be 
adequate for interpolation purposes, but may produce very different predictions 
when used to extrapolate, i.e. predict values outside of the support of the 
estimation dataset. This is a very important point, that should never be treated 
lightly. It can (and it has) lead to seriously erroneous models, with potentially 
very misleading predictive properties, when applied to slightly different data. As 
a result, it is important to use appropriate tests and checks to ensure that the 
selected functional form is appropriate for the problem at hand. It should be 
noted, however, that this is not an exclusive property of non-linear regression, 
and other methods, including linear regression, suffer from this.  
 
The assumptions from ordinary least square (OLS) procedures (normal, i.i.d. 
disturbances etc., sometimes collectively referred to as Gauss-Markov 
assumptions) still apply in non-linear regression. Therefore, whenever time or 
distance is involved as a factor in a regression analysis, it is important to check 
the assumption of independent residuals. When the residuals are not 
independent, the model for the observations must be altered to account for 
dependence (e.g. moving average or autoregressive models of variable order). 
 
Road safety data are often correlated in space and/or time, raising the suspicion 
of correlated data (and hence residuals), which violates one of the underlying 
model assumptions (that of independent disturbances). Correlation of the 
disturbances can, for instance, be detected from an ordered time series plot of 
the residuals versus time or from a lag plot of the residuals on the nth case 
versus the residuals on the (n-1)th case. If a violation of independent 
disturbances is detected, then the model needs to be altered to account for this. 
Common forms for dependence, or autocorrelation, of disturbances are 
(combinations of) moving average and autoregressive models of a certain order 
(see e.g. Box et al., 1994).  
 
A moving average process of order 1 can be written as: 
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Zn = εn −ω1εn−1 (3.2.22) 

 
while an autoregressive process of order 1, can be expressed as: 
 

Zn = εn + φ1Zn−1 (3.2.23) 
 
where   εn, n =1,2,K,N  are white noise terms (i.e. independent normal error terms 

with zero mean and constant unit variance). 
 
 
The problem to be fitted is  
 

Yn = f xn ,θ( )+ Zn  (3.2.24) 

 
where Zn = εn + φ1Zn−1. In order to solve this problem by reducing it to a non-

linear least squares problem, one can subtract φ times the equation for Yn-1 from 
Yn, thus obtaining: 
 

( ) ( ) 111 ,, −−− ⋅−+⋅−=⋅− nnnnnn ZZxfxfYY φθφθφ  (3.2.25) 

 
which is equivalent to  
 

( ) ( ) nnnnn xfxfYY εθφθφ +⋅−+⋅= −− ,, 11  (3.2.26) 

 
Substituting Equation 3.2.20 into Equation 3.2.26, the autoregressive non-linear 
model that corrects for temporal correlation is: 
 

F

V

 
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 
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 

n

= φ ⋅
F

V
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n−1

+ α
V

P

 
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 
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 
 

n

β

− φ ⋅α
V

P

 

 
 

 

 
 

n−1

β

+ εn  
(3.2.27) 

 
 
The original non-linear model (Equation 3.2.20) can be converted to a similar 
(but not equivalent) linear model through a simple log transformation. For 
demonstration purposes, this model is presented next. Furthermore, in the rest 
of this section, the various models are developed in parallel. This approach 
demonstrates both the close relation of the models, but also highlights their 
differences. 
 
Taking the log of both sides of Equation 3.2.20 (temporarily ignoring the additive 
error term), the following linear model is obtained (where log(α) has been 
simplified to α): 
 

log
Fn

Vn

 

 
 

 

 
 = α + β log

Vn

Pn

 

 
 

 

 
  

(3.2.28) 

 
Adding an additive error term, the equation becomes: 
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log
Fn

Vn

 

 
 

 

 
 = α + β log

Vn

Pn

 

 
 

 

 
 + Zn 

(3.2.29) 

 
This equation is similar, but not equivalent to Equation 3.2.20. The difference is 
in the error term. If one takes the exponent of equation 3.2.29, the resulting 
equation is: 
 

Fn

Vn

= α
Vn

Pn

 

 
 

 

 
 

β

exp(Zn ) = α
Vn

Pn

 

 
 

 

 
 

β

′ Z n 
(3.2.30) 

 
i.e. there is a multiplicative error term (as opposed to an additive error term in 
Equation 3.2.20). 
 
An autoregressive version of Equation 3.2.30 can be constructed in a similar 
way to Equation 3.2.27: 
 

log
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(3.2.31) 

 
Note that the above model (Equation 3.2.31) is not linear in the parameters, due 
to the second and fourth right-hand terms (in particular (1− φ) ⋅ α  and φ ⋅ β ).  

 
Rather than choosing a single model and using it to demonstrate nonlinear 
regression models in this section, four models are developed in parallel. The 
comparison of the model parameters, goodness-of-fit properties, and predictive 
ability of these models may help the reader better comprehend the theory, 
practice, advantages, and caveats of non-linear regression. In particular, 
Equations 3.2.20 (nonlinear), 3.2.26 (AR nonlinear), 3.2.29 (log-transformed) 
and 3.2.31 (AR log-transformed) are used. While the log-transformed model 
ends up being linear, the other three models are nonlinear. 
 
 

3.2.3.3. Introduction of dataset and research problem 

 
Aggregate fatality, population and vehicle data from European countries 
between 1970 and 2002 have been used. The first 25 years of the data (i.e. 
1970-1994) have been used for fitting the models, while the last seven years 
(1995-2002) have been used for validating the estimated models. This way, i.e. 
through separating the available data into two groups, issues such as over-
fitting are overcome. The data have been obtained primarily from IRTAD. 
Official representatives of the countries with missing data were contacted 
directly, and several responses with additional data were incorporated to the 
database. In the end, out of the 25 countries of the enlarged EU, sufficiently 
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complete data have been available for 17 of them, for which this model has 
been applied. 
 
Figure 3.2.18 presents the following variables for the entire data-set: 
● Fatalities per thousand vehicles (solid line, decreasing trend) 
● Vehicles per population (dashed line, increasing trend) 
 

 
Figure 3.2.18. Presentation of the data set: fatalities per vehicle (decreasing trend) and vehicles 
per population (increasing trend) 

 

3.2.3.4. Model fit, diagnostics and interpretation 

 
The model shown in Equations 3.2.20 and 3.2.27 were estimated for the 
countries mentioned above and the estimated coefficients and statistics are 
shown in Table 3.2.11. All models in this section have been estimated using the 
R Software for Statistical Computing v. 2.3.0 (R, 2006). With the exception of 
the results for the autoregressive model for Sweden (SE), all parameters are 
very significant. The issue with the autoregressive model for Sweden 
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(highlighted in the Table 3.2.11) is the high estimated value for the coefficient φ, 
which is approaching 1. 
 
 Coefficient a Coefficient b    
 Standard Standard    
 

Estimate 
error 

t-test Estimate 
error 

t-test 
   

AT 0,099 0,007 14,962 -1,962 0,054 -36,252    
BE 0,080 0,006 13,215 -2,068 0,069 -30,091    
CY 0,219 0,018 12,262 -0,770 0,108 -7,158    
DK 0,012 0,004 3,204 -3,477 0,291 -11,958    
FI 0,026 0,006 4,597 -2,475 0,162 -15,263    
FR 0,083 0,006 13,151 -2,153 0,073 -29,698    
DE 0,070 0,006 12,469 -2,012 0,070 -28,597    
EL 0,288 0,016 18,252 -0,711 0,023 -31,058    
HU 0,172 0,028 6,260 -0,984 0,082 -11,987    
IE 0,035 0,008 4,540 -2,075 0,151 -13,762    
IT 0,081 0,006 14,078 -1,677 0,060 -27,834    
LU 0,156 0,018 8,626 -1,542 0,104 -14,815    
NL 0,017 0,002 8,384 -2,844 0,091 -31,123    
PT 0,290 0,039 7,398 -0,956 0,075 -12,753    
ES 0,212 0,017 12,716 -0,876 0,049 -17,784    
SE 0,028 0,005 6,117 -2,596 0,175 -14,830    
UK 0,030 0,003 11,403 -2,210 0,076 -28,933    
          

 Coefficient a Coefficient b Coefficient phi 
 Standard Standard Standard 
 

Estimate 
error 

t-test Estimate 
error 

t-test Estimate 
error 

t-test 

AT 0,090 0,010 9,303 -2,051 0,096 -21,484 0,3387 0,1255 2,699 
BE 0,077 0,012 6,215 -2,111 0,158 -13,396 0,4487 0,197 2,277 
CY 0,214 0,027 7,994 -0,815 0,180 -4,524 0,2047 0,2905 0,705 
DK 0,015 0,010 1,550 -3,227 0,617 -5,228 0,5686 0,1695 3,355 
FI 0,021 0,009 2,209 -2,687 0,370 -7,273 0,4647 0,1429 3,252 
FR 0,068 0,016 4,329 -2,382 0,251 -9,494 0,5339 0,1798 2,970 
DE 0,069 0,011 6,215 -2,034 0,153 -13,329 0,5282 0,1752 3,015 
EL 0,294 0,025 11,740 -0,701 0,037 -19,013 0,3005 0,2131 1,410 
HU 0,155 0,062 2,516 -1,045 0,218 -4,794 0,5825 0,1784 3,265 
IE 0,034 0,015 2,295 -2,119 0,309 -6,865 0,6081 0,152 4,001 
IT 0,071 0,009 8,243 -1,818 0,116 -15,687 0,3571 0,1819 1,964 
LU 0,131 0,015 8,521 -1,757 0,114 -15,438 0,2458 0,1454 1,691 
NL 0,015 0,003 4,986 -2,969 0,163 -18,200 0,3247 0,1364 2,380 
PT 0,219 0,068 3,230 -1,154 0,196 -5,893 0,5303 0,1314 4,037 
ES 0,135 0,054 2,473 -1,306 0,418 -3,122 0,7992 0,0688 11,619 
SE 0,096 0,147 0,653 -0,146 2,131 -0,069 0,913 0,035 26,065 
UK 0,025 0,006 4,244 -2,374 0,230 -10,333 0,5916 0,2184 2,709 

Table 3.2.11. Non-linear model estimation results (top: base, bottom: after correcting for correlation) 

 
Figure 3.2.19 and Figure 3.2.20 show the main diagnostics for the estimated 
nonlinear models (as per Equation 3.2.20). For each country, the residuals per 
observation are plotted, followed by the autocorrelation function (ACF) and the 
partial ACF (PACF). Note that PACF plots start at lag 1 while ACF plots start at 
0. It is clear from these figures that the assumption of independent disturbances 
is violated for most countries. For some countries (such as Hungary, Spain and 
Sweden), both the residuals' plot and the ACF plot suggest violations. The 
different combinations of violations in these plots suggest that different 
approaches may be required to correct the model for each country. In this 
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paper, however, we will instead follow a unified approach. In most of the ACF 
plots, the correlation decays quickly and falls below the limits (indicated with the 
dotted lines) after one or two intervals. Please note that lag-0 autocorrelations 
have a value of 1 by definition. Therefore the fact that these values exceed the 
limits should not be interpreted as a violation of assumptions. Both the apparent 
exponential decay of the autocorrelations and the presence of a significant 
partial autocorrelation of order 1 suggest that a first order autoregressive 
process may be able to capture the correlation of the residuals. This is 
confirmed, as the autocorrelation are mostly dealt in the residuals of the 
autoregressive models (as per Equation 3.2.27), diagnostics for which are 
provided in Figure 3.2.21 and Figure 3.2.22. 
 
The estimated coefficients of the log-transformed models are shown in Table 
3.2.12. The model shown in equation 3.2.29 is shown on top, followed by the 
model presented in equation 3.2.31. Similarly to the non-linear model (Table 
3.2.11), the estimation results are unreliable for models with estimated values 
for φ very close to 1 (such as Finland, Germany, Ireland, Sweden and United 
Kingdom, highlighted in the table). The term "unreliable" here is used to convey 
inconsistency with expectations about these values, e.g. sign and magnitude. 
 
This issue requires some further discussion. This finding can be an indication 
that the data need to be differenced (an approach that is discussed later in this 
document). Furthermore, it appears that values of φ up to at least 0.85 result in 
“stable” models, while values above 0.94 result in “unreliable” models. This is an 
indication that the critical value lies somewhere between these two values. 
Finally, an indication of an “unreliable” model may be the very high t-statistic of 
the estimated φ coefficients. 
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Figure 3.2.19. Non-linear model diagnostics (per country – part A) 
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Figure 3.2.20. Non-linear model diagnostics (per country – part B) 
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Figure 3.2.21. Autoregressive non-linear model diagnostics (per country – part A) 
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Figure 3.2.22. Autoregressive non-linear model diagnostics (per country – part B) 
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 Coefficient a Coefficient b    
 Standard Standard    
 

Estimate 
error 

t-test Estimate 
error 

t-test 
   

AT -2,395 0,057 -42,122 -2,031 0,057 -35,857    
BE -2,521 0,074 -33,904 -2,056 0,077 -26,896    
CY -1,555 0,083 -18,642 -0,818 0,120 -6,808    
DK -4,004 0,278 -14,423 -3,047 0,273 -11,160    
FI -2,985 0,188 -15,884 -1,916 0,166 -11,528    
FR -2,565 0,091 -28,050 -2,236 0,100 -22,443    
DE -2,715 0,068 -40,134 -2,056 0,073 -28,224    
EL -1,210 0,048 -25,150 -0,694 0,024 -28,465    
HU -1,647 0,172 -9,569 -0,919 0,096 -9,567    
IE -3,353 0,224 -14,995 -2,073 0,164 -12,682    
IT -2,395 0,051 -46,635 -1,558 0,054 -29,118    
LU -1,994 0,071 -27,923 -1,671 0,082 -20,433    
NL -4,187 0,088 -47,684 -2,928 0,078 -37,472    
PT -1,340 0,078 -17,150 -1,012 0,053 -19,184    
ES -1,558 0,094 -16,500 -0,878 0,070 -12,540    
SE -3,554 0,171 -20,833 -2,551 0,200 -12,782    
UK -3,566 0,117 -30,529 -2,248 0,112 -20,050    
          

 Coefficient a Coefficient b Coefficient phi 
 Standard Standard Standard 

 

Estimate 

error 

t-test Estimate 

error 

t-test Estimate 

error 

t-test 

AT -2,452 0,097 -25,263 -2,100 0,103 -20,420 0,451 0,155 2,910 
BE -2,509 0,159 -15,772 -2,045 0,173 -11,850 0,539 0,188 2,862 
CY -1,581 0,109 -14,456 -0,865 0,167 -5,191 0,079 0,300 0,263 
DK -3,526 0,662 -5,324 -2,540 0,675 -3,765 0,688 0,150 4,594 
FI -1,871 1,036 -1,805 0,149 0,713 0,209 0,940 0,040 23,539 
FR -2,954 0,571 -5,177 -2,697 0,711 -3,795 0,748 0,185 4,035 
DE -2,567 1,269 -2,022 0,738 1,270 0,581 0,961 0,020 49,141 
EL -1,184 0,087 -13,568 -0,680 0,045 -14,979 0,431 0,205 2,097 
HU -1,977 0,508 -3,896 -1,110 0,304 -3,653 0,709 0,165 4,290 
IE -2,817 5,391 -0,522 -0,523 0,582 -0,898 0,980 0,066 14,977 
IT -2,360 0,126 -18,768 -1,521 0,149 -10,193 0,686 0,165 4,165 
LU -2,053 0,063 -32,483 -1,760 0,075 -23,359 -0,033 0,184 -0,178 
NL -4,219 0,134 -31,500 -2,963 0,122 -24,254 0,358 0,177 2,030 
PT -1,437 0,145 -9,879 -1,094 0,109 -10,010 0,548 0,158 3,472 
ES -1,948 0,687 -2,837 -1,216 0,760 -1,601 0,849 0,191 4,451 
SE -2,830 2,391 -1,184 0,638 1,019 0,626 0,968 0,035 27,998 
UK 0,123 2,283 0,054 0,044 0,766 0,057 1,040 0,040 26,168 

Table 3.2.12. Log-transformed model estimation results (top: base, bottom: autoregressive model) 
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Figure 3.2.23. Log-transformed model diagnostics (per country – part A)  
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Figure 3.2.24. Log-transformed model diagnostics (per country – part B) 

 



Chapter 3 – Time Series Analysis 
 
 

 

 

 
Figure 3.2.25. Autoregressive log-transformed model diagnostics (per country – part A) 
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Figure 3.2.26. Autoregressive log-transformed model diagnostics (per country – part B) 

 
Figure 3.2.23 and Figure 3.2.24 show the residual plots, ACF and PACF plots 
for the log-transformed models, while Figure 3.2.25 and Figure 3.2.26 show the 
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same statistics for the autoregressive log-transformed models. As with the non-
linear model, the autocorrelation of the residuals has been significantly reduced 
in most cases due to the autoregressive process, and it has been practically 
eliminated from the ACF and PACF plots. However, while only one country 
(Sweden) seemed to face the issue with the high estimated parameter for φ, 
there are now four more countries with the same issue. 
 
The autocorrelations for the various lags have been considered individually. A 
different way to test this type of lack-of-fit of a model is to consider the first e.g. 
12 autocorrelations as a whole. It should be noted that this value depends on 
the data and is probably a bit high for this application. A lag of 4 or 5 might be 
sufficient, and using a lower lag might not illustrate the temporal dependency. 
Larger lags do not add to the inference, but are also rather harmless in this 
context.  Denoting the first K autocorrelations as rk

ˆ a ( ) (k=1,2,…K) Box and 

Pierce (1970) showed that if the fitted model is appropriate then 
 

Q = n rk

2 ˆ a ( )
k=1

K

∑  
(3.2.32) 

 
 

is approximately distributed as χ 2
K − p − q( ) where n=N-d is the number of 

residuals used to fit the model. On the other hand, if the model is inappropriate, 
the average values of Q will be inflated. Therefore a so-called "portmanteau" 
test of the hypothesis of model adequacy can be obtained by comparing the 

value of Q against a standard χ 2 table. Ljung and Box (1978) argued that the 

chi-squared distribution does not provide an adequate approximation of the 
distribution of the Q-statistic under the null hypothesis, while Davies et al. 
(1977) provided empirical evidence to support this argument. Ljung and Box 
(1978) proposed a modified statistic (Ljung-Box-Pierce statistic): 
 

˜ Q = n(n + 2) n − k( )−1
rk

2 ˆ a ( )
k=1

K

∑  
(3.2.33) 

 
 
A more detailed presentation of these tests is available in several texts, 
including Box et al. (1994), on which the development of this section is based. 
In the following application, Equation 3.2.33 is used. 
 
Figure 3.2.27 visually presents the Ljung-Box-Pierce test results for the four 
groups of models. While the interpretation of the obtained p-values cannot be 
easily quantified, smaller p-values indicate lack of fit. Both the non-linear and 
the log-transformed models show mostly low p-values (and consequently a lack 
of fit). A threshold of 5% (indicated by a horizontal dashed line) exceeds several 
models' lines for the non-linear model and all-but-three for the log-transformed. 
The situation is substantially improved for the autoregressive models, with the 
p-values being considerably increased. Actually, only a couple of models fall 
below the 5% threshold for the non-linear AR model, and only one for the log-
transformed AR model. 
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Figure 3.2.27. Ljung-Box-Pierce test p-values 

 
 
Summary validation statistics using all four models are presented in Figure 
3.2.28. As it has been mentioned before, this data is different from the data set 
that was used for the estimation of the models (i.e. years 1970-1994), in order 
to avoid issues such as over-fitting. In particular, while estimation used data 
from years 1970-1994, the validation used data from years 1995-2002. 
 
The root mean square percent error (RMSPE) statistic (Pindyck and Rubinfeld, 
1997) is used in Figure 3.2.28: 
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RMSPE =
1

N

xn

0 − xn

1

xn

0

 

 
 

 

 
 

n=1

N

∑
2

 

(3.2.24) 

 
 
 
where x is the variable of interest, N is the number of observations (years) and 
superscripts 0 and 1 denote observed and fitted measures respectively. 
 
The impact of the autoregressive process in the prediction results is clear, with 
both autoregressive models consistently outperforming the base models. The 
non-linear AR model performs on average 39% better than the nonlinear model, 
while the autoregressive log-transformed model performs on average 49% 
better than the log-transformed model. This is a substantial improvement at the 
cost of just one extra parameter (the AR coefficient phi). Also, the AR log-
transformed model also performs on average more than 13% better than the AR 
non-linear model.  
 

 
Figure 3.2.28. Summary goodness-of-fit statistic (RMSPE) 

 
 
Figure 3.2.29 presents a plot of the estimated model parameters per country. 
While the log-transformed AR model seemed to provide a superior overall 
performance in terms of RMSPE, the non-linear AR model is used for this 
analysis, as its parameters are more reliable. In particular, significant overall 
improvement in the fit of the autoregressive models over the nonlinear models 
(39%) and over the log-transformed models (49%) has been obtained. On 
average, the AR log-transformed models outperform the AR non-linear models 
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by 13%. However, the estimated coefficients of the AR log-transformed model 
for five of the 17 countries are not reasonable, suggesting that this model 
should be applied with caution, as its estimation results may not be reliable.  
 

The interpretation of parameter α is fairly straightforward, as it is a positive 
multiplicative parameter, and as such it can be considered as an indicator of the 
level of traffic safety in the country.  Naturally, these parameters are not always 

directly comparable, as the value of the second parameter β also affects the 
total number of fatality rate. As the base of the exponent term is the car 
ownership rate, which is usually less than one, a larger negative value implies a 
higher overall term.  
 
 

 
Figure 3.2.29. Interpretation of parameters (non-linear AR model) 

 
 
Combining these two observations, safer countries should be to the left and top 
of Figure 3.2.29 and less safe countries should be in the right and bottom. No 
countries are located in the lower right triangle of the plot, which is a reflection 
of the fact that the considered countries are developed and have a decent level 
of road safety. It is expected that developing countries may be located closer to 
the lower right corner of the plot. The least safe countries in terms of safety in 
Europe today are Greece and Portugal, and indeed the respective points are 
located closer to the right and top of the plot. Similarly, the United Kingdom and 
the Netherlands (two of the safest countries in Europe) are closer to the left and 



Chapter 3 – Time Series Analysis 
 
 

 

 

bottom. Therefore, this analysis (using a simple model and few explanatory 
variables) reflects the prevailing safety patterns, as evidenced by the literature 
on the subject. 
 

3.2.3.5. Conclusion 

 
The non-linear regression model has been presented, in relation to the linear 
regression model and the generalized linear model discussed above. 
Extensions of the non-linear regression model that correct for correlation of the 
disturbances have also been presented and applied to the estimation of fatality 
rate for 17 European countries.  
 
A simple non-linear regression model has been fitted first, and the model 
diagnostics have been scrutinized to identify correlation of residuals and 
determine an appropriate line of action to correct for it. An autoregressive model 
has been selected and the approach to incorporate it into the non-linear 
regression model has been shown. The results of the autoregressive non-linear 
regression model have been presented. The model diagnostics demonstrate 
that the correlation of the disturbances has been effectively dealt with. An 
interesting finding is that Smeed’s widely used relationship may produce serially 
correlated residuals, which –however- can easily be remedied by the presented 
auto-regressive models. 
 
While a single global recommendation about a “best” model cannot be made 
based on the presented analysis, these results indicate that the autoregressive 
non-linear model generally outperforms the other models, while also 
overcoming the issue of serially correlated disturbances.  
 
The ability to predict traffic safety trends is useful in setting and evaluating road-
safety targets, policies and initiatives. The predictions obtained by the presented 
models can be used to evaluate the traffic safety performance of various 
countries, identifying poor performers, as well as traffic safety leaders. Given 
predictions of a country's expected performance, the actual traffic safety 
performance of that country over the past few years may be assessed. 
Furthermore, the study of more advanced (in terms of traffic safety and in 
general) countries may be applied to predict the evolution of less developed or 
successful (in terms of traffic safety) countries.  
 



 

3.3 Dedicated time series analysis in road safety 
research 

Ruth Bergel (INRETS) 

 
We shall now focus on Gaussian processes, i.e.: processes having a normal 
distribution.  The types of models described in this section are dedicated at 
handling time dependence, and will be discussed in more detail in the following 
Sections 3.4 to 3.6. 
 
Time series models are defined in several specific manners, depending on the 
point of view adopted. 
 
Technically speaking, a random process can be regarded as being made of a 
certain number of components. Whereas only the process can be observed - 
through a sample of observations - its components can only be estimated with a 
model’s help. Thus, the unobserved components models are meant to provide 
estimates of each of these components, which it is not generally the case for a 
model meant to provide an estimate of the observed component only.   
In the case the unobserved components are estimated, the main components 
(all components to the exception of the irregular component, which is stochastic 
by nature, see 3.3.1) can be estimated while treated as being deterministic,  or 
as being stochastic: thus, deterministic vs  stochastic components will be 
considered. 
At last, note that for different reasons the observed process may be 
pretransformed before being modelled: in the case the transformation is a filter 
of differences, filtered or integrated components will be considered. 
 
Summarising these concepts, the following types of Gaussian times series 
models can be given: 
 

- models with deterministic main components (decomposition model with 
deterministic trend/seasonality for instance.)   

- models with stochastic main components (decomposition model with 
stochastic  trend/seasonality for instance.) 

- models with integrated components (integrated model). 
 
The basic structure of these models can be enriched in different ways, in order 
to bring additional information, related to the past of the observed process, or 
related to other processes. The reference to the past of the process is 
performed by introducing autoregressive/moving average parts, whereas the 
reference to the environment is performed by introducing other (explanatory) 
variables. Finally, the form itself of the model, which generally is linear with 
respect to the the parameters and components, might also be enlarged by 
introducing non-linearity.  
 
However, the systemic-approach of road safety adopted by researchers since 
the beginning of the 1980’s aims at taking account of all explanatory risk factors 
and at assessing road safety measures (Hakim and al., 1980), and at focusing 
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on explanatory time series models.. As this research direction still holds and 
has been enforced, the main distinction retained in section 3.3 is the distinction 
between mere descriptive models and explanatory models (the second group 
being an extension of the first one, as it will be demonstrated below).  Within 
each of these two groups,  the basic model structures defined before hold, but 
the focus in this chapter will be on decomposition models - whether with 
deterministic or stochastic main components - , on the one hand, and on ARMA 
and ARIMA models on the other hand.  
  
The plan retained in Section 3.3 is as follows. The main distinction between 
descriptive and explanatory models is first introduced in a general manner, 
without reference to the road safety field, in Section 3.3.1; the methodological 
framework for understanding time series analysis in the road safety context is 
then recalled in Section 3.3.2, and a brief overview of time series analysis, as 
performed since the beginning of the 1980’s in road safety research, is given in 
Section 3.3.3.  In the concluding Section 3.3.4, the models main features are 
summarised.   

3.3.1 Types of models 

Two main kinds of models are usually distinguished, when one aims to 

formulate the evolution over time of a stochastic43  process )( tY , for t being 

1,2,3,…, having a number of observed values of the process - a sample of 

observations : ),...,,( 21 nyyyY =  - at hand. The descriptive models on the one 

hand - they will be defined here as models for which the only exogenous 
variable used is time, which is thus not considered as an explanatory variable - , 
and the explanatory models on the other hand - models which do on the 
opposite use exogenous, also called independent or explanatory44 , variables.   
The different types of models, whether descriptive or explanatory, will be 
recalled and summarized in Table 3.3.1.  

3.3.1.1. Descriptive models 

Descriptive models take account for the trend/seasonal/irregular decomposition 

of the process tY .   Here again, two main kinds of models are considered :  

decomposition models on the one hand, which adjust for each of the 
components by explicitly modelling it, often modelled using state space 
methodology, and ARMA and ARIMA models on the other hand, which adjust 
for the irregular component, after the process has (if necessary) been filtered in 
such a way as to remove its trend and seasonal components.  

3.3.1.1.1. Decomposition models 

Descriptive decomposition models can be written, in the simple case of an 
additive decomposition, as  

                                            
43

 The process )( tY  is stochastic, or random, in the sense that the values taken by tY  are 

under measurement errors. 
44

 “Explanatory”  as being used in an explanatory model 
“Explanatory variable” is used here in the general acception, and no difference is to be made 
yet between pure explanatory and intervention variables (as it will be made in Sections 3.4 to 
3.6) 
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tttt uSTY ++=    (3. 3.1) 

 

with:   tT  the trend of the process tY ,  

tS  the seasonal (periodic) component45, 

and tu  the random component (also called irregular component), 

assumed to be stationary46.  
 

These unobserved components, emerge very naturally: the long term 

tendency tT , the seasonal component tS  and the random residual component 

tu .  

 
   

 

Figure 3.3.1: The monthly number of UK-KSI drivers, for the period January 1969 - 
December 1984 - original data and unobserved components. The sample process 
(green line), the trend (blue line),  the seasonal component (grey line) and the irregular 
component (violet line). 

Figures 3.3.1 and 3.3.2  describe the development of the unobserved 
components, as obtained with SPSS, of the two seasonal data sets modelled in 
the following sections: the monthly number of drivers killed and seriously injured 
in the UK (UK-KSI drivers), for the period January 1969 - December 1984, and 
the monthly number of fatalities in France, for 1975-2001. 
 
                                            
45

 the sum of the seasonal component terms within a season (period) is also zero 
46

  its mean, variance and covariance structure are constant over time (see a precise definition 
in 3.4.2.2), and moreover its mean is zero. 
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The data (green line) are the sum of the trend (blue line), of the seasonal 
component (grey line) and of the irregular (violet line).  
The data corrected for the seasonal component are the so-called seasonal 
corrected, or seasonal adjusted data.  
Once they are also corrected for the irregular component, only the trend 
remains.. 
 
Of the three unobserved components, interest goes first to the trend. The trend 
is often thought as a function of certain variables, which determine it, although 
these variables can not always be quantified easily. In such cases, the trend is 
modelled with a deterministic form, and is qualified as deterministic - the same 
approach being retained for the seasonal component.  
 
But the trend can also be considered as a random walk (Harvey, 1989). The 
same remarks apply to the seasonal component. The structural modelling 
proposed by Harvey is another form of the decomposition previously described, 
in this case, the trend and the seasonal component may also be random. In 
such cases, the trend and the seasonal are, as the irregular part of the model, 
subject to random fluctuations. This approach is taken in most of the state 
space models presented in this document (see Section 3.6). 
 
At last, it should be mentioned that a more general model can be retained for 
the decomposition of the process as a function of its unobserved components: If 
it is not additive, as in (3.3.1), the decomposition form can be multiplicative or 
semi-multiplicative accordingly to the Census decomposition method’s available 
options (Dagum, 1980). 

 

 

Figure 3.3.2: The monthly number of fatalities in France, for the period 1975-2001. For 
explanation see Figure 3.3.1. 
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3.3.1.1.2. ARMA and ARIMA models 

The descriptive autoregressive and moving average (ARMA) models focus on 
describing the dynamics (the relationship between its values at different time 

points) of the stationary sample process ),...,,( 21 nyyyY = . This relevant 

property of stationarity allows separating tY  in two parts: the one related to the 

past at time t, and the part that is new at time t - which is therefore called the 
« innovation » - .in such a way that this later component is a white noise47, and 
is therefore called the innovation white noise. 
 

Thus, the value taken by the process at time t: tY , can be expressed as a 

function, and more precisely as a linear combination of its passed values 1−tY , 

2−tY , ...  , and of the innovation white noise tu . For parsimony reasons, as 

different equivalent formulations can all be retained for describing the process 

dynamics, the formulation currently chosen48 is that tY  is expressed as a linear 

combination of a small number (p) of its past values, and of a small number (q) 
of the past values of the disturbances.  
 
This can be written the following way: 
 

 qtqttptptt uuuYyY −−−− ++++++= θθφφ ..... 1111 , (3. 3.2) 

 

with:  1φ , 2φ , .., pφ , 1θ , 2θ ,.., qθ  p+q real values, 

 and tu  the innovation disturbance, 

  

The fact of knowing the dynamics of the process enables to extrapolate it 
without any call to additional variables, assuming that the dynamic’s structure 
will stay unchanged in the future, at least at the forecast’s horizon (hence we 
need to assume the process is stationary).  The reference to the near past 
makes the model adaptive. 
 
In the general case where stationarity cannot be assumed, it is convenient to 

assume that another stationary process exists, which is derived from tY  by 

removing its trend and its seasonal component. An easy manner for doing this, 
as recommended by Box and Jenkins in 1976, is to apply a so-called filter of 

differences49 to the process tY , as many times as necessary until the result, the 

filtered process, can be considered as fulfilling the property of stationarity, and 
therefore be fitted with an ARMA model itself. This comes to removing the trend 

                                            
47

 see a precise definition in 3.4.2.2 
48

 see a precise definition in 3.4.2.2 or in (Box,Jenkins, 1976) 
 
49

see a definition of the difference filter as a function of the backshift operator B in 3.4.2.2 
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and seasonality from a non stationary process, in other words to solving the first 
order non stationarity50. The fact that the filtered or integrated process obtained 

by applying an appropriate filter of differences to tY  is fitted with an ARMA is 

equivalent to say that tY   is fitted with an ARIMA (or integrated ARMA). 

 
The second order stationarity can also be obtained by deriving another process 
from the initial one. The logarithmic transformation is therefore currently51 
applied to the initial data in order to stabilizing their variance.  
 

3.3.1.2. Explanatory  models 

3.3.1.2.1. Explanatory variables 

In this subsection, exogenous - also called independent or explanatory - 
variables will be considered. Note that other terms, such as “predictor” or 
“regressor” are also commonly used, when a specific role is expected from 
them. 
 
Several data sets of different nature will now be considered, and used within 
one and the same model: 
 

- the observations of the endogenous stochastic process, i.e. the 

sample of data ),...,,( 21 nyyyY =  

- the values taken by the k exogenous variables itZ , i=1 to k, assumed 

to be known. 
 
It is natural to distinguish several kinds of exogenous variables, depending on 
whether they affect the trend, the seasonal component, or the irregular 

component of the process tY .Moreover, effects of exogenous variables can be 

local - over time (the effect may be 'short-lived') - , or permanent. It seems quite 
natural, again, to distinguish the dummy variables, which are created (outside 
the model) as witnesses of a local, isolated or repeated, effect usually having 
values zero or one, and the variables of measure of a phenomenon (of which 

the value is actually measured), assumed to be linked with the process tY , and 

which may have a permanent effect. As an example, climate and calendar 
variables can be used for modelling the seasonal component, or the residual; 
the variables used to model the trend are of a different nature, insofar as one 
can expect their effect to extend over time. 
 

                                            
50

 There are different ways for removing the trend a non-stationary process: the trend itself 
being modelled, as a function of time for instance. 
51 Among other transformations (see section 3.5). In case an independent variable is added in 
the model, the form of the relationship between the dependent and the independent should be 
fixed accordingly to the knowledge of existing additive or multiplicative effects. 
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The explanatory time series models take into account the relationship  between 

the endogenous variable tY  and exogenous or explanatory variables - gathered 

in a vector  of the k exogenous variables )',...,,( 21 ktttt ZZZZ =  

   

For instance, in the case in which there are two explanatory variables, tY  will be 

expressed as a linear combination of tZ1  and tZ2  . The residual 

ttt ZZY 2211 ββ −−  of the regression of tY  on tZ1  and tZ2  will be noted tYC , and 

modelled as described in the previous subsection. 
 
For the commodity of the coming formulation, the function g will be used in the 
general case where there are more than 2 exogenous variables, for 

representing the relationship between tY  and  )',...,,( 21 ktttt ZZZZ = , and l=1 to k. 

 
Explanatory models can be seen as descriptive models to which exogenous 
variables have been added, and thus can also be classified as either 
decomposition models with explanatory variables, or ARIMA models with 
explanatory variables. 
 
We shall now address these two kinds of models. 

3.3.1.2.2. Decomposition models with explanatory variables  

The decomposition models with explanatory variables can generally be written, 
in the case of an additive decomposition, as  
 

tttttt uSTZgYYC ++=−= )(  (3.3.3) 

 

with:   tYC  the process corrected for the exogenous effects, 

  tT  , tS   and tu  the trend, the seasonal component and the  

   random component of tYC . 

 
A basic example is the regression model, of the dependent variable - or 
endogenous variable - on explanatory variables - or exogenous variables, 
described in Section 3.2.1. The exogenous variables can account for the trend, 
for the seasonal component, or for the residual. For instance, in the case of 
periodic data, the regression model will contain dummy variables in order to 
model the season (the day, the month, the quarter month),   
 
Harvey’s structural model with explanatory - and intervention - variables is 
another kind of stochastic decomposition model more general than the basic 
structural model, mentioned before.   

3.3.1.2.3. ARMA and ARIMA models with explanatory variables  

The ARMA and ARIMA models with explanatory variables can generally be 
written as 
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qtqttptptt uuuYCYCYC −−−− ++++++= θθφφ ..... 1111  

 )( ttt ZgYYC  -=      (3.3.4) 

 

with:  tYC  the process corrected for the explanatory variables,  

  and  tu  the innovation disturbance of the process tYC  . 

 

In that general specification, tY  and  )',...,,( 21 ktttt ZZZZ =  l=1 to k. may have been 

pretransformed (filter of differences, logarithmic transformation, ..) in such a way 

that tYC  can be assumed to be stationary. 

 
ARMA or ARIMA models with explanatory variables can also be seen as 
regression models with ARMA or ARIMA residuals, the two formulations being 
equivalent. It is relevant to determine whether the exogenous variables do have 
an effect on Y or on the variations of Y, after the trend and the seasonal 
components have been filtered out. 
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Descriptive models      Explanatory models  
 
 
Decomposition models      Decomposition models with explanatory variables 

),,( tttt uSTfY =        ),,()( tttttt uSTfZgYYC == -  

   
 
Autoregressive models      Autoregressive models with explanatory variables 

)..,,( ,.21 tttt uYYfY --=        ),..,,()( 21 tttttt uYCYCfZgYYC −== --  

           
 
Autoregressive and moving average models Autoregressive and moving average models with explanatory variables 

..),..,,( ,1,.21 --- ttttt uuYYfY =       ..),,..,,()( ,121 −−== ttttttt uuYCYCfZgYYC --  

 
 
and, as extensions: 
Integrated autoregressive and moving average models Integrated autoregressive and moving average models with explanatory 
(ARIMA models)       variables (ARIMAX models) 
           

Table 3.3.1: Types of models. 
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3.3.2 The methodological framework 

In this section, we recall the methodological framework which enables us to 
quantify the influence of the different factors related to the transport system, to 
mobility, and to road safety’s economy on road risk (Lassarre, 1994).  
We address aggregated time series - on an annual, monthly or daily basis.  The 
dependent variables are in all cases aggregated at a territory’s or at a network’s 
level, or aggregated according to a typology of injury accidents or victims.  

3.3.2.1. The diagram of production of the risk 

Risk analysis is based on the exposure/accident/victim triad. 
 
We have to distinguish between: 

- Two types of road risk : the accident’s risk, and the risk of being a 
victim (killed, seriously injured, lightly injured) of an accident,  

- And three levels of risk: risk exposure, accident’s risk, and accident’s 
gravity. 

 
Risk indicators and risk factors are defined at the three levels of this framework.  
 

3.3.2.2. Risk indicators 

The usual, but not always available, measure of risk exposure is an indicator 
which measures the traffic volume: the mileage, measured in number of 
vehicle kilometres driven on a road network.  
 
The accident rate (number of injury accidents in a billion of vehicle kilometres) 
is usually retained to measure the accident’s risk on a network; but, in order to 
overcome the hypothesis that the number of accidents would be proportional to 
the traffic volume, an absolute number of accidents is also retained, but is 
then mostly considered as being a non-linear function of mileage52.  
 
Finally, the indicators that measure accident’s gravity are like the fatality rate, 
i.e. the number of victims (fatalities, seriously injured, slightly injured) by 
accident; one may prefer to measure directly the absolute number of victims, 
but it will then be considered as depending on the number of accidents, or 
directly on the traffic. 
  
It may be noted, at that stage, that the absolute numbers of accidents and 
victims are also considered as accident’s risk and accident’s gravity indicators. 

3.3.2.3. Risk factors 

Risk factors are classified either as internal (to the transport system) factors, 
related to the vehicle, to the driver and to infrastructure; or as external factors, 
representing the environment, and related to the climatic, economic, 
demographic and legislative systems (Gaudry, Lassarre, 2000). 

                                            
52

 The same remark applies to the risk of being killed (or fatality rate, i.e. the number of fatalities 
in a billion of vehicle-kilometres).  
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3.3.2.4. Towards an explanatory approach 

Since the beginning of the 1980’s, time series analysis in the road safety field is 
directed at taking into account all explanatory factors of accidents frequency 
and gravity, and at assessing road safety measures (Hakim and al., 1990). 
Descriptive models have been followed by explanatory models - models with 
explanatory variables - , built on the basis of a rich economic formulation, with 
an elaborate econometric specification. 
  
By examining the numerous models proposed for aggregate accident data of 
European countries, it appears that they differ on the necessity of taking into 
account an important number of explanatory factors, and on the nature of the 
models that should preferably be used.  The examples given now illustrate the 
different approaches.  
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3.3.3 Applications in road safety  research 

Details about the examples of road safety analysis given in this section can be 
found in (Cost 329, 2004), and additional references can be found at the end of 
the Methodology Report   

3.3.3.1. Deterministic versus stochastic  

The purely descriptive models (without any explanatory variable, except for 
time) have mainly been used to model a road safety indicator: the fatality rate. 
The objective of these decomposition models was to adjust the trend as a 
function of time. The trend/residual decomposition retained on an annual basis 
is extended to a trend/seasonal/residual decomposition on a monthly basis. The 
trend, and the seasonal component as well, is deterministic or stochastic.  
 
Thus, on annual data, an example of a deterministic model is provided by Oppe 
(1993), who proposes an exponential decreasing trend for the fatality rate 

tR (the number of fatalities per billion of vehicle-kilometre): 

 

 )exp( batRt +=  

with:  
t

t
t

V

F
R = , 

 tF  the number of fatalities,   (3.3.5) 

 and tV the traffic volume. 

 

This form proposed for the trend of the fatality rate tR has been enlarged 

afterwards, and a transformation on the traffic variable was retained, to account 
for the non- proportionality of the number of fatalities to the traffic volume, the 
additional parameterη  representing  the elasticity of the number of fatalities with 

respect to  traffic: 
 

  )exp( t

t

t

V

F
µ

η
=   (3.3.6) 

 
In both previous cases, the trend of the fatality rate was modelled in a 
deterministic manner, as a function of time. The simplest function being the 

linear function batt +=µ  as in the first case. But the trend can also be random 

itself, in which case a specific error term is added to the model, for taking 
account of its randomness. More precisely, there are as many additional error 
terms as there are random components in the model. 
 
A stochastic form has been proposed by Lassarre (1997) for the temporal 

function tµ  , which becomes locally linear, that is to say by supplementing the 

basic structural model formulation: 
 



  3.3 Dedicated time series analyses in road safety research 

 

 

  
P r o j e c t  c o - f i n a n c e d  b y  t h e  E u r o p e a n  C omm i s s i o n ,  D i r e c t o r a t e - G e n e r a l  T r a n s p o r t  a n d  E n e r g y  

 

Page  243  

  

ttt

tttt

tttt LogVLogF

ξββ

ηβµµ

εµη

+=

++=

++=

1

11

-

-   (3.3.7) 

 
with β  the slope of the trend µ , 

ε ,η , ζ  white noises of variances 2

εσ , 2

ησ  and 2

ζσ , mutually non-

correlated.  
 
In the case of monthly data, a seasonal component is added, which can also be 
deterministic or stochastic. In fact, due to the larger number of data available on 
a monthly basis, additional parameters can be estimated - i.e. additional 
exogenous variables can be used - as this will now be discussed. 
 
As has just been seen, a descriptive model of the fatality rate may be 
considered as an explanatory model of the absolute number of fatalities, with as 
single explanatory variable: the traffic volume. This kind of explanatory model 
with a single exogenous variable has been enriched with additional variables, 
more or less numerous.  In fact, the real explanatory models take account of a 
larger number of risk factors. Examples of such models will now be described. 
 
It must be noted that the same formulation proposed for modelling the number 
of fatalities can also be used for modelling the number of accidents, as a 
function of the traffic volume and of additional variables.  

3.3.3.2. Regression versus ARIMA  

As an example of a decomposition model with a deterministic trend and with 
explanatory variables, we shall mention Scott (1986) who uses an ARIMA 
structure for modelling the monthly number of accidents in the United Kingdom 
from 1970 to 1978, after having first regressed the data on exogenous variables 
measuring the traffic volume, the petrol price, temperature, rainfall height and 
the number of working days (in fact a regression with an ARIMA residual); he 
then demonstrates that the ARIMA structure on the residuals of the regression 
can be omitted, subject modelling the trend and the seasonal component with 
the help of a time variable and of seasonal dummies, in the regression 
equation.: 

tttjt

j

jititt uXLogXSbtaY +++++++= ∑∑ 221log ωλλωββ
  

(3.3.8) 

  

with:  tY   the monthly number of accidents in the UK, 

 bta +  the trend, 

tS  the seasonal, modelled with 11 dummy variables, 

2,1, =iX i  :  the traffic volume for two kinds of vehicles and the petrol 

price,  

3,2,1, =jX j  : the two climate variables and the number of working days,  
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t1ω  and t21ω two dummies indicating the oil crisis of 1974 and the 

introduction of speed limitation in rural areas. 

3.3.3.3. State space models    

Among the different types of state space models, Harvey’s structural model with 
explanatory - and intervention - variables (1986) is a type of stochastic 
decomposition model more general than the basic structural model. Used on 
the number of drivers killed and seriously injured (KSI) in the UK, it included two 
explanatory variables itx  (the petrol price and the number of travel kilometres) 

which have an effect on the trend of ty , as well as the dummy variable ωt=1t≥τ  

which is used to assess the effect tλω  of the seat belt law. 
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with : tY   the monthly number of drivers KSI in the UK, 

 ε , η , ζ  et jtω white noises of variances 2

εσ  , 2

ησ , 2

ζσ and 2

ωσ , mutually 

uncorrelated. 
 
In an equivalent way but on annual data, the largest formulation proposed by 
Lassarre (2001) for the local linear trend model incorporates intervention 

dummy variables itω , jtω  and ktω  , which may modify the irregular component, 

the level or the slope of the trend of the number of fatalities : 
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Applied to aggregate data of several European countries, this formulation 
allowed to assess the effect of the main road safety measures. For France, the 
main measures taken in 1973 - the speed limitation and the seat belt wearing 
obligation - caused a significant drop of 17% from 1973 onwards, in the fatality 
rate. A drop of 9,3% in 1978 is caused by the introduction of random alcohol 
tests on the road.  
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3.3.3.4. ARIMA models  

One type of ARIMA model with explanatory variables is very often used on 
monthly data in the road safety field, in order to assess the effect of road safety 
measures. These models, fitted on monthly aggregate numbers of injury 
accidents and victims, generally take into account recognised exogenous 
effects - such as the effect of risk exposure, the climate influence with the help 
of one or two meteorological variables, and the calendar configuration influence 
- and the effect of specific road safety measures.  
 
As examples we shall mention the models proposed for aggregate data in Spain 
and France.  
 

In Spain, two variables of oil sales (gasoline and diesel) as a proxy for traffic, 
the number of week-end days in the month WEND and another intervention 
variable taking account for a great number of road safety measures gradually 

enforced from June 1992 off 92/6LS , were used for modelling the number of 

injury accidents tY  from January 1982 to December 1996 (Rebollo, Rivelott, 

Inglada Lopez de Sabando, in COST 329,  2004):  
 

  

tt

ttit

i
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BBN
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+++= ∑
  (3.3.11) 

 
The same econometric specification was used for modelling the aggregate 
numbers of injury accidents and fatalities in France. The models account for the 
mileage and the speed, but they mainly allow for assessing the safety measures 
enforced during the period. It’s the case of the first speed limitation of 1973, of 
the oil crisis of 1974, of the legislation of 1978 introducing random alcohol tests 
on the road (Lassarre, Tan, 1981, 1982, 1989).  
 
Other models of the same type were also proposed for modelling the number of 
injury accidents and fatalities on the main network categories in France: A-level 
roads and motorways, secondary roads and urban roads, with the help of 
climate and calendar variables for taking account of transitory factors as well 
(Bergel, Depire, 2004). 

3.3.3.5. Non linear models 

As can be seen, non-linear models have often been transformed into linear 
models, by applying a log-transformation to some of the variables, whether 
dependent or independent; this renders the model estimation easier. Other 
examples of dealing with non-linearity have been given in Section 3.2.3. 
 
The multiplicative relationship between exposure and casualties, and between 
exposure and fatalities, is generally accepted. It is worth recalling here, as an 
example, that the first aggregate model at a country’s level, proposed by Smeed 
(1949), relates the number of road injuries to the number of motorised vehicles 
and to the corresponding population (i.e. D, M and P respectively) in a 
multiplicative manner : 
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     3

1

2 )(MPcD =   (3.3.12) 

   
Other transformations may also be chosen, preferably to the Log-
transformation, and applied to the observed data. Let’s mention the three-level 
explanatory model constructed on a monthly basis, the DRAG-model (Demand 
for Road use, Accidents and their Gravity) proposed by Gaudry(1984), which 
relies on a multiple regression structure with auto correlated and 
heteroscedastic errors, and takes account for a type of non-linearity. The fact 
that numerous explanatory variables are introduced allows the trend and the 
seasonal component to be modelled, which thus do not need to be filtered. The 
use of the Box-Cox transformation allows a more flexible form (linear form, 
logarithmic form or a compromise) of the link between the endogenous variable 
and each of the exogenous variables. 
 
The generic model is written as follows: 
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  (3.3.13a) 

 

with:  tY  the endogenous variable to be modelled, 

 ktX , k=1 to K, the exogenous (or explanatory) variables, 

 tu  the first residual, and tV  the final residual, 

 tw  a white noise. 

 
and the Box-Cox transformation defined as a power transformation, of 

parameter λ , on any positive real variable tV  by: 
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 (3.3.13b) 

 
 

In that general formulation, the Box-Cox parameters Yλ ,
1Xλ ,.. 

KXλ  are 

estimated in addition to the other parameters kβ , mδ  and lρ , for k=1 to K, m=1 

to M and l=1 to L. 
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3.3.4 Conclusion 

In this introduction to dedicated time series models applied to road safety 
research, different types of models were defined. The need for a systemic, 
comprehensive approach - and the related methodological framework - are 
recalled. The major examples of aggregate time series modelling and analysis 
are given, and commented. 
 
As it has been seen, different kinds and different classes of time series models 
have been selected for modelling aggregate risk indicators, at a country’s level 
in Europe. The main difference between the models is the use of many versus 
few explanatory variables, but an important feature is their nature, whether 
deterministic or stochastic. The choice for a specific model is often governed by 
the purpose of the analysis, and unfortunately, often also by the availability of 
data. 
 
The following sections of the methodology address mainly ARMA-type models 
and state space models. Nevertheless, it will be demonstrated on real road 
safety examples that the fact that a model belongs to one of the classes, or to 
one of the categories referred to in this chapter, is not exclusive. 
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3.4   ARMA-type models 

Ruth Bergel and Mohamed Cherfi(INRETS) 

3.4.1 Introduction 

As it has already been emphasised, the dependencies over time of a stochastic, 

theoretical process )( tY , for t being 1,2,3,…., can be modelled in different manners. 

 
In a very special case of dependency over time - where the process in question 

)( tY  is stationary53- , it is very practical to use the class of ARMA (autoregressive 

moving average) models, which enables us to describe the dynamics of the 
process and to extrapolate it in the future, without any call on additional variables, 
and with the only assumption that the process dynamics will stay unchanged at the 
forecast’s horizon (see 2.2.1). 
 
Nevertheless, the processes with dependencies over time usually are not 
stationary, because of the presence of a cycle, of a trend, or of a seasonal 

component: the sample of observations ),...,,( 21 nyyyY = , can rarely be considered 

as a sample of realisations of a stationary process. In that general case, it will be 

assumed that another stationary process exists, derived from tY  by means of 

filtering, or by means of modelling before correcting for them, the non-stationary 

components of tY  with the help of additional variables.  It is this other stationary 

process, derived from tY , that will be modelled with an ARMA representation. In all 

cases, ARMA-type models will be used, which includes all the following cases: 
ARIMA models in the non-stationary case, ARMAX models in the case exogenous 
variables are used, and ARIMAX models in the non-stationary case and 
exogenous variables being used. 
 

In all these cases, a stationary process, derived from tY , will be considered, and its 

dynamics estimated with the sample of observations at hand; as in the traditional 
ARIMA case, the model will constitute a tool for monitoring and for forecasting as 
well, if the exogenous variables used can also be forecasted or if scenarios for 
their development in the future can be established.  
 
This section dedicated to ARMA-type models is structured as follows. 
In Section 3.4.2, several ARMA models, fitted on simulated stationary data 
samples, are described. The interest of this preliminary section is that the structure 
of these simple models is very similar to the structure of the more elaborated 
models that will be fitted in the following sections on real road safety data, as far 
as handling their stationary part is required.  
In Section 3.4.3, an ARIMA model is fitted on the annual number of road traffic 
fatalities observed in Norway for the period 1970-2003, as already described in 
Section 1.1.2 of the general introduction. 

                                            
53

 its mean, variance and covariance structure are constant over time (see a precise definition in 
Section 2.2.4.3.1.) 
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In the two following Sections 3.4.4 and 3.4.5, ARIMA models are fitted on 
seasonal monthly data, with very similar structures in the sense that in both cases 
independent variables are used. The first dataset consists of the monthly number 
of drivers Killed or seriously injured on the road in UK, for the period January 1969 
- December 1984, and the second one consists of the monthly number of fatalities 
registered in France, for the period January 1975 - December 2001. In both cases, 
the effects of several risk factors, of road safety measures and of special events 
were taken into account, and the related significant parameters were interpreted. 
In the last and concluding Section 3.4.6, a summary of the models results as 
obtained on the real road safety data of the chapter is given: the estimated 
parameters are interpreted and the goodness of fit commented. 
 

3.4.2 ARMA-models for stationary series (simulated data) 

3.4.2.1. Objective of the technique 

An ARMA-model is constructed for descriptive and forecasting purposes. It aims at 

giving account for the dynamics of a stationary process tY , when having a sample 

of observations ),...,,( 21 nyyyY =  at hand.    

 

3.4.2.2. Model definition and assumption 

A process ZtYt ∈)( , of second order54 is (weakly) stationary if its mean, variance 

and covariance structure do not depend on time: 
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   (3.4.1) 

 

The fist equation defines the fist order stationarity, and the two following equations 
define the second order stationarity.  
 

The constant covariance structure allows separating tY  in two parts: the one 

related to the past at time t, and the part that is new at time t, which has a white 

noise property. This latter part of tY  that is not correlated to its past is called 

« innovation » - as it is what is new to the process at time t -, and more precisely  

“innovation white noise” - as it is a white noise, due to the stationarity of  tY . 

 
There are different ARMA equivalent representations which could be retained for 
modelling a stationary process. Therefore, the “canonical” form, which is unique, is 

currently retained as the simpler manner for expressing tY  as a linear combination 

                                            
54

 Having a finite mean and a finite variance 
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of a small number (p) of its past values, and of a small number (q) of the past 
errors (or disturbances, as it will be explained later on).  
 
The canonical ARMA (p,q) representation: 

 

  jt

p

i

q

j

jtitit uuyY −
= =

−∑ ∑++=
1 1

θφ             (3.4.2) 

 
 is usually written in the following way: 

 

tt uBYB )()( Θ=Φ ,  (3.4.3) 

 
with: )(BΦ and )(BΘ  two polynomials55 of the delay operator B, of degrees p and 

q,  

 and tu  the « innovation » white noise. 

 
The backshift operator B  used in the previous representation is an operator on an 
element of a time series, that produces the previous element in time of that time 

series: 1−= tt YBY .  

 

Note that 21

2 )( −− === tttt YBYBYBYB , and so on. In particular, for a monthly time 

series, 121110

12 ...... −−− ==⋅==⋅⋅⋅= ttttt YBYBYBBYBBYB  yields the observation 

exactly one year before.  
 
Similar to classical polynomials, a polynomial of order p in B  can be written as: 

   p

pBBB φφφ +++=Φ ...)( 10 ,  

 

and, in the case 0φ   is 1, we have the unitary polynomial in B: 

 

   ptpttt

p

pttt YYYYBBYYYB −− +++=+++=Φ φφφφ ......1)( 111 .  

 
Please note that the polynomial representation described above is a convenient 
notation for specifying ARMA models - rather than higher mathematics. In the case 
of the canonical ARMA (p,q) representation, two unitary polynomials in B , 

)(BΦ and )(BΘ of orders p and q, are used: the first one is applied to the process 

tY  , and the second one to the innovation white noise tu .     

 
The few examples that are given now will help understand this representation.   

 

                                            
55

 Conditions are required from the polynomials of the canonical representation: to be unitary, with 

no common root, the roots of Φ  (strictly) outside the unit circle,  and the roots of Θ  outside the 

unit circle, see( Box, Jenkins, 1976). 
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3.4.2.3. Research problem and dataset 

Four stationary datasets have been simulated with the help of the following 

formulas, in which a Gaussian “white noise” ( ta   are independently normally 

distributed with mean 0 and variance 1 (N (0,1)) and  t = 1,…, 1000) was 
generated: 
 

38.0 1 ++= − ttt aYY       (3.4.5a) 

33.05.0 21 +++= −− tttt aYYY     (3.4.5b) 

56.0 1 +−= −ttt aaY       (3.4.5c) 

86.03.05.0 1221 +−=−− −−− ttttt aaYYY    (3.4.5d) 

 
The four fsample processes are, as constructed: 

- two autoregressive of order 1 and 2 processes,  
- a moving average of order 1 process, 
- an autoregressive and moving average of orders 2 and 12 process.  

 
Figures 3.4.1 to 3.4.4 describe the development over time of the 200 hundred first 
values of the sample processes. 
 

  
Figure 3.4.1: Plot of the simulated AR (1) process with parameter 0.8 

 

 
Figure 3.4.2: Plot of the simulated AR(2) process with parameters 0.5 and 0.3 
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Figure 3.4.3: Plot of the simulated MA(1) process with parameter 0.6 

 

 
Figure 3.4.4: Plot of the simulated ARMA(2,12) process with parameter 0.5, 0.3 and 0.8 

 
 
The property of stationarity can be briefly described by the fact that, whatever the 
initial values of a process are, the values it takes will rapidly reach a certain level 
(its mean) and stay around it, and vary constantly around that mean. This can be 
observed in Figures 3.4.1 to 3.4.4. 
 

3.4.2.4. Model fit 

3.4.2.4.1. Identification 

The model identification (choice of the two integers p and q) is performed by 
examining both the autocorrelation function (ACF)) and the partial autocorrelation 
function (PACF) plots (see Box and Jenkins, see also Section 3.2.1). 
 
The model identification is classically performed in two stages: 

- First by fitting a pure AR (of order p0), and a pure MA model (of order q0). 

- Second, by fitting the parsimonious canonical ARMA(p,q) as satisfying the 
condition: (p<=p0,q<=q0). 

The first stage is the difficult part of the identification, as theoretical properties are 
tested for determining the orders of the pure AR and MA specifications. 

Autoregressive processes of order p0 have exponentially (or sinusoidal) decaying 
AC values, and their PAC values of order larger than p0 are zero. Moving average 
of order q0 have exponentially (or sinusoidal) decaying PAC values, and their AC 
values of order larger than q0are zero. 
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In practice, the hypothesis of nullity of an AC (or PAC) is rejected when the 95% 
level confidence interval, centered on the estimated AC (or PAC) value, does not 
include zero. But the risk of rejecting the nullity hypothesis, and thus of considering 
as significant an AC (or PAC) value which should not be considered as significant, 
leads to over parameterised and mis-specificated models. Therefore, the decision 
of rejecting the nullity hypothesis should be taken cautiously, and the test 
confidence level should preferably be lowered in practise. 
 
The related ACF and PACF plots, used for identifying the four models which will 
be fitted on the simulated datasets, are summarised in Figure 3.4.5.  
 
In the three first cases of Figure 3.4.5, the classical patterns of two autoregressive 
processes and of a moving average process are found, indicating that there is no 
need for further identification. The exponential (or sinusoidal) decay appears to be 
more or less obvious, but the relevant information has to be taken where it 
appears to be highly significant, whether from the ACF plot or from the PACF plot. 
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Figure 3.4.5:  ACF and PACF plots of the simulated samples (Summary), 
 

 
 
Note that in the particular case of a seasonal process of period s, the seasonal 
part of the model is often separated from the non-seasonal part, in a multiplicative 
manner. In that case, the four integers of the seasonal part (P and Q) and of the 
non-seasonal part (p and q) have to be determined. In the last case of Figure 
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3.4.5, the seasonal pattern and the non-seasonal (short term) pattern are to be 
visually considered separately.  
 

3.4.2.4.2. Estimation 

For each model, the p+q +1 (the p iφ  and q jθ  , for i=1 to p and j=1 to q, and in 

addition the variance of the residuals) parameters are then estimated by means of 
maximising the log likelihood function, which comes to minimize the sum of the 
squares of the residuals. 
 
The estimation results are given in the following Table 3.4.1, and will be 
commented in 3.4.2.5.2.  
For efficiency reasons, the initial values of each simulated sample have been 
excluded from the sample on which the model was fitted.. 
 

 Estimate SE t Sig. 

Constant 15,058 ,172 87,751 ,000 Y-Model_1 Y Simulated AR(1) sample 

AR Lag 1 ,809 ,019 42,690 ,000 

 
 Estimate SE t Sig. 

Constant 15,066 ,169 89,408 ,000 

Lag 1 ,543 ,031 17,407 ,000 

Y-Model_1 Y Simulated AR(2) sample 

AR 

Lag 2 ,263 ,031 8,426 ,000 

 
 Estimate SE t Sig. 

Constant 5,006 ,013 373,354 ,000 Y-Model_1 Y Simulated MA(1) sample 

MA Lag 1 ,586 ,026 22,715 ,000 

 
 Estimate SE t Sig. 

Constant 39,996 ,039 1035,172 ,000 

Lag 1 ,540 ,031 17,271 ,000 AR 

Lag 2 ,259 ,031 8,265 ,000 

Y-Model_1 Y Simulated ARMA 
(2,12) sample 

MA, 
Seasonal 

Lag 1 ,772 ,021 35,904 ,000 

Table 3.4.1: Estimation results - Models fitted on the simulated samples.  

 
At that point, two relevant outputs are available: the” estimated” series on the one 
hand - also called” fitted” , “adjusted” or “predicted” series -, and the “residual” 
series on the other hand, over the estimation period. Note that the first one is 
made of the one step ahead predictions; whereas the second one, which is the 
difference between the sample series and the adjusted series, is the best 

estimation of the innovation white noise, the part of the process tY  which is not 

correlated to the past of tY  at time t.  
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Figures 3.4.6 and 3.4.7 describe the development of these two series, in the case 
of the ARMA(2,12) sample. 
 

 
Figure 3.4.6: Plot of the simulated ARMA(2,12) process, and of the adjusted series 

 

 
 Figure 3.4.7: Plot of the estimated innovation white noise. 

 

3.4.2.5. Model diagnostics 

 

3.4.2.5.1. Validation and empirical performance 

Tests are used to validate the model, and criteria to evaluate the model’s empirical 
performance. These tests and criteria will be exposed first, and then the results 
related to the application case. 
 

Tests are used for validating the model  
 

A difference is to be made between the tests related to the residuals, and the test 
used for validating each parameter (Student’s test).  
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The test related to the residuals consist in testing the « white noise » property - ie 
mainly the non-correlation property (Ljung-Box’s test, for instance) – and the 
Gaussian property (Shapiro-Wilk’s or Kolmogorov-Smirnov’s test) of the error term 
of the model.  Among these properties, non-correlation is fundamental. If the 
assumption of normality is violated, the log likelihood computation can be 
compromised, but the estimators may nevertheless have good asymptotic 
convergence properties. However, it is fundamental that the assumption of non 
correlation of the residual is tested, because if it is rejected the model’s 
specification has to be changed 
 
In practice, all tests related to the residuals are not performed: the non correlation 
and the Gaussian property are tested, and in case they are not rejected, the 
independence of the residuals is assumed.  
 

Criteria56 are used for evaluating the model’s empirical performance.  
 

They relate to the model’s adjustment, or forecasting power. Let’s mention in the 
first group the proportion of explained variance (R-squared or stationary R-
squared), as well as the different criteria which enable to evaluate the estimation 
fit: the root mean square error (RMSE), and the widely used mean absolute 
percentage error (MAPE), and in the second group the Bayesian information 
criterium (BIC) or the Akaike information criterium (AIC), and the Bayesian 
criterium of Schwarz (SBC).  
 
Several models proposed for the same sample of data will be compared after the 
test and criteria, mentioned above, have been performed. Two nested models will 
be compared by using a likelihood ratio test, which can lead to a reduction in the 
number of parameters in an over-parameterised model.  
 
A practical question finally is, after the model has been validated, whether the 
model is stable over time. The parameters’ stability will be discussed by comparing 
estimations obtained from different samples of data covering different time 
intervals. The responses to the validation tests and empirical performance criteria 
might also differ with each new sample of data. 
 

3.4.2.5.2. Application cases 

In the example cases, the Student’s tests lead to conclude that all parameters 
were significant (the null hypothesis is rejected at the 95% confidence level).  
 
As for the tests performed on the model residuals, the hypothesis of non-
correlation, at each order, is accepted, as shown in Figure 3.4.8, and the 
hypothesis of global uncorrelation (from order 1 to 18) is also accepted, as shown 
in Table 3.4.2.  
 

                                            
56

 Whereas the R-squared, the RMSE and the MAPE are currently computed by all softwares, it is 
not allways the case for all information criteria (see the manual). 
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Ljung-Box Q(18) Model 

Statistics DF Sig. 

AR(1) 24,768 17 ,100 

AR(2) 23,066 16 ,112 

MA(1) 25,423 17 ,086 

ARMA(2,12) 24,731 15 ,054 

Table 3.4.2: Ljung-Box statistics (Summary)  
 

Note that no additional normality test was performed on the residuals, as the white 
noise used for simulating the datasets was generated as Gaussian. 
 
Finally, some criteria enabling to evaluate the model’s empirical performance are 
given in Table 3.4.3.  The model’s performance is lower in the case of the MA 
model, as the R-squared is at the lowest, around 25%, and the absolute error 
made on the estimation period, measured in mean and in percentage, takes its 
highest value, around 19%. The best performance is obtained for the ARMA 
model, with a R-squared value around 69%, and an average error around 2%. 
 

Fit Statistic AR (1) AR (2) MA (1) ARMA (2,12) 

R-squared ,655 ,574 ,249 ,685 

MAPE 5,531 5,513 18,592 2,052 

Normalized BIC ,053 ,061 ,049 ,071 

Table 3.4.3: Goodness of fit criteria (Summary) 

 

3.4.2.6. Model interpretation 

The small number of parameters of the autoregressive and moving average 
polynomials of the ARMA(p,q) canonical representation - three at the most, in the 
example given - enables to define the past of the process, and to determine its 
future. In this parsimonious expression, the (one step ahead) forecasted value of 
the process is determined with the only knowledge of a small number of past 
values and a small number of past (one step ahead) forecast errors. In the 
example given, the memory of the process is taken into account with the help of 
the two parameters 0.5 and 0.3, and the link with the past error with the help of the 
parameter 0.8. 
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Figure 3.4.8:   ACF plots of the models residuals (Summary). 
 
 

3.4.2.7. Conclusion 

In this section, ARMA models were fitted on four simulated stationary datasets of 
1000 observations from which, for efficiency reasons in the estimation stage, the 
first values where excluded. In each case, the model identification was described, 
the model estimation results were validated with the help of tests, and the model’s 
empirical performance evaluated with the help of criteria. The goodness of fit 
statistics showed very important differences among the datasets: the worse 
performance was obtained with the MA(1) model and the best one with the 
ARMA(2,12) model. 
 
It is worth mentioning that the estimated (dynamics) parameters were in all case 
significant, and very near to the real - and, in these cases, known - values. 
However, in practice, the fact that every parameter is subject to estimation errors 
and that a model is generally estimated with numerous parameters on a dataset of 
smaller size, may lead to lower the confidence level of significance tests. 
.  
 
In the following Sections 3.4.3 to 3.4.5, the ARMA structure of the models that will 
be fitted on real road safety datasets is similar to the one described in Section 
3.4.2.   
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3.4.3 ARIMA models for non seasonal series (Norway fatalities) 

3.4.3.1. Objective of the technique 

An ARIMA-model is, as in the preceding subsection, constructed for descriptive 
and forecasting purposes. It aims at giving account for the dynamics of a non 

stationary process tY , when having a sample of observations ),...,,( 21 nyyyY = .  

In this section, the general case of an ARIMA model will be considered, without 
any consideration of seasonality.   
 

3.4.3.2. Model definition and assumptions 

In the general case where tY  is not stationary, it is possible to apply a filter of 

differences to the process, in such a way that the transformed process  tY  defined 

as:  

  tYBF )( ,   

  with dBIBF )()( −= , B the delay operator and d a positive value, 

 

becomes stationary, and then model this transformed process tYBF )(  with an 

ARMA(p,q) model.  
 
In such a case, we shall have an ARIMA (p,d,q) representation for the non-

stationary process tY  : 

  tt uBYBFB )()()( Θ=Φ   (3.4.6a) 

 

Note that for d being 1, 11)1( −−=−=− ttttt YYBYYYB , so the approach above 

would in one turn change a linear trend into a stationary series. The integer d is 
often taken as 1, and is rarely larger than 2. Differencing twice would for instance 
turn a quadratic development into a stationary one.  

 

3.4.3.3. Research problem and dataset 

The dataset consists of the annual number of road traffic fatalities observed in 
Norway for the period 1970-200357, as already described in Section 1.2.2. of the 
general introduction The research problem consists in determining a time series 
model both for descriptive and forecasting purposes. In this particular case, the 
explanatory capacity of the model will not be addressed, as no additional 
independent variable will be used for modelling the sample observations. 
 

                                            
57 More precisely, the log of the annual number of fatalities will be the modelled 
data - and not the absolute annual number.  
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3.4.3.4. Model fit 

In the case of ARIMA models without any exogenous variables, the well known 
following stages are succeedingly considered: stabilisation, identification, 
estimation and validation, as described for instance in ( Box and Jenkins, 1976).  
The three last stages dedicated to stationary time series have already been 
described in 3.4.2. The first stabilisation stage is necessary every time the sample 
dataset is not a stationary one. An easy manner for doing this consists58 in 
applying a difference filter to the initial dataset, in such a way that the filtered 
dataset can be considered as stationary 
 
In the application case, one difference was applied to the initial log transformed 
data, and no presence of non stationarity could be detected in the ACF plot59, 
which led to accept the hypothesis that the one difference filtered data were a 
sample of a stationary process.  
 
The observation of both the ACF and PACF plot then led to retain a moving 
average model of order 1 to fit the filtered data. Finally, the model fitted on the log 
Norwegian fatalities is an ARIMA (0,1,1) model.  

 

3.4.3.5. Model diagnostics 

As indicated in Table 3.4.4, the moving average parameter ( 1θ ) was estimated at 

0,432 and the constant term at -0,020. In both cases, the result of the student test 
was that the hypothesis of nullity of these two (theoretical and unknown) 
parameters had to be rejected, at the usual 95% confidence level). 
 
As for the residuals, the hypothesis of nullity of each autocorrelation, from order 1 
to order 24, was to be accepted, as shown in Figure 3.4.9.  
Moreover, the hypothesis of global non correlation of the residuals was also 
tested. The Ljung-Box statistic provides an indication of whether the model is 
correctly specified, in the sense it allows testing the global nullity of the 
autocorrelation of the residual (from order 1 up to order 18).  The hypothesis was 
accepted, as the 0,510 value of the Ljung-Box statistic is more than 0.05, as 
indicated in Table 3.4.5. 
 
The normality of the residuals was graphically tested with the help of the histogram 
and of the QQ-plot, shown in Figures 3.4.10 and 3.4.11.  
Moreover, the non-parametric Kolmogorov-test was also performed on the 
residuals.  

                                            
58

 There are several manners for deriving a stationary dataset from the initial one: extracting the 
trend as a function of time, for instance, is currently performed. 
59 The property of stationarity can not be checked visually, because the sample length is generally 
too short to give the right overview of the dynamics of the process. Nevertheless, the presence of 
non stationarity can be detected visually: in the case of a stationary dataset, the autocorrelations 
should decrease exponentially after a certain order. 

 
 



Chapter 3 – Time Series Analysis 
 
 

 

 

In the case the Kolmogorov-Smirnov test is significant, the normal distribution of 
the residual hypothesis is to be rejected. This hypothesis was accepted, as the 
0,713 value of the Asymp. Sig. (2-tailed) is more than 0.05 (at the usual 95% 
confidence level), as indicated in Table 4.3.6. Therefore, the hypothesis of 
independence of the residuals is also accepted. 
  
The model’s empirical performance was evaluated by computation of different 
kinds of goodness of fit statistics, given in Table 3.4.7; but this evaluation really 
makes sense in the case several (nested) models have been fitted on the same 
data, and their empirical performance can thus be compared 
 
Due to the presence of the trend, the stationary R-squared is only 16,7% ( the 
model explains 16,7% of the variance of the filtered data, compared to a 
regression model), and much smaller than the R-square which is 78,9% (the 
model explains 78,9% of the variance of the initial data). 
  
As for the usual measure of the error made: the mean absolute percentage error 
(MAPE) is 1,36%, whereas its highest value observed on the estimation period is 
3,915%, 
 
At last, the normalized BIC, which is -4,413, is a goodness of fit measure that 
takes account of the parsimony of the model. Note that, as it is the case for the R-
squared, its interest lies in comparisons between several models, and not in its 
absolute value. 

 

3.4.3.6. Model interpretation 

In the case the initial data are filtered, to interpret the model’s parameters is not 
easy as the formulation is slightly more complicated. However, the same global 
interpretation can be given as in the preceding section, in the sense that the fitted 
value is a function of a small number of the past values of the process, and of a 
small number of the past forecast errors. 
, 
However, this ARIMA(0,1,1) representation has an equivalent local level 
representation, which will be described in Section 3.6 dedicated to state space 
methods. As such, the local level fitted on this dataset will be interpreted in Section 
3.6.1.  
 

As demonstrated in (Harvey, 1989), the relationship between the parameter 1θ  of 

an ARIMA(0,1,1) and  the parameter 2

2

ε

η

σ
σ

=q  of the local level model, is the 

following one: 
 

     ( )( ))2(4
2

1 2
1 +−+= qqqθ     (3.4.7) 

   
The two noise variances of the local level were estimated by using Ox/SsfPack, 

which led to q=0;0047026/0.00326838 and thus 1θ   was calculated to be -

0,32070152; this value is very close to the one estimated by SPSS, which is given 
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in Table 3.4.8 in the case of the ARIMA(0,1,1) model without constant term, and 

which is precisely 1θ =0,32069194. 

 
 

 Estimate SE t Sig. 

Difference 1    LNorv-Model_1 LNorw Norwegian Fatalities 

MA Lag 1 ,321 ,170 1,888 ,068 

Table 3.4.8: Estimation results for the ARIMA(0,1,1) model without constant term  

 

3.4.3.7. Conclusion 

In this section, an ARIMA (0,1,1) model was fitted on the log-transformed annual 
number of road traffic fatalities observed in Norway for the period 1970-2003.  
The models diagnostics were satisfactory, in the sense that all parameters were 
significant, and that the residuals could be considered as independent. 
 
At last, it was shown in this example that the ARIMA(0,1,1) representation is 
equivalent to a local level representation, of the class of state space presented in 
Section 3.6.  
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 Estimate SE t Sig. 

Constant -,020 ,010 -1,969 ,058 

Difference 1    

LNorv-Model_1 LNorw Norwegian Fatalities 

MA Lag 1 ,432 ,164 2,636 ,013 

Table 3.4.4: Estimation results for the ARIMA(0,1,1) model  

 
Ljung-Box Q(18) Model 

Statistics DF Sig. 

LNorv-Model_1 16,199 17 ,510 

Table 3.4.5: Ljung-Box statistic for the residuals of the ARIMA(0,1,1) model  
 

 Noise residual from 
LNorw-Model_1 

N 33 

Mean -,0009 Normal Parameters(a,b) 

Std. Deviation ,09744 

Absolute ,122 

Positive ,122 

Most Extreme Differences 

Negative -,078 

Kolmogorov-Smirnov Z ,699 

Asymp. Sig. (2-tailed) ,713 

Table 3.4.6: Kolmogorov-Smirnov statistic for the residuals of the ARIMA(0,1,1) model  

 
Fit Statistic  

Stationary R-squared ,167 

R-squared ,789 

RMSE ,099 

MAPE 1,362 

MaxAPE 3,915 

MAE ,080 

MaxAE ,230 

Normalized BIC -4,413 

Table 3.4.7: Goodness of fit criteria for the ARIMA(0,1,1)  
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Figure 3.4.9: The ACF plot of the residuals and their confidence interval. 
 

 
Figure 3.4.10. : The distribution of the residuals 
 

 
Figure 3.4.11.: The QQ-plot 
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3.4.4 ARIMA models for seasonal series (UK-KSI drivers) 

3.4.4.1. Objective of the technique 

In this subsection, an ARIMA-model with exogenous variables is constructed for 
descriptive, explanatory and forecasting purposes. It aims at giving account for 

both the dynamics of a non stationary process tY  and the influence of exogenous 

factors, when having a sample of observations ),...,,( 21 nyyyY =  at hand.  

In this section, seasonality of the process is considered, and treated in a 
multiplicative manner. 

 

3.4.4.2. Model definition and assumptions 

In the general case where tY  is not stationary and has a seasonal (periodic) 

component, the ARIMA (p,d,q) representation defined in (3.34a) can be extended 
to the more general ARIMA (p,d,q)(P,D,Q)s representation, in which the seasonal 
and non seasonal parts of the dynamics can be separated in a multiplicative 
manner : 
 

t

s

st

s

s uBBYBFBB )()()()()( ΘΘ−ΦΦ , (3.4.6b) 

 

with Dsd BIBIBF )()()( −−= , B the delay operator, d and D two positive values 

and s the periodicity of the seasonal process. 
 
In other words, first the seasonal pattern is removed, and then the remaining 
trend. Note that, In the case of this multiplicative ARIMA representation, 4 
polynomials in B will be estimated instead of 2. 
 
Moreover, when independent variables are introduced in the model, there are 
different manners of taking account of them. The following form is retained for 
commodity reasons, if the data corrected for the exogenous effects are stationary: 

 

t

K

i

itit WBZBYB )()()(
1

Θ=







Φ−Φ ∑

=

 (3.4.7) 

 
with:  Y the endogenous variable to be modelled (eventually filtered with a 
difference  filter F(B)), 

Zi the K exogenous variables (eventually filtered with difference filters Fi 

(B)), 
 W a white noise not correlated with the past Y and of the Zi ,  

and Φ �� iΦ ���Θ  polynomials in B. 
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Figure 3.4.11: The monthly number of UK-KSI driver, for the period January 1969 - 
December 1984.  

 
In this specification, the endogenous variable and the K exogenous variables are if 
required filtered with difference filters F(B) and Fi (B), but it may as well not be 

necessary, if the exogenous variables help to correct for the trend and the 

seasonality of the process )( tY  . 

 
The main assumption is the stationary of the data, corrected for the exogenous 
effects, as written in the general specification (3.4.7).  
This hypothesis of stationarity is tested on the residual of the model, which is a 
white noise if this hypothesis is valid. 

 

3.4.4.3. Research problem and dataset 

The example retained in this section is the one described in (Harvey, Durbin, 
1986). 
The dataset consists of the monthly number of drivers, killed or seriously injured in 
the UK, for the period January 1969 - December 1984 (UK-KSI drivers), described 
in figure 3.4.11. Three exogenous variables (an intervention variable and two 
explanatory variables) will be introduced in the model in two successive steps. 
The intervention analysis takes account for the obligation, from February 1983 
onwards, for motor vehicle drivers and front seat passengers to wear a seat belt: 
thus, an intervention variable, equal to 1 from February 1983 onwards, and equal 
to 0 before, was constructed. 
The two explanatory variable are:  the monthly car traffic index (more precisely the 
monthly number of vehicle-kilometres driven by cars in the UK), and the monthly 
prices of petrol in UK; for the period January 1969 - December 1984. 
Note that this dataset is the one used in Section 3.6.3. for fitting a local linear trend 
plus seasonal model of the class of state space models. 
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3.4.4.4. Model fit 

When exogenous variables Zi are introduced into ARIMA models, it is not feasible 
to consider the usual stages (stabilisation, identification, estimation, validation) 
before the functional form between Y and each exogenous variable Zi has been 
established, because a preliminary estimation of the exogenous effects has to be 
obtained, so that the stationarity of the process, corrected for the exogenous 
effects, can be evaluated.  
In practise, an econometric specification is retained, all parameters are estimated 
together, whether related to the endogenous or exogenous variables; and the 
diagnostic tests, carried out after the model has been estimated, replace the two 
first stages (stabilisation and identification) which could not be considered before. 
 
The results obtained after estimating the model  (3.4.8) are given in Table 3.4.9.  
 

 ttti

I

i

it aBStepLogZYBIB )(log)12)(( ,

1

Θ+=







−−−Φ ∑

=

µα   (3.4.8) 

 

with: Y the number of UK-KSI drivers, 

toIiiZ 1, =  the car traffic index and the petrol price, 

tStep  a dummy variable equal to 1 starting February 1983  and to 0 

before, 
)(BΦ and )(BΘ , two polynomials of the delay operator B,  

  and ta  a white noise. 

 

3.4.4.5. Model diagnostics 

The hypothesis of nullity of the model parameters is rejected (at the 95% 
confidence level), except for the log of the traffic index variable parameter: Thus, 
all parameters related to the dynamics are to be considered as different from zero, 
and the petrol price parameter and the intervention parameter too. 
Note that, in case the confidence level is lowered to 70% for instance (t-value 
between 1 and 2), the parameter related to the traffic index variable would also be 
considered as different from zero. 
 
The hypothesis of global non-autocorrelation of the residuals is accepted, and the 
hypothesis of normality of the residuals is accepted too, as can be seen from 
Tables 3.4.10 and 3.4.11, which therefore enables to accept the independence 
hypothesis.  
 
Regarding the model fit criteria given in Table 3.4.12, the stationary R-squared is 
only 59,0% ( the model explains 59,0% of the variance of the filtered data, 
compared to a regression model), whereas the R-square is 80,2% (the model 
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explains 80,2% of the variance of the initial data); the mean absolute percentage 
error is 0,902% %, its highest value observed being 3,841%, 

 

3.4.4.6. Model interpretation 

The dynamics estimated is related to the corrected for exogenous effects process, 
the one that is assumed to be stationary. It is worth noting here that, at the 
difference of the well-known “airline model” structure proposed by Box and 
Jenkins60, for which the filter )12)(( BIBI −−  was applied to the log transformed 

data, the simple filter )12( BI −  in (3.4.8). 

 
As for the exogenous part, it’s natural to try to interpreter the relationship61 

between the exogenous variables itZ , i=1 to k and the endogenous variableY , 

regardless of the dynamics. 
 
In the application case, a special effort is to be paid to the three exogenous effects 
parameters. As this dataset has already been used for fitting state space models, 
estimations for these three parameters were already given (Harvey, Durbin, 1986). 
 
Thus, since the intervention parameter is estimated at -0,163, and due to the 
relation exp (-0,163) =0,85, the reduction in the number of drivers killed and 
seriously injured in the UK February 1983 onwards is estimated at 15%. 
 
The two other parameters are (constant) elasticity values : the elasticity value of 
the number of drivers killed and seriously injured  with respect to the traffic volume 
index is estimated at 0,134 (at the 70% confidence level), whereas the elasticity 
value of the same indicator with respect to the petrol price is estimated at -0,297 
(at the usual 95% confidence level). In the case the traffic index is not kept in the 
model, this later elasticity value is estimated at -0,323, which is not very different 
from the preceding estimation, whereas the other parameters vary very little. 

                                            
60

 This model was fitted on the monthly number of international airline passengers in thousands, for  
1949- 1960, series G in (Box, Jenkins, 1976) 
61

 Apart from commenting on the value of the parameter iβ  of the variable Zi , the interest often 

goes to the related elasticity function, given by: 
)(

)(

iLogZd

LogYd
.  

For small variations of iZ , at a given time, the following formulation for the elasticity of the 

endogenous variableY  with respect to an exogenous variable iZ ,is used:  

 

i

k

ZiY

Z
Z

Y
Y

∆

∆
=/ε . 

 

In the very special case where both variables have been log transformed, the parameter iβ  indeed 

represents the elasticity ofY with respect to Zi , which is then constant. But it is important to note 

that one does generally comment an « apparent elasticity » ofY  to Zi , because the condition of 

mutual orthogonality of the exogenous variables itZ , i=1 to k, is rarely valid. 
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With a state space model fitted on the same dataset, Harvey and Durbin estimated 
at 23% the reduction in the number of drivers killed and seriously injured in the UK 
February 1983 onwards and at -0,31 the elasticity value of the number of drivers 
KSI in the UK with respect to the petrol price - whereas the traffic index effect 
appeared to be non significant, far beyond the 70% confidence level.  

 

3.4.4.7. Conclusion 

In this section, a multiplicative ARIMA (2,0,0)(0,1,1)12 model was fitted on the log 
transformed monthly number of drivers killed and seriously injured in the UK, for 
the period January 1969 - December 1984 (UK-KSI drivers). 
The effect of the obligation of wearing a seat belt in the UK, from February 1983 
onwards, for motor vehicle drivers, was investigated by the call of an intervention 
variable. The effects of the risk exposure and the petrol price variations, were also 
investigated by the call to two other additional variables:  the monthly car traffic 
index (more precisely the monthly number of vehicle-kilometres driven by cars in 
the UK), and the monthly prices of petrol in UK.   
 
The models diagnostics were satisfactory, in the sense that all parameters were 
significant, and that the residuals could be considered as independent. One 
exception is to be made for one exogenous effect parameter, related to the traffic 
index variable, which could only be considered as significant at the 70% lower 
confidence level. Thus, a 15% reduction in the number of UK-KSI February 1983 
ownwards was observed, and an elasticity of -0.32 of the number of UK-KSI with 
regard to the petrol price was obtained. 
 
The model’s empirical performance was evaluated by computation of different 
kinds of goodness of fit measures, and the model’s performance increased about 
5% with the introduction of all exogenous variables, as indicated in Table 3.4.18.  
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Table 3.4.9: Estimation results for the ARIMA(2,0,0)(0,1,1)12 model  

 
Ljung-Box Q(18) Model 

Statistics DF Sig. 

LDRIVERS-Model_1 23,289 15 ,078 

Table 3.4.10: Ljung-Box statistic for the residuals of the ARIMA(2,0,0)(0,1,1)12) model  

 
 Noise residual  

from LDRIVERS-Model_1 

N 180 

Mean ,0048 Normal Parameters(a,b) 

Std. Deviation ,07727 

Absolute ,050 

Positive ,042 

Most Extreme Differences 

Negative -,050 

Kolmogorov-Smirnov Z ,670 

Asymp. Sig. (2-tailed) ,761 

Table 3.4.11: Kolmogorov-Smirnov statistic for the residuals of the ARIMA(2,0,0)(0,1,1)12 model  

 
Fit Statistic  

Stationary R-squared ,590 

R-squared ,802 

RMSE ,079 

MAPE ,860 

MaxAPE 2,336 

MAE ,064 

MaxAE ,177 

Normalized BIC -4,881 

Table 3.4.12: Goodness of fit criteria for the ARIMA(2,0,0)(0,1,1)12 model  
 

 Estimate SE t Sig. 

Constant -,015 ,006 -2,463 ,015 

Lag 
1 

,283 ,075 3,800 ,000 AR 

Lag 
2 

,235 ,077 3,072 ,002 

Seasonal Difference 1    

LDRIVERS UK-KSI drivers 

MA, 
Seasonal 

Lag 
1 

,857 ,078 10,930 ,000 

Numerator Lag 
0 

-,297 ,095 -3,132 ,002 LPPRICE Traffic volume 

Seasonal Difference 1    
LTRKM Petrol price Numerator Lag 

0 
,210 ,134 1,561 ,120 

Seasonal Difference 1    
interv Seat belt law 

Introduction 
Numerator Lag 

0 
-,163 ,037 -4,464 ,000 

LDRIVERS-
Model_1 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Seasonal Difference 1    
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Figure 3.4.12: The ACF plot of the residuals and their confidence interval. 

 
Figure 3.4.13 : The distribution of the residuals 

 
Figure 3.4.14: TheQQ-plot 
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3.4.5 ARIMA models for seasonal series (French injury accident 
and fatalities) 

3.4.5.1. Objective of the technique 

As in Section 3.4.4.1. 
  

3.4.5.2. Model definition and assumptions 

As in Section 3.4.4.2.  
 

3.4.5.3. Research problem and dataset 
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Figure 3.4.15: The aggregate number of fatalities in France, for 1975-2001. 

 
In the road safety field in France, as already mentioned in Section 3.3, ARMA-type 
models were very often used on monthly aggregate data for assessing road safety 
measures (Lassare and al., 1993). We shall now describe an application of 
another ARMA-type model, based on monthly data over a period of 25 years, 
implemented to analyse the development of the aggregate number of fatalities in 
France. The purpose is to determine whether a relationship can be established 
between the amnesty of driving faults that traditionally accompanies the 
presidential election in France and the road safety level.  The analysis presented 
here is limited to the statistics of fatalities, and to the two elections of 1988 and 
1995 - for which the information was carried by the media.   
 
The dataset is the monthly number of fatalities in France, for the period January 
1975-December 2001, as presented in Figure 3.4.15.  
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Oil sales (gasoline and diesel) as a proxy for risk exposure (the total number of 
vehicle-kilometres is not measured on a monthly basis, in France), the car fuel 
price, and a small number of weather variables that take account for transitory 
effects (the highest temperature of the day, the rainfall height and the occurrence 
of frost, averaged or aggregated on the month) were used as exogenous variables 
in an ARIMA model. 
 
Because of the purpose described above, three intervention variables were also 
constructed and the form of their intervention function then determined. This will 
be described precisely in more detail in the next-coming paragraphs. 

 

3.4.5.4. Model fit 

Regarding the application case, an intervention analysis is carried out, in order to 
determine whether the perspectives of the presidential amnesty of 1998, and of 
1995, eventually had an effect on the development of the monthly number of 
fatalities.  
 
This can be achieved in two stages: 
 

- First by determining a period during which the perspectives of the 
presidential amnesty eventually had an impact on the drivers and 
policemen behaviour, 

- Second by identifying the form of intensity of that impact with an 
intervention function. 

 
The even nature of the presidential amnesty leads to delimit its impact in time 
(transitory effect). The two first intervention periods are, in a first approach, fixed 
as November 1987 - July 1988 and September 1994 – July 1995 (month of first 
announcement, last month before the amnesty law is voted). The form of the 
intervention function is then determined depending on the values of the monthly 
impacts of the dummy variables defined on the period (Box,Tiao, 
1975),(Gourieroux and Monfort, 1990).  
 
In addition, particularly low values of the number of fatalities were detected, 
between February 1987 and October 1987: the media effect of the Anne Cellier 
case (a young woman died in an accident, whereas the person responsible for the 
accident was drunk driving, and was only lightly condemned) followed by the 
introduction of a new law related to drink driving, certainly contributed to diminish 
accidents’ gravity in France. Because of its proximity to the election of 1988, the 
“Cellier effect” was also modelled, and the period April - October 1987 also 
retained as a third intervention period, with here again the hypothesis of a limited 
effect in time. 
 
In sum, three intervention variables were constructed, and for three predefined 
periods. In each of the three cases, the form of the intervention function still has to 
be determined.   
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The form of the three intervention functions has been established using the 
following model: 
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with:  
 
 Y the number of fatalities, 

 toIiiX 1, =  the I variables measuring risk exposure and the economic factors, 

 toJjjZ 1, =  the J variables measuring the transitory factors, 

 kT
P ,0 , k=1 to 3, three dummy variables given by )(,0 tP kT

=1 in t= kT ,0   and 0 

 elsewhere, kT ,0  the first month of the intervention period n° k, 

 nk +1 the number of months of the intervention period n° k,  
 )(BΦ and )(BΘ , two polynomials of the delay operator B,  

 and ta  a white noise. 

The forms suggested by the autoregressive polynomial ∑
=

−
k

k

n

l

T

kl ltP
0

, )(,0δ  is a step62 

in all the three cases. The initial model (3.4.9) has therefore been simplified by 
using three variables representing steps: 
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 (3.4.10) 
 

with: tkStep , , k=1 to 3, three dummy variables equal to 1 in [ kT ,0 , kk nT +,0 ] and 0 

elsewhere. 
 
Finally, the model was still adjusted by allowing the beginning and the end of the 
two intervention periods corresponding to the presidential amnesties to vary, in 
order to maximise the likelihood of the model. As a consequence the second 
period was restricted to December 1994 - June 1995, while the first one remained 
unchanged.  
 
The results obtained by estimating model (3.4.10) are given in Table 3.4.13. 
 

3.4.5.5. Model diagnostics 

All parameters related to the exogenous variables were kept in the model if 
significant at the 70% confidence level (T-ratio larger than 1). 

                                            
62

In all three cases, the intervention effect was assumed to be the constant every month inside the 
intervention period, and zero outside. 
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As for the dynamics’ parameters, they were kept if significant at the usual 95% 
confidence level (T-ratio larger than 2). 
 
The reason for keeping less significant variables, is that the best model - in terms 
of adjustment - , is obtained when all exogenous variables are kept, whether 
significant or not. This is equivalent to considering that each variable’s contribution 
must be taken account for, in order to estimate in the best manner the effects of 
the perspectives of presidential amnesties, which remains the main objective. The 
main argument for reducing the number of exogenous variables to the most 
significant ones is to aim at the best model - in terms of forecasting -, which is not 
the objective here. 
 
The values of the Ljung-Box and Kolmogorov-Smirnov statistics, given in Tables 
3.4.14 and 3.4.15 lead to accept the non-correlation and normality of the residuals, 
which can therefore be considered as independent. 
 
As for the model fit criteria given in Table 3.4.16, the stationary R-squared is 
59,0% whereas the R-square reaches 91,6%; the mean absolute percentage error 
is only 0,75% , its highest value observed being 3,33 1% aver the 25 years, 

 

3.4.5.6. Model interpretation 

The  parameters related to explanatory variables given in Table 3.4.13 appear to 
be acceptable. 
 
Those related to climate are consistent with other results (Bergel, Depire, 2004). 
Rainfall height is linked, positively, to the total number of fatalities: an increase of 
100 mm in the average  rainfall height leads to an increase of 0,3% in this 
indicator. Temperature is also linked, positively, to the total number of fatalities: an 
increase of one degree in the average temperature in the month leads to an 
increase of 1% in the summer and 2% in the winter of the number of fatalities. On 
the contrary, no link was found between the occurrence of frost and the number of 
fatalities. 

 
Only the elasticity value of the number of fatalities with respect to oil sales is small, 
around 0.1, and this is probably due to the presence of the other explanatory 
variables, correlated to oil sales.  
 
The following comments focus on the intervention step variables. 
Succeeding to a “Cellier effect”  of  -5,4 % per month (average decrease of 5,4 % 
in the number of fatalities between April and October 1987), the effect of the 
amnesty’s perspectives of 1988 is estimated at +7,1% per month (average 
increase in the number of fatalities of  7,1% between November1987 and 
July1988), and the effect of 1995 is estimated at +4,2% per month (average 
increase of 4,2% in the number of fatalities per month between December 1994 
and June 1995).  
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Measured in absolute number of deaths, the effects of both perspectives of 
amnesty are estimated at 565 and 202 additional fatalities respectively. The 
associated confidence levels are 0.036 and 0.215 respectively, which confirms 
that the effects of the first amnesty is the only significant one at the usual 
confidence level. 
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 Estimate SE t Sig. 

LTUEFE-
Model_1 

Constant -,026 ,002 -
10,799 

,000 

  Lag 1 ,149 ,059 2,536 ,012 

  Lag 2 ,191 ,059 3,248 ,001 

  

AR 

Lag 3 ,231 ,060 3,822 ,000 

  Seasonal Difference 1    
  

LTUEFE French Fatalities 

MA, Seasonal Lag 1 ,883 ,045 19,477 ,000 

  Numerator Lag 0 ,096 ,080 1,210 ,227 

  

LCARBUB Oil Sales 

Seasonal Difference 1    
  Numerator Lag 0 -,012 ,084 -,138 ,890 

  

LICARB Petrol price 

Seasonal Difference 1    
  Numerator Lag 0 ,001 ,000 3,960 ,000 

  

TE Summer 
temperature Seasonal Difference 1    

  Numerator Lag 0 ,002 ,000 4,600 ,000 

  

TH Winter temperature 

Seasonal Difference 1    
  Numerator Lag 0 2,81E-005 1,29E-

005 
2,176 ,030 

  

HPLUI Rainfall 

Seasonal Difference 1    
  Numerator Lag 0 ,000 ,002 -,208 ,836 

  

NGEL Frost 

Seasonal Difference 1    
  Numerator Lag 0 -,054 ,035 -1,535 ,126 

  

Step0   Cellier effect 

Seasonal Difference 1    
  Numerator Lag 0 ,071 ,033 2,106 ,036 

  

Step1  1988 Amnisty   

Seasonal Difference 1    
  Numerator Lag 0 ,042 ,033 1,243 ,215 

  

Step2  1995 Amnisty  

Seasonal Difference 1    

Table 3.4.13: Estimation results for the ARIMA(3,0,0)(0,1,1)12 model  

 
Ljung-Box Q(18) Model 

Statistics DF Sig. 

LTUEFE-Model_1 31,570 14 ,005 

Table 3.4.14: Ljung-Box statistic for the residuals of the ARIMA(3,0,0)(0,1,1)12) model  

 
 Noise residual from LTUEFE-

Model_1 

N 300 

Normal Parameters(a,b) Mean ,0024 

  Std. Deviation ,06353 

Most Extreme Differences Absolute ,030 

  Positive ,024 

  Negative -,030 

Kolmogorov-Smirnov Z ,519 

Asymp. Sig. (2-tailed) ,950 

Table 3.4.15: Kolmogorov-Smirnov statistic for the residuals of the ARIMA(3,0,0)(0,1,1)12 model  
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Fit Statistic  

Stationary R-squared ,595 

R-squared ,916 

RMSE ,065 

MAPE ,750 

MaxAPE 3,331 

MAE ,050 

MaxAE ,206 

Normalized BIC -5,201 

Table 3.4.16: Goodness of fit criteria for the ARIMA(3,0,0)(0,1,1)12 model  
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Figure 3.4.16: The ACF plot of the residuals and their confidence interval. 

 
Figure 3.4.17 : The distribution of the residuals 
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Figure 3.4.18: TheQQ-plot 

 

3.4.5.7. Conclusion and similar results  

In this application case, it was demonstrated that an ARIMA model with 
exogenous (explanatory and intervention) variables is an efficient tool for 
analysing the development of the aggregate number of injury accidents and 
fatalities in France, by taking account for risk exposure (measured with oil sales as 
a proxy of risk exposure) and transitory factors of climatic nature. The possible 
effects of two presidential amnesties of driving faults, in 1988 and in 1995, on the 
number of fatalities in France were questioned by the means of an intervention 
analysis. 
 
The amplitude of the effects of the perspectives of amnesty of 1988 is larger (over 
50063 additional fatalities, between September 1987 and July 1988) than  
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 The annual number of fatalities in France was around a thousand in the years 1990. 
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Figure 3.4.19: The number of injury accidents in France, on A-level roads and motorways, for 
1975-2001. 
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Figure 3.4.20: The number of fatalities in France, on A-level roads and motorways, for 1975-2001. 

 
it is in for the amnesty of 1995 (around 200 additional fatalities, between 
December 1994 and June 1995). 
The increase related to the presidential election of 1988 is the only one that is 
statistically significant, at the usual level - i.e. 565 additional fatalities, with a 
confidence level of 0,04.  
 
This approach was extended and applied to other risk indicators, such as the 
number of injury accidents and fatalities, on A-level roads and on motorways (see 
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Figures 3.4.19 and 3.4.20). Similar results, given in Table 3.4.17, were obtained 
and confirmed the previous parameters’ interpretations.  
 
Thus, to the exception of one case, the elasticity value of the risk indicators with 
respect to the traffic volume is smaller than 1 (between 0,5 and 0,8) but much 
superior that the estimated  elasticity value of the number of fatalities with respect 
to oil sales, given in 3.4.5.6. 
 
The climate parameters are consistent with those estimated previously, and 
appear to be even larger. Thus, the rainfall height influence is generally larger on 
the disaggregate risk indicators, whereas the temperature effect is about the 
same. Note that the occurrence of frost comes out to be very significant in two 
cases, with a positive link between the number of days of frost in the month and 
the risk indicators. 
 
As for the intervention step variables’ parameters, a general result is that the effect 
of the perspectives of amnesty of 1988 is significant at the 70% confidence level, 
whatever the risk indicator, and is estimated at 5,9% and 8,2% per month 
regarding the number of injury accidents on A-level roads and motorways, and at 
9% and 14% per month regarding the number of fatalities on A-level roads and 
motorways, between November1987 and July1988. These increase levels are 
higher than the increase level of the number of fatalities estimated on the whole 
territory, and the highest values are found on motorways. 
 

3.4.6 Conclusion on ARMA-type models  

As a general conclusion of the chapter, it will be recalled that ARMA-type models 
are very widely used for purposes of road safety research. The so-defined ARMA-
type models include all the following cases: ARMA models in the stationary case, 
ARIMA models in the non-stationary case, ARMAX models in the case exogenous 
variables are used, and ARIMAX models in the non-stationary case and 
exogenous variables being used. 
 
The use of transformations applied to the initial data, and the call to exogenous 
variables (whether pure explanatory variables or intervention variables) allows 
another process, derived from the initial one and corrected from exogenous 
effects, to be modelled with an ARMA model, as fulfilling the hypothesis of 
stationarity.  
 
Two relevant features in all these models, related to the additional independent 
variables, are to be highlighted in this general conclusion: the higher capacity for 
the the model interpretation, and the gain in the model-fit.  
 

3.4.6.1. Model interpretation 

 

A summary of all parameters estimated with ARMA-type models fitted on real 
data, and described in this section, given in Tables 3.4.17a & b, enables to 
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conclude that, in addition to the dynamics-parameters, numerous exogenous 
effects - parameters  appeared to be highly significant .  
 
Whereas all parameters related to the dynamics were only kept if significant at the 
usual confidence level, the other parameters were kept even if significant at the 
70% confidence level (t-value larger than 1). 
 
The main results are the following: 
 
- the risk exposure indicator was the most significant when measured with the 
number of vehicle-kilometers on disaggregated networks (the French motorways 
and A-level roads), 
- the (petrol) price was the only price indicator which was found to be significant (in 
the case of the UK-KSI drivers), 
- the climatic variables, happened to have distinct effects, at the aggregate level 
and on disaggregated networks (in the case of the French fatalities) 
- the intervention variables, which were significant at an aggregate level in both 
cases of the UK-KSI drivers and French fatalities) were less significant on 
disaggregated networks (the French motorways and A-level roads). 

 

3.4.6.2. Model fit 

 

Second, a summary of the goodness of fit criteria, given in Table 3.4.18, leads to 
conclude that the introduction of exogenous variables in the pure ARIMA models 
enabled the part of variance explained by the model to increase significantly 
(between 2,1% and 24% according to the indicator)  and the absolute error made, 
measured in mean over the period and in percentage, to decrease significantly 
(between 4,4% and 11,9% respectively). Nevertheless, the normalized BIC 
decreased less significantly, and even happened to increase (varying between -
0,5% and +1,3%), and this is due to the fact that this criteria is meant to take 
account of the parsimony of the model. 
 



 

 

 

 Traffic 
volume 

Price Summer 
temp  

Winter temp Rainfall 
height 

Occurrence 
of Frost 

Interv. 
Var. 1 

Interv. 
Var. 2 

Interv. 
Var. 3 

Norwegian fatalities          
          

UK-KSI drivers          
       -0,184   
       (***)   

 0,21 _0,297     -0,163   
 (**) (***)     (***)   

French fatalities          
 0,096 -0,012 0,001 0,002 2,81E-05 0 -0,054 0,071 0,042 

 (**) (*) (***) (***) (***) (*) (**) (***) (**) 
French injury accidents on motorways          
 0,765  0,002 0,001 8,76E-05 0,007 -0,025 0,078 -0,039 

 (***)  (***) (**) (***) (***) (*) (**) (*) 
French injury accidents on A-level roads         
 0,526  0 -4,19E-05 6,07E-05 -0,001 -0,036 0,057 0,007 

 (***)  (*) (*) (***) (*) (**) (**) (*) 
French fatalities on motorways          
 1,788  0,001 0,002 1,73E-05 0,012 -0,044 0,145 -0,105 

 (***)  (*) (**) (*) (**) (*) (**) (**) 
French fatalities on A-level roads          
 0,598  0,001 0,001 8,38E-05 0,004 -0,054 0,09 0,086 

 (***)  (**) (**) (***) (**) (*) (**) (**) 

Tables 3.4.17a & b : The exogenous and dynamics parameters - Summary 
 (*) T-value smaller than 1, (**) T-value between 1 and 2, (***) T-value larger than 1. 
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 phi1 phi2 phi3 Theta1 Theta12 Mu 

Norwegian fatalities       
    -0,432  -0,02 
    (***)  (**) 

UK-KSI drivers       
 0,429 0,298   -0,898 -0,018 
 (***) (***)   (***) (***) 
 0,378 0,279   -0,889 -0,01 
 (***) (***)   (***) (***) 

 0,283 0,235   -857 -0,015 
 (***) (***)   (***) (***) 

French fatalities       
 0,264 0,187 0,064  -0,907 -0,022 
 (***) (***) (**)  (***) (***) 

 0,149 0,191 0,231  -0,883 -0,026 
 (***) (***) (***)  (***) (***) 

French injury accidents on motorways       
 0,328 0,262   -0,841 0,023 
 (***) (***)   (***) (***) 

 0,339 0,259   -0,845 -0,023 
 (***) (***)   (***) (***) 

French injury accidents on A-level roads      
 0,337 0,192   -0,831 -0,036 
 (***) (***)   (***) (***) 

 0,341 0,225   -0,837 -0,046 
 (***) (***)   (***) (***) 

French fatalities on motorways       
     -0,794 0,01 
     (***) (***) 

     -0,932 -0,096 
     (***) (***) 

French fatalities on A-level roads       
 0,158 0,226 0,146  -0,917 -0,03 
 (***) (***) (***)  (***) (***) 

 0,103 0,274 0,212  -0,94 -0,042 



 

 

 

 (***) (***) (***)  (***) (***) 

 



 3.4 ARMA-type models 
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 R2 BIC MAPE 

    

 Norwegian  fatalities    

ARIMA model 0,789 -4,413 1,362 

    

UK-KSI drivers    

ARIMA model 0,77 -4,85 0,9 

with intervention variables 0,788 -4,886 0,887 

with intervention and explanatory variables 0,802 -4,881 0,86 

Gain in the model fit 4,2% -0,6% -4,4% 

    

 French fatalities    

ARIMA model 0,891 -5,145 0,795 

    

with intervention and explanatory variables 0,916 -5,201 0,75 

Gain in the model fit 2,8% -1,1% -5,7% 

    

French injury accidents on motorways    

ARIMA model 0,813 -4,557 1,311 

    

with intervention and explanatory variables 0,849 -4,591 1,155 

Gain in the model fit 4,4% -0,7% -11,9% 

    

French injury accidents on A-level roads    

ARIMA model 0,95 -5,319 0,745 

    

with intervention and explanatory variables 0,96 -5,344 0,668 

Gain in the model fit 1,1% -0,5% -10,3% 

    

French fatalities on motorways    

ARIMA model 0,375 -2,595 5,982 

    

with intervention and explanatory variables 0,465 -2,568 5,486 

Gain in the model fit 24,0% 1,1% -8,3% 

    

French fatalities on A-level roads    

ARIMA model 0,846 -4,326 1,63 

    

with intervention and explanatory variables 0,864 -4,269 1,534 

Gain in the model fit 2,1% 1,3% -5,9% 

Table 3.4.18: Goodness of fit criteria - Summary 

 
 



 

 

3.5 DRAG models 

Ruth Bergel (INRETS) 

 
In this section, we address the three-level explanatory model constructed on a 
monthly basis, proposed by Gaudry (1984), the DRAG-model (Demand for Road 
use, Accidents and their Gravity). As it will be seen now, that ARMA-type model 
constitutes in itself an application to the road safety field. Apart from the strict 
statistical aspects, the technique cannot be described without referring to the road 
safety methodological framework, described in 3.2.1.  

3.5.1 Objective of the technique 

The main objective of the DRAG approach is to model, altogether and at an 
aggregate level, several levels of risk, as described in 3.2.1. 
As the model is meant to be a comprehensive (explanatory) model, it aims at 
taking account for numerous risk factors, and at measuring their influence on pre-
defined risk indicators. 
The advantage of the technique, compared to a multiple linear regression, is that 
the use of the Box-Cox transformation for all data allows for a more flexible form 
(linear form, logarithmic form or a compromise) of the link between the 
endogenous variable and each of the exogenous variables. 

3.5.2 Model definition and assumptions 

3.5.2.1. Economic formulation 

 
Summarising the preceding description of the technique, a DRAG-model can 
shortly be defined on the basis of the following three criteria: 

 
- to model (at least) the three following levels : road demand, risk’s accident 

and accident’s gravity, 
- to be explanatory, 
- to rely on a flexible functional form. 

 
The general and precise framework of the DRAG approach is well defined in 
(Gaudry, Lassarre, 2000). In this framework, one demand level (the exposure to 
risk) and two risk levels (the risk of accident and the risk of being victim in an 
accident) are defined, as well as indicators and factors at each of these levels. 
 
Numerous explanatory variables are introduced, related to exposure, economic 
factors, transitory factors, behavioural factors and road safety measures. By 
modelling road demand (exposure to risk), and the two risk levels with the same 
explanatory factors, it is possible to quantify the direct and indirect effects - via the 
traffic volume - on the two types of risk indicators. 
 
It is worth noting here that the human behaviour, measured with the practised 
speed, is also modelled as an additional level in the TAG-1 model for France, but 
this four-level approach is not generalized within the DRAG-family models yet. 
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3.5.2.2. Econometric specification 

Let us first recall that the Box-Cox transformation, which is used in the 
econometric specification of the DRAG-model, is defined as a power 

transformation, of parameter λ , on any positive real variable tV  by:     
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The DRAG-model relies on a multiple regression structure with auto correlated 
and heteroscedastic errors, and takes account for a type of non-linearity. The fact 
that many explanatory variables are introduced allows the trend and the seasonal 
component to be modelled, which thus do not need to be filtered. The use of the 
Box-Cox transformation allows a more flexible form (linear form, logarithmic form 
or a compromise) of the link between the endogenous variable and each of the 
exogenous variables. 
 
The model is written as follows:  
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with:  tY  the endogenous variable to be modelled, 

 ktX , k=1 to K, the exogenous (or explanatory) variables, 

 tu  the first residual, and tV  the final residual, 

 tw  a white noise. 

 

In that general formulation, the Box-Cox parameters Yλ ,
1Xλ ,.. 

KXλ  are estimated 

in addition to the other parameters kβ , mδ  and lρ , for k=1 to K, m=1 to M and l=1 

to L. 
 
In practice, all parameters are not estimated, and some of them may be fixed to 0 
or to 1, for specific reasons. Two well-known particular cases are obtained when 
the parameter λ  is identically equal to 0 (we then have the log-log specification), 
or to 1 (we then have the linear specification).    

3.5.2.3. Assumptions 

The main assumption is that the endogenous variable is supposed to be Gaussian 
(as the observed data are aggregate, their frequency is easily larger than 30). 
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The assumption of stationarity of the process yY is not required. The explanatory 

variables take account for trend and seasonality of the transformed process )( Y

tY λ , 

whereas heteroscedasticity on the first residual tu  is also modelled separately, in 

such a way that the final residual tV  is supposed to be stationary. 

3.5.3 Research problem and data set  

Six DRAG models have already been constructed on aggregate data, whether at a 
national (Germany, Norway, France), regional (Quebec, California) or at an urban 
(Stockholm) level. Their latest versions available are the following ones (Gaudry, 
Lassarre, 2000): 
 
The DRAG-2 model for Quebec 
The SNUS 2-5 model for Germany 
The TRULS-1 model for Norway 
The STOCKHOLM-2 model for the city of Stockholm 
The TAG-1 model for France 
The TRACS-CA model for California 
 
No condition is required from the data, but the constitution of a voluminous 
database covering a long-time period requires time and financial support. 
 
Nevertheless, a major difficulty of the DRAG approach lies in modelling the first 
level of road demand - the monthly number of vehicle-kilometres driven on the 
defined aggregate network.  The monthly data to be modelled may not be 
available over a long time period or may not be measured at all, and therefore 
need to be estimated first. This can be achieved by means of modelling, or by 
other means (Yannis et al., 2005). This preliminary step - estimating unknown 
numbers of vehicle-kilometres, on a monthly basis and over a long-time period - is 
a source of additional error in the global model. 
 
On French data for instance, a DRAG-type model was applied to the French main 
road network (A-level roads and motorways, the two networks on which the 
number of vehicle-kilometres driven are measured on a monthly basis).  

3.5.4 Model fit and diagnostics 

The model fit is performed with the TRIO program, all the parameters - linear and 
non-linear - being estimated simultaneously; the usual statistical tests and criteria 
being also computed by the program. It is worth mentioning that no other existing 
softwares, the SAS system for instance, allow estimating the parameters of the 
linear and non-linear parts of the DRAG-model simultaneously. 

3.5.5 Model interpretation 

3.5.5.1. Multicolinearity  

Multicolinearity between the numerous explanatory variables is a source of 
difficulties in interpreting the estimated parameters related to the explanatory 
variables.  
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3.5.5.2. Box-Cox parameters 

In some cases, the Box-Cox parameters may not be stable and interpretable 
either64, and the model’s specification seems to be over-parameterised. A general 
important question is to determine whether the estimated values of the Box-Cox 
parameters significantly differ from 0 and from 1. If it is not the case, the related 
Box-Cox parameter should be fixed to 0 or to 1 instead of being estimated, which 
may lead to diminish the total number of parameters of the model in an important 
manner. 

3.5.5.3. Elasticity values 

Most of the estimated parameters are not interpreted directly: elasticity values are 
computed, of the endogenous variables with respect to the exogenous variables - 
that is to say of risk indicators with respect to risk factors. These elasticity values, 
calculated at a country’s level independently of the units of measure of risk 
indicators and risk factors, are used for international comparisons. 

3.5.5.4. International comparisons 

Detailed interpretations of elasticity values of risk indicators with respect to risk 
factors, as well as evaluations of the major road safety measures that appear to be 
significant at an aggregate level, can be found in (Gaudry, Lassarre, 2000). 

3.5.6 Conclusion 

Because of the need of a voluminous database for estimating a DRAG model, the 
DRAG approach can not be achieved without enough time and financial support, 
and it would not be feasible to apply it to European data within the SafetyNet 
project.  
In some cases where the monthly number of vehicle-kilometres is not available on 
the defined aggregate network and over a long period, the constitution of the first 
level model - the road demand model - may be the real difficulty. 

                                            
64

 In the case of the RES Model, an analysis of the advantage of the Box-Cox transformation was 
produced for this application (Bergel, Depire, 2004).The Box-Cox transformation was retained for 
the main exogenous variable, whereas the logarithmic transformation was retained for the 
endogenous variable. Tests of comparison of the initial specification with two particular cases were 
carried out. No significant difference could be found between the model with the Box-Cox 
transformation on the main exogenous variable and the model with the logarithmic transformation 
on the main exogenous variable, which indicates that the second specification, widely used, can be 
preferred for reasons of parsimony. Nevertheless, the use of the optimal functional form permits to 
relax the hypothesis of a constant elasticity to the traffic, and to take account for certain saturation 
effects with regard to the traffic. 
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Nevertheless, the underlying theoretical framework is powerful, and is used for 
time series analysis in road safety research purposes far beyond the application of 
the DRAG-approach itself. 



 

 

3.6 State space models 

Jacques Commandeur and Chris de Blois (SWOV) 

 
This section presents the subclass of state space methods collectively known in 
the literature as structural time series models or unobserved components models.  
Important references in this field are Harvey (1989), and Durbin and Koopman 
(2001). In structural time series models, an observed time series is typically 
decomposed into a number of components. The state of a structural time series 
model may consist of several components, which will be introduced one by one in 
the following sections.  
 
First, in Sections 3.6.1, 3.6.2, and 3.6.3, those components are addressed that are 
useful for obtaining an adequate description of an observed time series. These 
components are the level, the slope and the seasonal. Then, in Sections 3.6.4 and 
3.6.5, components of the state are presented that are helpful in finding 
explanations for the observed development in the series. These components are 
intervention and explanatory variables. A third important application of structural 
time series models is the ability to predict or forecast further developments of a 
series into the (unknown) future. This aspect of structural time series models is 
presented in Section 3.6.6. Finally, throughout these models will be compared with 
their equivalent in terms of classical linear regression models. These comparisons 
are particularly easy to make because, as will become clear below, classical 
regression models are easily fitted in the framework of structural time series 
analysis, and are in fact just a subclass of these models. 
 
All the analyses presented below were performed with SsfPack (Koopman, 
Shepard and Doornik (1999)), which is a set of C routines collected in a library that 
can be linked to the Ox matrix programming language of Doornik (2001). The next 
section starts the presentation of models with the most simple structural time 
series model: the local level model. 
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3.6.1 Local level model 

3.6.1.1. Objective of the technique 

The objective of the local level model is to establish whether an observed time 
series can be adequately described with a time-varying level component. 

3.6.1.2. Model definition and assumptions 

The local level model is defined as 
 

ttty εµ += ,  ),0(~ 2
εσε NIDt  

 (3.6.1) 

ttt ξµµ +=+1 , ),0(~ 2
ξσξ NIDt  

 

for t = 1, …, n, where tµ is the unobserved level at time t, tε  is the observation 

error or disturbance at time t, and tξ  is the level error or disturbance at time t. In 

the literature on state space models, the observation disturbances tε  are also 

referred to as the irregular component. The first equation in (3.40) is called the 
observation or measurement equation, while the second equation is called the 
state equation. 
 

The level tµ  in model (3.6.1) can be conceived of as the equivalent of the 

intercept a in classical linear regression (see Section 3.3.1). Just as the intercept 
of a regression line determines the “height” or level of the regression line, so does 
the level determine the “height” of the state in state space modelling. The 
important difference is that the “height” of a regression line is fixed (i.e. constant 
over time), whereas the “height” of the state in the local level model is allowed to 
change from time point to time point. 
 
As the measurement equation in (3.6.1) shows, with this model the observed time 

series is effectively decomposed into two components: the level component tµ , 

and the irregular component tε . 

 
In definition (3.6.1) the assumptions of the local level model are given algebraically 

by ),0(~ 2
εσε NIDt  and ),0(~ 2

ξσξ NIDt , where NID is a short-hand for Normally 

and Independently Distributed. The observation and level disturbances tε  and tξ  

are therefore all assumed to be mutually independent, and normally distributed 

with zero means, and variances equal to 2
εσ  and 2

ξσ , respectively. 

3.6.1.3. Dataset and research problem 

In general, the dataset in an analysis with the local level model simply consists of 
only one variable: a time series yt consisting of observations made sequentially 
through time points t = 1, …, n. 
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The remaining part of this section first discusses and illustrates what happens 

when the level disturbances tξ  in (3.6.1) are all fixed on zero, and then shows the 

effect of letting the level vary over time. In both cases, the same time series will be 
used as already presented in Section 1.2.2: the log of the annual number of road 
fatalities as observed in Norway for the period 1970-2003. As already mentioned 
in Section 1.2.2, the reason that the analysis is applied to the log of the fatalities is 
that the numbers of fatalities themselves are non-negative count data, meaning 
that the predicted values obtained with a time series analysis should also be non-
negative. This is achieved by analysing count data in their logarithm, and parallels 
the use of the log link for count data in generalised linear models (see Section 
3.3.2). 
 
The research problem addressed with the local level model is how to obtain an 
adequate description of the log of the observed annual number of road fatalities in 
Norway in the period 1970-2003. 

3.6.1.4. Model fit, diagnostics, and interpretation of results 

If the level disturbances tξ  in (3.6.2) are all fixed on zero (or, equivalently, the 

level disturbance variance 2
ξσ  is fixed on zero), then it is not very difficult to show 

that the local level model simplifies into 
 

 tty εµ += 1 ,  ),0(~ 2
εσε NIDt      (3.6.2) 

 
for t = 1, …, n. Therefore, in this special situation everything hinges on the value of 

1µ , which is the value of the level right at the beginning of the time series. Once 

this value is established, it remains constant throughout the remainder of the 
series. In this situation the level is said to be treated deterministically. When the 
level is allowed to vary over time, on the other hand, it is said to be treated 
stochastically. 
 
Generally, in state space models the value of the unobserved state at the 
beginning of the time series (i.e., at t = 1) is unknown. There are two ways to deal 
with this problem. Either the researcher provides the first value, based on 
theoretical considerations, or some previous research, for example. Or this very 
first value is estimated by the very same procedure that is used to fit the state 
space model at hand. Since nothing is usually known about the initial value of the 
state, the second approach is most often followed in practice, and will be used in 
all further structural time series analyses discussed in the present report. In state 
space modelling, the second approach is called diffuse initialisation. 
 

It can be proved that the best estimates for 1µ  and 2
εσ  in model (3.6.2) are 
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respectively. This extremely simple structural time series model thus actually 
computes the mean and variance of the observed time series, and the best fitting 
model for (3.6.2) is simply 
 

( )yyyy tt −+=ˆ .        (3.6.5) 

 
Applying deterministic level model (3.6.2) to the log of the annual number of road 
traffic fatalities in Norway for the period 1970 through 2003, yields 
 

tty ε+= 5.9323 ,  

 

with 0.0485829ˆ
2 =εσ . Thus the mean of this series is 5.9323, and its variance 

equals 0.0485829. For these parameter estimates, the value of the log-likelihood 
function that is maximised in state space methods equals 0.038701012. 
 
The level for model (3.6.2) is displayed at the top of Figure 3.6.1, together with the 
observed time series. As the figure illustrates, the deterministic level is indeed a 
constant, which does not vary over time. 
 
The bottom graph in Figure 3.6.1 contains a plot of the observation disturbances 

tε  corresponding to the deterministic level model. As the latter graph shows, the 

disturbances tε  of the deterministic level model are not independently distributed 

at all, but follow a very systematic pattern. In fact, the irregular component in 
Figure 3.6.1 simply consists of the deviations of the observed time series from its 
mean, as already implied by (3.6.5). 
 



 3.6 State space models 

 
 

 

  
P r o j e c t  c o - f i n a n c e d  b y  t h e  E u r o p e a n  C omm i s s i o n ,  D i r e c t o r a t e - G e n e r a l  T r a n s p o r t  a n d  E n e r g y  

 

Page  299  

1970 1975 1980 1985 1990 1995 2000 2005

5.75

6.00

6.25
log fatalities in Norway deterministic level 

1970 1975 1980 1985 1990 1995 2000 2005

−0.25

0.00

0.25

irregular 

 

Figure 3.6.1: Deterministic level and irregular component for the log of Norwegian 
fatalities. 

 
Diagnostic tests for the assumptions of independence, homoscedasticity, and 
normality of the residuals of the analysis are presented in Table 3.6.1. For the 
exact definition, computation and interpretation of these diagnostic tests the reader 
is referred to Section 3.3.1. 
 
The value of the autocorrelation at lag 1, which is r(1) = 0.588, exceeds the 95% 

confidence limits of 343.034/2/2 ±=±=± n  for this time series. The high 

amount of dependency between the residuals is also confirmed by the very large 
value of the Q-test in Table 3.16. Since Q(10) = 29.259 and because this value is 

much larger than the critical value of 92.162
)05.0;10(

=Χ  (see Table 3.6.1), evaluated 

as a whole the first ten autocorrelations significantly deviate from zero, meaning 
that the null hypothesis of independence of the residuals must be rejected. 
 
The two-tailed H-statistic in Table 3.6.1 shows that the variance of the first 11 
elements of the residuals is unequal to the variance of the last 11 elements of the 
residuals, because H(11) = 3.661 is larger than the critical value of 

28.3)025.0;11,11( ≈F . This means that the assumption of homoscedasticity of the 

residuals is also not satisfied in the present analysis. 
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 statistic value critical value assumption 
satisfied 

independence Q(10) 29.259 16.92 - 
 r(1) 0.588 0.34 - 
 r(4) 0.178 0.34 + 
homoscedasticity  H(11) 3.661 3.28 - 
normality N 1.241 5.99 + 

Table 3.6.1: Diagnostic tests for deterministic level model and log of Norwegian fatalities. 

 

Finally, since N = 1.241 is smaller than the critical value of 99.52
)05.0;2(

=Χ  (see 

Table 3.16), the null hypothesis of normally distributed residuals is not rejected. 
 
Summarising, for the log of Norwegian fatalities series the residuals of the 
deterministic level model neither satisfy the assumption of independence nor that 
of homoscedasticity; only the least important assumption of normality is not 
violated. 
 
In order to compare the different state space models, throughout Section 3.6 the 
Akaike Information Criterion (AIC) will be used: 
 

[ ])(2log2
1

AIC wqLn
n

d ++−= , (3.6.6) 

 

where n is the number of observations in the time series, dLlog  is the value of the 

diffuse log-likelihood function that is maximised in state space modelling, q is the 
number of initial values in the state, and w is the total number of disturbance 
variances estimated in the analysis. When comparing different models with the 
AIC, the following rule holds: smaller values denote better fitting models than 
larger ones. Compared with the more simple maximum log-likelihood criterion, a 
very useful property of the AIC criterion is that it compensates for the number of 
estimated parameters in a model, thus allowing for a fair comparison between 
models involving different numbers of parameters. 
 

In the deterministic level model (3.6.2) only one variance is estimated ( 2
εσ ) and 

one initial value ( 1µ ). Therefore, the Akaike information criterion for the analysis of 

the log of the number of Norwegian fatalities with the deterministic level model 
equals 
 

( )( ) ( )[ ] 0.040245.11220.03870101342
34

1
AIC =++−=   

 
Below, this value will be used for purposes of comparison with other state space 
models. 
 
On the other hand, when the level in (3.6.1) is allowed to vary over time the 
following results are obtained. For the log of the annual number of Norwegian 
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fatalities series, the maximum likelihood estimates of the disturbance variances 

are 0.00326838ˆ
2 =εσ  and 0.0047026ˆ

2 =ξσ , respectively. For these parameter 

estimates, the value of the log-likelihood function equals 0.84686222. 
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Figure 3.6.2: Stochastic level and irregular component for the log of Norwegian fatalities. 

 
The local level for model (3.6.1) is illustrated at the top of Figure 3.6.2, together 
with the observed time series. As can be seen in Figure 3.6.2, when the level is 
allowed to vary over time, the observed time series is recovered quite well. 
 

 statistic Value  critical value  assumption 
satisfied 

independence Q(10) 6.228 16.92 + 
 r(1) -0.127 0.34 + 
 r(4) -0.105 0.34 + 
homoscedasticity  1/H(11)  1.746 3.28 + 
normality N 1.191 5.99 + 

Table 3.6.2: Diagnostic tests for local level model and Norwegian fatalities 

 
The irregular component of the local level model applied to the log of Norwegian 
fatalities is displayed at the bottom of Figure 3.6.2. The diagnostic tests for these 
observation disturbances are given in Table 3.6.2. In contrast with the 
deterministic level model, the observation disturbances of the local level model 
satisfy all of the distributional assumptions for this model: independence, 
homoscedasticity, and normality. 
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The disturbance variances of a state space model are often called hyper-
parameters. Since the local level model requires the estimation of two hyper-

parameters ( 2
εσ  and 2

ξσ ), and of one initial value ( 1µ ), the Akaike information 

criterion for this analysis equals 
 

( )( ) ( )[ ] -1.51725.2120.8468622342
34

1
AIC =++−=   

 
which is a clear improvement upon the deterministic level model applied to these 
data, since the AIC value for the latter model was 0.040245. It may be noted that 
the addition of a slope component (see Section 3.6.2) to model (3.6.1) does not 
improve the description of the time series, since this results in an AIC value of only 
-1.28035. 
 
A time varying level suffices to provide a good description of the development in 
the log of the annual road traffic fatalities in Norway for the period 1970 through 
2003, yielding residuals that satisfy all the model assumptions. 

3.6.1.5. Conclusion on the technique 

The analysis of a time series with the deterministic level model is identical to a 
classical regression analysis with only an intercept in the regression equation. In 
fact, it is simply a horizontal line through the mean value of a series. As the 
analysis in this section showed, making the level component stochastic can be 
sufficient to adequately describe a time series. 
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3.6.2 Local linear trend model 

This section discusses the effects of adding a new component to the local level 
model, called the slope component. 

3.6.2.1. Objective of the technique 

The objective of the local linear trend model is to establish whether an observed 
time series can be described with a trend consisting of a time-varying level and a 
time-varying slope component. 

3.6.2.2. Model definition and assumptions 

The local linear trend model is obtained by adding a slope component tν  to the 

local level model, and is defined as follows: 
 

ttty εµ += ,   ),0(~ 2
εσε NIDt   

 

tttt ξνµµ ++=+1 ,  ),0(~ 2
ξσξ NIDt     (3.6.7) 

 

 ttt ζνν +=+1 ,  ),0(~ 2
ςσς NIDt   

 
for t = 1, …, n. The local linear trend model therefore contains two state equations: 

one for modelling the level, and one for modelling the slope. The slope tν  in 

(3.6.7) can be conceived of as the equivalent of the regression coefficient b in the 
simple classical regression model of yt on time (see also Section 2.2.3.1). Just as 
the value of b determines the angle of the regression line with the x-axis, so does 
the slope determine the angle of the trend with the x-axis in state space modelling. 
Again, the important difference is that the regression coefficient or weight b is fixed 
in classical regression, whereas the slope in (3.6.7) is allowed to change over 
time. 
 
The assumptions of the local linear trend model (3.6.7) are that the observation, 

level, and slope disturbances tε , tξ , and tς  are all mutually independent, and 

normally distributed with zero means, and variances equal to 2
εσ , 2

ξσ , and 2
ςσ , 

respectively. 

3.6.2.3. Dataset and research problem 

In general, the dataset in an analysis with the local linear trend model again simply 
consists of only one variable: a time series yt consisting of observations made 
sequentially through time points t = 1, …, n. 
 
The remaining part of this section will first discuss and illustrate the effect of fixing 

all state disturbances tξ  and tς  in (3.6.7) on zero, and then present the effect of 

allowing the level and slope components to vary over time. In both cases, the 
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model will be applied to the log of the number of fatalities as observed in Finland 
for the period 1970 through 2003. 
 
The research problem addressed with this model is how to obtain an appropriate 
description of the log of the observed number of fatalities in Finland during the 
period 1970-2003. 

3.6.2.4. Model fit, diagnostics, and interpretation of results 

Fixing all state disturbances tξ  and tς  in (3.6.7) on zero, that is, not allowing the 

level and slope component to vary over time, it is not too difficult to verify that the 
linear trend model simplifies into 
 

tt ty ενµ +−+= )1(11 , ),0(~ 2
εσε NIDt     (3.6.8) 

 
for t = 1, …, n, where the independent or predictor variable (t –1) = 0, 1, ..., n-1 is 

time itself, and 1µ  and 1ν  are the initial values of the level and the slope 

components, respectively. 
 
Applying the deterministic level and slope model (3.6.8) to the log of the logarithm 
of the annual number of road traffic fatalities in Finland for the period 1970 through 

2003, it is found that 6.8717ˆ
1 =µ , -0.0287331̂ =ν , and therefore 

 

tt ty ε+−= )1(0.028733-6.8717   

 

with 0.0213603ˆ
2 =εσ . For these maximum likelihood estimates, the value of the 

log-likelihood function is 0.3036367. The latter regression equation can also be 
written as 
 

ttt tty εε +=++= 0.028733-9004.60.0287330.028733-6.8717 .  

 
This is exactly the same result as a classical linear regression of the log of the 
Finnish fatalities on time t = 1, …, n. Thus, treating the level and the slope 
components of the local linear trend model deterministically is the same as 
performing a linear regression of the dependent variable on time. 
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Figure 3.6.3: Deterministic trend (top), deterministic slope (middle), and irregular 
component for the log of the number of Finnish fatalities. 

 
The best fitting regression line obtained with the deterministic linear trend model is 
shown at the top of Figure 3.6.3, while the bottom of Figure 3.6.3 contains the 
graph of the residuals of this classical regression analysis. Just a visual inspection 
of these residuals already reveals that they are not independent of one another. 
 

 statistic value critical value assumption 
satisfied 

independence Q(10) 73.199 16.92 - 
 r(1) 0.767 0.34 - 
 r(4) 0.271 0.34 + 
homoscedasticity  1/H(11) 1.783 3.28 + 
normality N 2.226 5.99 + 

Table 3.6.3: Diagnostic tests of residuals deterministic level and slope model for log 
Finnish fatalities. 

 
This is confirmed by the results of the diagnostic tests for the residuals given in 
Table 3.6.3. The tests for homoscedasticity and normality are satisfactory, but the 
most important assumption of independence is clearly violated. The value of the 
AIC for this analysis is 
 

( )( ) ( )[ ] -0.430803.1220.3036367342
34

1
AIC =++−=   
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Allowing both the level and the slope to vary over time in model (3.6.7), on the 
other hand, at convergence the value of the log-likelihood function equals 
0.7864746. The value of the AIC for this analysis is therefore 
 

( )( ) ( )[ ] -1.27883.3220.7864746342
34

1
AIC =++−=  (3.6.9) 

 
The maximum likelihood estimates of the variances corresponding to the irregular, 

level, and slope components are 0.00320083ˆ
2 =εσ , 269.69606Eˆ

-2 =ξσ , and 

0.00153314ˆ
2 =ςσ , respectively. 

 

Since the variance of the level disturbances 2
ξσ  is, for all practical purposes, equal 

to zero, the analysis is repeated with a deterministic level component, yielding the 
following results. 
 
At convergence the value of the log-likelihood function equals 0.7864746. The 
maximum likelihood estimates of the variances of the observation and slope 

disturbances are 0.00320083ˆ
2 =εσ , and 0.00153314ˆ

2 =ςσ , respectively. The 

maximum likelihood estimates of the values of the level and the slope right at the 

start of the series are 7.0133ˆ1 =µ and 0.00684821̂ =ν . 

 
The trend (consisting of a deterministic level and a stochastic slope) of this 
analysis is displayed at the top of Figure 3.6.4, while the stochastic slope is shown 
separately in the middle of the figure. Since the time varying slope component in 
Figure 3.6.4 models the rate of change in the series, it can be interpreted as 
follows. When the slope component is positive, the trend in the series is 
increasing. Thus, log of the number of fatalities in Finland was increasing in the 
years 1970, 1982, 1984 through 1988, and in 1998 (see Figure 3.6.4). On the 
other hand, the trend is decreasing when the slope component is negative. The 
log of the number of fatalities in Finland was therefore decreasing in the remaining 
years of the series. 
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Figure 3.6.4: Trend of deterministic level and stochastic slope model for the log of Finnish 
fatalities (top), stochastic slope component (middle), and irregular component (bottom). 

Moreover, when the slope is positive and increasing then the increase becomes 
more and more pronounced, while the increase becomes less and less 
pronounced (i.e., levels off) when the slope is positive but decreasing. Conversely, 
when the slope is negative and decreasing then the decrease becomes more and 
more pronounced, while the decrease levels off when the slope is negative but 
increasing. 
 
The irregular component of this analysis is shown at the bottom of Figure 3.6.4, 
and the diagnostic tests for the residuals of the analysis are given in Table 3.6.4. 
As the table shows, the assumptions of independence, homoscedasticity, and 
normality are all satisfied, indicating that the deterministic level and stochastic 
slope model yields an appropriate description of the log of the annual traffic 
fatalities in Finland. 
 
 

 statistic value critical value assumption 
satisfied 

independence Q(10) 7.044 16.92  + 
 r(1) -0.028 0.34 + 
 r(4) -0.094  0.34 + 
homoscedasticity  1/H(11) 1.348  3.28 + 
normality N 0.644  5.99  + 

Table 3.6.4: Diagnostic tests for deterministic level and stochastic slope model, and log 
Finnish fatalities.   
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The Akaike information criterion for the deterministic level and stochastic slope 
model equals 
 

( )( ) ( )[ ] -1.33766.2220.7864746342
34

1
AIC =++−=  

 
Thus, the fit of this model is slightly better than the fit of a model with stochastic 
level and stochastic slope. Since the log-likelihood values are identical for the two 
models, the improved fit of the second model can be completely attributed to its 
greater parsimony. The model with a deterministic level and stochastic slope is 
also called the smooth trend model, reflecting the fact that the trend of such a 
model is relatively smooth compared to a trend with a level disturbance variance 
unequal to zero. 
 
Concluding, a smooth trend model with a constant level and a time-varying slope 
component yields a good description of the log of the annual road traffic fatalities 
in Finland for the period 1970 through 2003. 

3.6.2.5. Conclusion on the technique 

As the present section illustrates, the deterministic linear trend model actually 
performs a classical linear regression analysis of the dependent variable on the 
predictor variable time. This is an important and very useful result. By way of the 
Akaike information criterion, and of the residual tests for independence, 
homoscedasticity, and normality, this allows for a straightforward, fair and 
quantitative assessment of the relative merits of state space methods and 
classical regression models when it comes to the analysis of time series data. The 
reverse is also true: the state space models discussed in Section 3.6 are 
regression models in which the parameters (intercept and regression 
coefficient(s)) are allowed to vary over time. 
    
In the following section, the effects of adding yet another component to the state 
are discussed: the seasonal. 
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3.6.3 Local linear trend plus seasonal model 

Whenever a time series consists of hourly, daily, monthly, or quarterly 
observations with respective periodicity of 24 (hours), 7 (days), 12 (months), or 4 
(quarters), one should always be on the alert for a special type of recurring 
pattern, called a seasonal. As an example, consider the plot of the log of the 
monthly number of drivers killed or seriously injured (KSI) in the United Kingdom 
(UK) for the period January 1969 through December 1984 in Figure 3.6.5. In the 
figure, vertical lines have been added through each year in the observed time 
series. 
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Figure 3.6.5: Log of monthly number of UK drivers KSI with time lines for years. 

 
Inspecting the monthly development for each year in Figure 3.6.5, the following 
regularity emerges: in every year in this series more drivers are killed or seriously 
injured at the end of the year than during the rest of the year. 

3.6.3.1. Objective of the technique 

The objective of the local linear trend and seasonal model is to establish whether 
an observed time series containing a seasonal pattern can be described with a 
trend consisting of a time-varying level and a time-varying slope component, and a 
time-varying seasonal component. 

3.6.3.2. Model definition and assumptions 
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In state space methods, a seasonal can be modelled by adding it either to the 
local level model or to the local linear trend model. Temporarily assuming quarterly 
data, adding a seasonal to the local linear trend model takes the following form: 
 

tttty εγµ ++= ,1 ,   ),0(~ 2
εσε NIDt    

 

tttt ξνµµ ++=+1 ,   ),0(~ 2
ξσξ NIDt  

 

 ttt ζνν +=+1 ,   ),0(~ 2
ςσς NIDt  

           (3.6.10) 

ttttt ωγγγγ +−−−=+ ,3,2,11,1 , ),0(~ 2
ωσω NIDt  

 

tt ,11,2 γγ =+ , 

 

tt ,21,3 γγ =+ , 

 

for t = 1, ..., n, where t,1γ  denotes the seasonal component. The disturbances tω  

in (3.6.10) allow the seasonal to change over time. 
 
In contrast with the level and slope components, which each only require one state 
equation, the modelling of a seasonal generally requires (s-1) state equations, 
where s is the periodicity of the seasonal. For quarterly data (where s = 4), for 
example, three state equations are needed, as is shown in (3.6.10). Irrespective of 
its periodicity, the seasonal always satisfies 
 

∑
=

=
s

j
j

1
,1 0γ , (3.6.11) 

 
thus ensuring that the seasonal is not confounded with the other components of 
the model. The type of seasonal that is modelled in (3.6.10) is called a dummy 
seasonal. There are other ways in which the seasonal component can be 
specified, one of them being the trigonometric seasonal. For the latter and other 
specifications of the seasonal the reader is referred to Durbin and Koopman 
(2001), as these specifications are beyond the scope of the present report. 
 
The assumptions of the local linear trend and seasonal model (3.6.10) are that the 

observation, level, slope, and seasonal disturbances tε , tξ , tς , and tω  are all 

mutually independent, and normally distributed with zero means, and variances 

equal to 2
εσ , 2

ξσ , 2
ςσ , and 2

ωσ , respectively. 

3.6.3.3. Dataset and research problem 

In general, the dataset in an analysis with the local linear trend plus seasonal 
model consists of only one variable: a time series yt consisting of observations 
made sequentially through time points t = 1, …, n. 
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As before, the remaining part of this section will first discuss and illustrate the 

effect of fixing all state disturbances tξ , tς , and tω  in (3.6.10) on zero, and then 

present the effect of letting the level, slope, and seasonal components vary over 
time. In both cases, the model will be applied to the log of the monthly number of 
drivers killed or seriously injured (KSI) in the United Kingdom (UK) for the period 
January 1969 through December 1984, as presented in Figure 3.6.5. 
 
The research problem addressed in this section is how to obtain an appropriate 
description of an observed time series with a seasonal pattern, i.e. the log of the 
monthly number of drivers KSI in the UK, January 1969 – December 1984. 

3.6.3.4. Model fit, diagnostics, and interpretation of results 

When the state disturbances tξ , tς , and tω  in (3.6.10) are all fixed on zero, the 

model reduces to the following deterministic model: 
 

t

s

i
tit ty εγνµ +−−+= ∑

−

=
−

1

1
1,11 )1( , ),0(~ 2

εσε NIDt .   (3.6.12) 

 
Applying the latter model to the series shown in Figure 3.24 (with eleven instead of 
four state equations for the seasonal, since the UK series consists of monthly 
instead of quarterly data) the following results are obtained. The maximum 

likelihood estimate of 2
εσ  equals 0.00981585, and the value of the log-likelihood 

function is 0.69830186. The values of 1µ̂  and 1̂ν  are 7.5540 and -0.00155, 

respectively. Thus, for these data the following holds: 
 

t

s

i
tit ty εγ +−−= ∑

−

=
−

1

1
1,)1(0.00155- 7.5540 ,  

 
which can also be written as 
 

t

s

i
tit ty εγ +−= ∑

−

=
−

1

1
1,0.00155- 7.5556 . 

 
The estimates for the eleven initial values of the dummy seasonal are not 
mentioned here because these are not very informative in the present context.   
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Figure 3.6.6: Deterministic trend (top left), deterministic slope (top right), deterministic 
seasonal (bottom left), and irregular component (bottom right) of deterministic trend and 
seasonal model for log UK drivers KSI. 

 
The deterministic trend (which is the part equal to 7.5556-0.00155t in the just 
mentioned equation) of the analysis is shown at the top left of Figure 3.6.6, which 
also contains plots of the deterministic slope (top right), the deterministic seasonal 
(bottom left), and the irregular component (bottom right). The diagnostic tests in 
Table 3.6.5 of the irregular component in Figure 3.6.6 indicate that the residuals of 
this completely deterministic model neither satisfy the assumption of 
independence nor that of normality. 
 

 statistic   value   critical value  assumption 
satisfied 

independence Q(15) 180.100 25.00  - 
 r(1) 0.504 0.14 - 
 r(12) 0.158  0.14 - 
homoscedasticity  1/H(60) 1.008  1.67 + 
normality  N  7.655 5.99  - 

Table 3.6.5: Diagnostic tests for deterministic trend and seasonal model for log UK drivers 
KSI. 

Since only one hyper-parameter was estimated ( 2
εσ ), and a total of thirteen initial 

values for the state (i.e., one for the level, one for the slope, and eleven for the 
seasonal component), the Akaike information criterion for the completely 
deterministic trend and seasonal model equals 
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( )( ) ( )[ ] -1.25077.11320.698301861922
192

1
AIC =++−=  

 
In the previous sections, it was found that deterministic state space models are 
identical to some form of classical regression analysis. This suggests that the 
deterministic level, slope, and seasonal model must also have its counterpart in 
classical regression analysis. This is indeed the case. Results identical to those of 
the deterministic level, slope, and seasonal model presented above are obtained 
by performing the following classical multiple regression analysis. 
 
Eleven dummy variables are constructed as follows. The first dummy variable is 
coded eleven (i.e., s-1) whenever an observation in the time series falls in the 
month of January, and minus one for all the other months of the year. The second 
dummy variable is coded eleven whenever an observation in the time series falls 
in the month of February and minus one elsewhere. And so on, until the eleventh 
and last dummy variable, which is coded eleven for the month of November and 
minus one elsewhere. A classical multiple regression analysis with the log of UK 
drivers KSI as dependent variable, and time t and these eleven dummy variables 
as independent variables yields the same results as those in Figure 3.6.6: the sum 
of the eleven dummy variables weighted by their respective regression coefficients 
is identical to the seasonal shown at the bottom left of Figure 3.6.6. The estimates 
for the intercept and for the regression coefficient for the independent variable time 
t are 7.5556 and –0.00155, respectively, meaning that the linear trend is identical 
to the linear trend in the top left of the figure. The residuals, finally, are therefore 
identical to those shown at the bottom right of Figure 3.6.6. 
 
Allowing the level, slope and seasonal components in (3.6.10) all to vary over 
time, on the other hand, the following results are obtained. The algorithm 
converges to a log-likelihood value of 0.95650011, with disturbance variances 

0.00346783ˆ
2 =εσ , 0.00100094ˆ

2 =ξσ , 526.74681Eˆ
-2 =ςσ , and 0257.28648Eˆ

-2 =ωσ . 

The values of 1µ̂  and 1ν̂  are 7.4133 and -0.00090532, respectively. Since the 

analysis requires the estimation of four hyper-parameters (i.e., disturbance 
variances), the Akaike information criterion now equals 
 

( )( ) ( )[ ] -1.7359241320.956500111922
192

1
AIC =++−= , 

 
which is a big improvement upon the deterministic trend and seasonal model 
discussed above. 
 

Since the slope and seasonal disturbance variances 2
ςσ and 2

ωσ  are found to be 

extremely small in the last analysis, these two components probably may as well 
be treated deterministically. This is confirmed by performing an analysis where the 

slope and seasonal disturbances tς  and tω  in (3.6.10) are all fixed on zero. At 

convergence the value of the log-likelihood function is still 0.95650011, as before, 
while the maximum likelihood estimates of the disturbance variances are now 
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0.00346757ˆ
2 =εσ  and 0.0010011ˆ

2 =ξσ . The values of 1µ̂  and 1ν̂  are now 7.4133 

and -0.00090531, respectively. For this model, the Akaike information criterion 
equals 
 

( )( ) ( )[ ] -1.7567521320.956500111922
192

1
AIC =++−= , 

 
which is a slight improvement upon the previous model. Since the values of the 
log-likelihood functions are for the two models are identical, this slight 
improvement can completely be attributed to the greater parsimony of the last 
model. 
 
Finally, since the slope component is not only found to be best treated 
deterministically, but also obtains the fixed very small value of -0.00090531, it is 
allowed to consider completely dropping the slope component from the structural 
time series analysis of the log of the UK drivers KSI series. This yields the 
following results. Treating the level component stochastically and the dummy 
seasonal component deterministically, at convergence the value of the log-

likelihood function equals 0.98299654. The value of 1µ̂  is 7.4118, and the 

maximum likelihood estimate of the variance of the irregular component is 

0.00351385ˆ
2 =εσ , and that of the level component equals 30.00094572ˆ

2 =ξσ . This 

implies that the Akaike information criterion now equals 
 

( )( ) ( )[ ] -1.82016.21220.982996541922
192

1
AIC =++−=   

 
The latter value of the AIC for the local level and deterministic dummy seasonal 
model is the smallest of all the seasonal models discussed so far, which is the 
reason why this model can be considered as the best model for describing the log 
of the UK drivers KSI series. 
 
The three components of the latter analysis are all displayed in Figure 3.6.7. 
Moreover, the figure also contains a blown-up version of the dummy seasonal for 
the first year of the series, clearly indicating that April is the safest month for 
drivers in the UK, while December is the most dangerous month. Since the 
seasonal was treated deterministically in this analysis, this pattern is identical for 
all the other years in the series. 
 
Finally, the diagnostic tests in Table 3.6.6 indicate that the residuals of this best 
fitting model satisfy all of the assumptions of the model, although the test for 
normality seems somewhat close to the critical value. 
 
Concluding, a stochastic level and deterministic seasonal model yields the best 
description of the log of the monthly number of UK drivers killed or seriously 
injured for the period 1969 through 1984.    
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Figure 3.6.7: Stochastic level (top left), deterministic seasonal (top right), the seasonal for 
1969 (bottom left), and irregular component (bottom right) for stochastic level and 
deterministic seasonal analysis of log of UK drivers KSI. 

 
 

 statistic value critical value assumption 
satisfied 

independence Q(15) 14.370 23.68  + 
 r(1) 0.040 0.14 + 
 r(12) 0.033 0.14  + 
homoscedasticity  H(60) 1.093 1.67  + 
normality N 5.157 5.99 + 

Table 3.6.6: Diagnostic tests for stochastic level and deterministic dummy seasonal 
analysis of log of UK drivers KSI. 

 

3.6.3.5. Conclusion on the technique 

The seasonal component in state space models facilitates the analysis of within-
year patterns of quarterly, monthly, weekly, or even daily data.  
 
So far, state components have been discussed that are useful for obtaining an 
adequate description of a time series. In the next two sections those components 
are presented that can be used to also obtain explanations for the observed 
developments in a time series. 
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3.6.4 Intervention variables 

Apart from the diagnostic tools discussed in the previous sections for testing the 
assumptions of independence, homoscedasticity, and normality of the residuals in 
time series analysis, a second important diagnostic tool for determining the 
appropriateness of a model is provided by the inspection of its so-called auxiliary 
residuals. These auxiliary residuals are standardised versions of the observation 

disturbances tε  and of the state disturbances tξ , tς , tω , etc. Inspection of the 

standardised observation disturbances allows for the detection of possible outlier 
observations, while the inspection of the standardised state disturbances makes it 
possible to detect structural breaks in the underlying development of a time series. 
 
For the stochastic level and deterministic dummy seasonal model applied to the 
log of the UK drivers KSI series (see Section 3.6.3) for example, the standardised 
level disturbances of the analysis are presented at the top of Figure 3.6.7, while 
the standardised observation disturbances are shown at the bottom of the same 
figure. 
 
Each of the auxiliary residuals at the top of Figure 3.6.7 can be considered as a t-
test for the null hypothesis that there was no structural break in the level of the 
observed time series. The usual 95% confidence limits of ±1.96 for a two-tailed t-
test are shown in the figure as two parallel horizontal lines. The auxiliary residuals 
exceed these limits at five time points, which is less than the n/20 = 192/20 ≈ 10 
that would be expected purely based on chance for this series. Still, the value of 
the residual for January 1983 particularly stands out as being very extreme.         
 
Similarly, each of the auxiliary residuals at the bottom of Figure 3.6.8 can be 
considered as a t-test for the null hypothesis that the corresponding observation is 
not an outlier. Only seven out of the 192 observations exceed the 95% confidence 
limits of ±1.96, which is less than the ten that would be expected according to 
chance. Since, moreover, none of these are very extreme the conclusion is that 
the series does not contain outlier observations. 
 
Summarising, inspection of the auxiliary residuals of the stochastic level and 
deterministic seasonal model applied to the log of the UK drivers KSI series 
suggests that there was a shift in the level in January 1983. This coincides with an 
actual event in the United Kingdom, which was the obligation from February 1983 
onwards for motor vehicle drivers and front seat passengers to wear a seat belt. 
 



 3.6 State space models 

 
 

 

  
P r o j e c t  c o - f i n a n c e d  b y  t h e  E u r o p e a n  C omm i s s i o n ,  D i r e c t o r a t e - G e n e r a l  T r a n s p o r t  a n d  E n e r g y  

 

Page  3 1 7  

1970 1975 1980 1985

−2

0

2 Structural level break t−tests 

1970 1975 1980 1985

−2

0

2
Outlier t−tests 

 

Figure 3.6.8: Auxiliary residuals for the stochastic level and deterministic seasonal model 
applied to the log of the UK drivers KSI series. 

 
 
The effect of the introduction of this seat belt law can be investigated by adding an 
intervention variable to the model at hand. There are several ways in which an 
intervention can affect the development of a time series. One possible effect is that 
of a level shift, where the level of the time series suddenly changes and this level 
change continues after the intervention. A second possible effect is that of a shift 
in the slope component, where the value of the slope shows a continuous change 
after the intervention. A third possible effect is that of a pulse, where the value of a 
state component suddenly changes at the moment of the intervention, but then 
returns back to its previous value, in which case the effect is only temporary.  
Since the auxiliary residuals in Figure 3.6.8 suggest a break in the level of the log 
of the UK drivers KSI, a level shift intervention variable will be added to the level 
and seasonal model discussed in the previous section. 

3.6.4.1. Objective of the technique 

The objective of the local level and seasonal model with an intervention variable is 
to establish the type, size and significance of the effect of the intervention variable 
on the development of an observed time series containing a seasonal pattern. 

3.6.4.2. Model definition and assumptions 

The level, the seasonal, and the level shift intervention variable for the introduction 
of the seat belt law in February 1983 are combined into the following state space 
model: 
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tttttt wy ελγµ +++= ,1 ,  ),0(~ 2
εσε NIDt  

 

ttt ξµµ +=+1 ,   ),0(~ 2
ξσξ NIDt  

 

ttttt ωγγγγ +−−−=+ ,3,2,11,1 , ),0(~ 2
ωσω NIDt  

           (3.6.13) 

tt ,11,2 γγ =+ , 

 

tt ,21,3 γγ =+ , 

 

 ttt ρλλ +=+1 ,   ),0(~ 2
ρσρ NIDt  

 
 

for t = 1, …, n, where tw  is a dummy variable consisting of zeroes at all time 

points before the introduction of the seat belt law in February 1983, and ones at 
time points at and after the introduction in February 1983. To keep the number of 
state equations low, model (3.6.13) is presented as if dealing with quarterly data. 
In reality, however, there are thirteen state equations involved: one for the level, 

one for the regression coefficient tλ  of the intervention variable, and eleven for the 

seasonal. It may be noted that, although it would be technically possible to treat 
the regression component in the last state equation of (3.6.13) stochastically, in 
practice this is never done when dealing with intervention variables. 
 
The assumptions of the local level and seasonal model (3.6.13) are that the 

observation, level, seasonal, and intervention disturbances tε , tξ , tω , and tρ  are 

all mutually independent, and normally distributed with zero means, and variances 

equal to 2
εσ , 2

ξσ , 2
ωσ , and 2

ρσ , respectively. 

3.6.4.3. Dataset and research problem 

In general, the dataset in a state space analysis with one intervention contains two 
variables: a dependent variable yt which is a time series as before, and an 

independent intervention variable which is denoted by tw . 

The remaining part of this section will first discuss and illustrate the effect of fixing 

all state disturbances tξ , tω , and tρ  in (3.51) on zero and then present the effect 

of letting the level component vary over time. In both cases, the local linear trend 
plus seasonal model from Section 3.6.3 extended with one intervention, i.e. the 
introduction of the seat belt law, will be applied to the log of the monthly number of 
drivers killed or seriously injured (KSI) in the United Kingdom (UK) for the period 
January 1969 through December 1984 (see Figure 3.6.5). 
 
The research problem addressed in this section is how to assess the effect of the 
introduction of the seat belt law in February 1983 on the log of the number of 
drivers KSI in the UK, January 1969 – December 1984. 
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3.6.4.4. Model fit, diagnostics, and interpretation of results 

Treating all the state components in (3.6.13) deterministically, it is not very difficult 
to prove that the model simplifies into the following classical regression model: 
 

tt

s

i
tit wy ελγµ ++−= ∑

−

=
− 1

1

1
1,1 , ),0(~ 2

εσε NIDt .   (3.6.14) 

 
Estimating model (3.6.14) by fixing all the state disturbances in (3.6.13) on zero, 
the value of the log-likelihood function equals 0.71553091. The optimal values of 

1µ  and 1λ  are 7.4373 and -0.26075, respectively, and the maximum likelihood 

estimate of the irregular variance is 0.0100188ˆ
2 =εσ . The best fitting classical 

regression model can therefore be written as 
 

tt

s

i
tit wy εγ +−= ∑

−

=
− 0.26075- 7.4373

1

1
1, . 

 
The effect of the intervention variable on the deterministic level of the model is 
clearly seen in the top graph in Figure 3.6.9. The level which is equal to 7.4373 
until January 1983 suddenly shifts down to the value of 7.4373 - 0.26075 = 
7.17655 in February 1983. Since the dependent variable is analysed in its 
logarithm, the following formula must be used to re-express the level change in a 
percentage change in the absolute numbers of drivers KSI: 
 

 0.229511 26075.01̂ −=−=− −
ee

λ , 
 
meaning that -according to this model- the introduction of the seat belt law resulted 
in a change of (100)(-0.2295) = -23% in the number of drivers KSI.  
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Figure 3.6.9: Deterministic level plus intervention variable (top), deterministic seasonal 
(middle), and irregular component (bottom) for the log of the UK drivers KSI series . 

 
 
The value of the Akaike information criterion for this model equals 
 

( )( ) ( )[ ] -1.28523.11320.715530911922
192

1
AIC =++−=   

 
The latter value of the AIC indicates that the deterministic level and dummy 
seasonal model with intervention variable yields a much better fit than the 
deterministic level and dummy seasonal model without intervention variable, which 
results in an AIC value of only -0.792879. 
 

 statistic value critical value assumption 
satisfied 

independence Q(15)  524.110 23.68 - 
 r(1) 0.604 0.14  - 
 r(12) 0.402 0.14  - 
homoscedasticity  1/H(60) 1.475  1.67  + 
normality  N 3.604 5.99  + 

Table 3.6.7: Diagnostic tests for deterministic level and seasonal analysis of log of UK 
drivers KSI, including intervention variable. 

 
The standard t-test for establishing whether the regression coefficient 

-0.260751̂ =λ  deviates from zero yields 
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49-11.704720
2680.02227747

080.26075159-
==t ,      (3.6.15) 

 
which is very significant. In order to investigate whether this test is reliable, it must 
be checked whether the model satisfies the assumptions of independence, 
homoscedasticity and normality of the residuals. However, as Table 3.6.7 
indicates, the residuals do not satisfy the most important assumption of 
independence, meaning that the value of the just mentioned t-test (and especially 
the value of the standard error in the denominator) can not be trusted, and is 
probably much too large (since the first autocorrelation r(1) is positive).  
 
If the level component in model (3.6.13) is allowed to vary over time, on the other 
hand, at convergence the value of the log-likelihood function equals 1.0168174. 

The maximum likelihood estimates of 1µ  and 1λ  are 7.4108 and -0.23981, 

respectively, and the maximum likelihood estimates of the irregular and level 

variances are 0.00378397ˆ
2 =εσ  and 60.00047351ˆ

2 =ξσ , respectively. 

 
The estimated effect of the seat belt law re-expressed in the percentage change in 
the absolute numbers of drivers KSI is now 
 

 0.213211 0.239811̂ −=−=− −
ee

λ , 
 
meaning that -according to this model- the introduction of the seat belt law resulted 
in a change of (100)(-0.2132) = -21.3% in the number of UK drivers KSI. 
 
The Akaike information criterion for this model equals 
 

( )( ) ( )[ ] -1.87738.21321.01681741922
192

1
AIC =++−=   

 
The latter value of the AIC for the local level and deterministic dummy seasonal 
model including a level shift intervention for the introduction of the seat belt law is 
smaller than that for the same model without intervention variable which is 
-1.82016 (see the previous section). This means that the intervention variable for 
the seat belt law improves the fit. 
 
Whether the contribution of the intervention variable is significant can again be 

tested with the standard t-test for the regression coefficient -0.239811̂ =λ , yielding 

 

-4.5187
8830.05307021

60.23980675-
==t .      (3.6.16) 

 
The value of the latter t-test is still very significant, but in absolute terms it is much 
smaller than the value of the t-test (3.6.15) in the previous completely deterministic 
model. 
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Figure 3.6.10: Stochastic level plus intervention variable (top), deterministic seasonal 
(middle), and irregular component (bottom) for the log of the UK drivers KSI series. 

 
The stochastic level plus intervention variable is shown in Figure 3.6.10, together 
with the deterministic dummy seasonal, and the irregular component. The 
diagnostic tests for the model assumptions are given in Table 3.6.8. Since all three 
assumptions are satisfied in the present analysis, now it is assured that the t-test 
in (3.54) is a reliable test.   
 

 statistic  value  critical value  assumption 
satisfied 

Independence Q(15) 17.928 23.68 + 
 r(1) 0.080 0.14 + 
 r(12)  0.085 0.14 + 
homoscedasticity  1/H(60) 1.639 1.67 + 
normality  N  2.928 5.99 + 

Table 3.6.8: Diagnostic tests for stochastic level and dummy seasonal analysis of log of 
UK drivers KSI, including intervention variable. 

 
As Figure 3.6.8, Figure 3.6.11 plots the auxiliary residuals of the local level and 
deterministic seasonal model applied to the log of the UK drivers KSI, but now 
including the intervention variable for the introduction of the seat belt law. It is 
interesting to note that the large extreme value that was previously found in 
January 1983 for the standardised level disturbances (see Figure 3.6.8) has now 
completely disappeared. This is the effect of adding the intervention variable to the 
model.   
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Figure 3.6.11: Auxiliary residuals for the stochastic level and deterministic seasonal model 
applied to the log of the UK drivers KSI series, including a level shift intervention variable 
for the introduction of the seat belt law. 

Concluding, the fit of the stochastic level and deterministic seasonal model that 
yields the best description of the log of the monthly number of UK drivers killed or 
seriously injured for the period 1969 through 1984 can significantly be improved by 
adding a level shift intervention variable to the model, where the level shift is 
applied to February 1983 in the series, the month that the seat belt law for drivers 
and front seat passengers was introduced in the UK. Moreover, the analysis 
suggests that the introduction of the seat belt law resulted in a 21.3% reduction in 
the number of UK drivers KSI. 
 
Finally, when comparing the value of the t-test for the regression coefficient of the 
intervention variable in a completely deterministic (i.e. classical regression) model 
with that in the stochastic level model, it can be seen that the former test is 
seriously flawed due to the remaining dependencies in the residuals of the 
classical regression analysis. In fact, compared to the t-test of the stochastic 
model the absolute value of the test in the classical regression analysis is 11.7/4.5 
= 2.6 times too large. 

3.6.4.5. Conclusion on the technique 

In state space modelling, the auxiliary residuals are a helpful tool in detecting 
outlier observations and structural breaks in the level, slope, and seasonal 
components. As this section demonstrated, a structural break in the level 
component is an indication of an intervention which suddenly and radically 
changed the level and, as such, it can be removed by including an intervention 
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variable. Structural breaks in the slope and seasonal components and outlier 
observations can be dealt with in a similar way. 
 
Furthermore, the analysis results in this section show that the t-test for the 
regression coefficient in a classical linear regression model can be seriously 
flawed due to dependencies in the residuals. 
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3.6.5 Explanatory variables 

3.6.5.1. Objective of the technique 

The objective of the local level and seasonal model with an intervention variable 
and a continuous explanatory variable is to establish the type, size and 
significance of the effects of both the intervention variable and the explanatory 
variable on the development of an observed time series containing a seasonal 
pattern. 

3.6.5.2. Model definition and assumptions 

Just like intervention variables, explanatory variables can simply be added to the 
measurement equation of any of the state space models discussed so far. If they 
are added to the local level and seasonal model with an intervention variable, for 
example, then the measurement equation is: 
 

t

k

j
jtjtttttt xwy εβλγµ ∑

=
++++=

1
,1 , (3.6.17) 

 

where the jx  are k continuous explanatory variables (j = 1, …, k), and the jβ  are 

unknown regression weights or coefficients. 
 
We will illustrate the effect of explanatory variables by adding one continuous 
explanatory variable to the time series analysis of the log of the UK drivers KSI 
series shown in Figure 3.24. This continuous variable consists of the log of the 
monthly prices of petrol in the UK in the period 1969 through 1984. The idea is that 
higher petrol prices may have induced UK car drivers to circulate less in traffic, 
thus reducing the number of traffic accidents. The model includes the same 
intervention variable that was used in the previous section, i.e. the introduction of 
the seat belt law in February 1983 in the United Kingdom. 
 
The level, the dummy seasonal, the introduction of the seat belt law, and the log of 
petrol price are combined into the following state space model: 
 

tttttttt xwy εβλγµ ++++= ,1 ,  ),0(~ 2
εσε NIDt  

 

ttt ξµµ +=+1 ,    ),0(~ 2
ξσξ NIDt  

 

ttttt ωγγγγ +−−−=+ ,3,2,11,1 ,  ),0(~ 2
ωσω NIDt  

 

tt ,11,2 γγ =+ ,         (3.6.18) 

 

tt ,21,3 γγ =+ , 
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 ttt ρλλ +=+1 ,    ),0(~ 2
ρσρ NIDt  

 

 ttt τββ +=+1 ,    ),0(~ 2
τστ NIDt  

 

for t = 1, …, n, where tw  again contains zeroes at all time points before February 

1983, and ones at time points at and after February 1983, and tx  is the 

continuous predictor variable “log petrol price”. Again, the model (3.6.18) is 
presented as if dealing with quarterly data. In reality, however, there are fourteen 

state equations involved: one for the level, two for the regression coefficients tλ  

and tβ of the intervention and explanatory variables tw  and tx , respectively, and 

eleven for the seasonal. It may be noted that state space methods allow for a 
stochastic treatment of the regression component in the last state equation of 
(3.6.18), thus allowing the regression coefficient to vary over time. Here, however, 
only deterministic regression components are considered. 
 
The assumptions of model (3.6.18) are that the observation, level, seasonal, 

intervention, and explanatory disturbances tε , tξ , tω , tρ , and tτ  are all mutually 

independent, and normally distributed with zero means, and variances equal to 
2
εσ , 2

ξσ , 2
ωσ , 2

ρσ , and 2
τσ , respectively. 

3.6.5.3. Dataset and research problem 

The dataset in a state space analysis with intervention and explanatory variables 
consists of the dependent variable yt which is a time series as before, an 

independent intervention variable tw , and the k continuous independent variables 

jx  which are all time series as well. 

 
The remaining part of this section will first discuss and illustrate the effect of fixing 

all state disturbances tξ , tω , tρ , and tτ  in (3.6.18) on zero and then present the 

effect of letting the level component vary over time. In both cases, the local linear 
trend with seasonal model with the added seat belt law intervention (see Section 
3.6.4) and extended with the explanatory variable log petrol price will be applied to 
the log UK drivers KSI dataset from Figure 3.6.5. 
 
The research problem addressed in the present section is to investigate the effects 
of a continuous explanatory variable, i.e. log petrol price on the development of a 
time series, i.e. the log of the number of drivers KSI in the UK, January 1969 – 
December 1984 . 

3.6.5.4. Model fit, diagnostics, and interpretation of results 

Treating all the state components deterministically, the value of the log-likelihood 

function equals 0.84903819. The maximum likelihood estimates of 1µ , 1λ , and 1β  

are 6.4016, -0.19714, and -0.45213, respectively, and the maximum likelihood 

estimate of the irregular variance is 0.00740223ˆ
2 =εσ .  
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The model therefore reduces to a classical regression model with regression 
equation 
 

ttt

s

i
tit xwy εγ +−−−= ∑

−

=
− 0.452130.19714 6.4016

1

1
1, . 
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Figure 3.6.12: Deterministic level plus intervention and explanatory variable (top), 
deterministic seasonal (middle), and irregular component (bottom) for the log of the UK 
drivers KSI series . 

 
The plot of the deterministic level plus intervention and explanatory variables is 
shown in Figure 3.6.12, together with the fixed dummy seasonal and the irregular 
component. 
 
Since exp(-0.19714) – 1 = -0.1789, according to the present analysis the seat belt 
law resulted in a 17.9% reduction in the number of drivers KSI. Since the variables 
“number of drivers KSI” and “petrol price” are both analysed in their logarithms, the 

regression coefficient 1β  may be interpreted as a so-called elasticity, meaning that 

a 1% change in the petrol price is associated with a 1β % change in the number of 

drivers KSI. If the present analysis were correct, therefore, the conclusion would 
be that a 1% raise in the price of petrol was associated with a 0.45% reduction 

(since 1β̂  is negative) in the number of drivers KSI. A nice property of analysing 

both the number of drivers KSI and the price of petrol in their logarithms is that the 

value of the elasticity 1β  remains unchanged when the number of drivers KSI is 

multiplied with a positive number and/or when the price of petrol is multiplied with 
a positive number. 



Chapter 3 – Time Series Analysis 
 

 

 

 

 
The value of the Akaike information criterion for this model equals 
 

( )( ) ( )[ ] -1.5418311420.849038191922
192

1
AIC =++−= ,  

 
which is a clear improvement upon the completely deterministic model without “log 
petrol price”.  
 
The standard t-test for establishing whether the regression coefficient 

-0.197141̂ =λ  for the intervention variable deviates from zero yields 

 

29.51098302
0030.02072756

160.19713947
−=

−
=t , 

 
which is very significant. The standard t-test for establishing whether the 

regression coefficient -0.45213ˆ
1 =β  for the continuous variable “log petrol price” 

deviates from zero yields 
 

78.01704601
9760.05639609

70.45213012
−=

−
=t , 

 
which is also very significant. 
 

 statistic value critical value assumption 
satisfied 

Independence Q(15) 147.020 23.68 - 
 R(1) 0.426 0.14 - 
 r(12) 0.198 0.14  - 
homoscedasticity  1/H(59) 1.110  1.67 + 
Normality N 0.560 5.99 + 

Table 3.6.9: Diagnostic tests for deterministic level and dummy seasonal analysis of log of 
UK drivers KSI, including variables seat belt law and log petrol price. 

 
However, before drawing any conclusions it must be checked whether the 
residuals satisfy the model assumptions. As Table 3.6.9 indicates, the most 
important assumption of independence is clearly violated in this classical 
regression model, meaning that the values of the just mentioned t-tests are 
seriously inflated since r(1) is positive.  
 
Allowing the level component to vary over time, at convergence the value of the 

log-likelihood function equals 1.0265254. The estimates for 1µ , 1λ , and 1β  are 

6.7814, -0.23759, and -0.27674, respectively. The maximum likelihood estimate of 

the irregular variance is 0.00403394ˆ
2 =εσ , and that of the level variance is 

20.00026808ˆ
2 =ξσ . Thus, the measurement equation can be written as 
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1
1, . 

 
Graphs of the components of the analysis are shown in Figure 3.6.13. 
 
The percent change in the number of drivers KSI due to the seat belt law is now 
estimated to be equal to (100)(ex(-0.23759) - 1) = -21.1%, while a 1% raise in the 
petrol price is now associated with a 0.28% reduction in the number of drivers KSI. 
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Figure 3.6.13: Stochastic level plus intervention and explanatory variables (top), 
deterministic seasonal (middle), and irregular component (bottom) for the log of the UK 
drivers KSI series . 

 
The value of the Akaike information criterion for this model equals 
 

( )( ) ( )[ ] -1.8863821421.02652541922
192

1
AIC =++−= , 

 
meaning that this is the best fitting of all the models that were used to analyse the 
log of the UK drivers KSI series. 
 
The standard t-test for establishing whether the regression coefficient 

-0.23759ˆ
1 =λ  deviates from zero yields 

 

75.11535385
6270.04644589

460.23758719
−=

−
=t , 
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which is significant. The standard t-test for establishing whether the regression 

coefficient -0.45213ˆ
1 =β  deviates from zero yields 

 

52.81221240
4280.09840666

20.27674044
−=

−
=t , 

 
which is also significant. 
 

 statistic  value  critical value assumption 
satisfied 

Independence Q(15) 18.676 23.68 + 
 r(1) 0.078 0.14 + 
 r(12) 0.068 0.14 + 
homoscedasticity  1/H(59) 1.025 1.67 + 
Normality N 1.444 5.99 + 

Table 3.6.10: Diagnostic tests for stochastic level and dummy seasonal analysis of log of 
UK drivers KSI, including variables seat belt law and log petrol price. 

 
As Table 3.6.10 shows, all the model assumptions are satisfied in the present 
analysis, meaning that the t-tests for the regression coefficients are no longer 
flawed in this case. 
 
Concluding, adding the continuous explanatory variable “log petrol price” to the 
stochastic level and deterministic seasonal model with a level shift intervention 
variable also helps in explaining the observed development in the log of the 
monthly number of UK drivers KSI series. 
 
As before, keeping the intercept (i.e. the level) fixed over time results in residuals 
that do not satisfy the assumption of independence, and therefore in inflated t-
tests for the regression coefficients. Allowing the intercept to vary over time, on the 
other hand, all model assumptions are satisfied, and the t-tests are now reliable. 
The comparison of the t-tests in the model with a fixed intercept with those in the 
model with a time-varying intercept shows that – in absolute value - the test for the 
regression coefficient of the intervention variable is almost two times too large, 
while that for regression coefficient of the log of petrol price is almost three times 
too large. 
 
In the appropriate model, the values of the regression coefficients indicate that the 
seat belt law resulted in a 21.1% reduction in the number of UK drivers KSI, while 
a 1% raise in the price of petrol was associated with a 0.28% reduction in the 
number of drivers KSI. Finally, it is noted that the estimated effect of a 21.1% 
reduction as a result of the seat belt law in the present analysis is almost identical 
to the value of 21.3% found with the model without the explanatory variable “log 
petrol price” (see the previous section). 

3.6.5.5. Conclusion on the technique 
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Explanatory variables can be added to the state space model and their 
contribution to the dependent variable can be tested reliably. As was shown in this 
section, in fully deterministic, classical linear regression models the reliability of the 
t-tests for the regression coefficients is not guaranteed, which can lead to incorrect 
conclusions regarding the significance of those regression coefficients. 
 
Until now, the focus was on the descriptive and explanatory aspects of state space 
methods. The next section will discuss the issue of forecasting with structural time 
series models. 
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3.6.6 Forecasting 

For a proper understanding of forecasting in state space methods, it is useful to 
mention that the state components of state space models can be estimated in a 
number of ways. All the previous sections on the theory of state space methods 
presented the estimate of the state that is known as the smoothed state. The 
smoothed state at time t is typically based on all available observations in the time 
series, therefore including those observations yt+1, …, yn that occurred after time 
point t. 
 
A second type of estimate is the so-called filtered state. The filtered state at time t 
is the estimate of the state only based on all past observations y1, …, yt-1, ànd on 
the current observation yt. 
 
The third type of estimate is the so-called predicted state. The predicted state at 
time t is the estimate of the state purely based on all past observations y1, …, yt-1. 
This last type of estimate typically yields forecasts as they are obtained with state 
space methods. It is interesting to note that forecasts in structural time series 
analysis are actually obtained by treating the future observations in a series as 
missing. 
 
This section will present three examples of forecasting: one with the local level 
model, one with the local linear trend model, and one with the local level and 
seasonal model with an explanatory and intervention variable. 
 
As discussed in Section 3.6.1 the log of the annual number of Norwegian fatalities 
in the period 1970-2003 can be adequately described with the local level model. 
The local level model was therefore also used to obtain forecasts for this series in 
the period 2004-2010. The filtered level and the forecasts obtained with the local 
level model for the years 2004 through 2010 are shown in Figure 3.6.14, together 
with their 90% confidence limits. 
As the latter figure shows, forecasts of the local level model are always located on 
a straight horizontal line whose level is equal to the filtered level at time point n+1. 
The values of the forecasts in Figure 3.6.14 are all equal to 5.6627. According this 
analysis therefore the future number of road traffic fatalities in Norway will remain 
at a constant level of exp(5.6627) = 288 fatalities per year. 
 
In state space methods, all estimates of the components of the state also have 
associated estimation error variances. This is true irrespective whether the 
estimate is the smoothed, the filtered or the predicted state. Under the assumption 
of normality, these estimation error variances allow the construction of confidence 
intervals for each of the state components, thus making it possible to assess the 

(un)certainty in the estimates of the state. Letting Var( tµ ) denote the estimation 

error variance of the level tµ  of the local level model, therefore, the 90% 

confidence limits are computed with the well-known formula 
 

( )tt µµ Var64.1± , (3.6.19) 
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where +1.64 and –1.64 are the z-scores corresponding to the 90% interval around 
the mean of a normal distribution. 

1970 1975 1980 1985 1990 1995 2000 2005 2010

5.4

5.6

5.8

6.0

6.2

6.4
log fatalities in Norway filtered level and forecasts 

 
Figure 3.6.14.: Filtered level, and seven years forecasts for log of Norwegian fatalities 
including their 90% confidence limits. 

 
The thus computed 90% interval for the filtered and predicted level of the local 
level model is displayed in Figure 3.6.14. As the figure shows, the estimation error 
variance for the predicted level, and therefore its uncertainty, becomes larger and 
larger as the forecasts are located further into the future. 
 
The analysis of the log of the annual number of traffic fatalities in Finland with the 
smooth trend model (see Section 3.6.2) was also used to obtain forecasts using a 
so-called lead time of seven years. The observations of the series are shown in 
Figure 3.6.15, together with the filtered state for the years 1970 through 2003, and 
the predicted state (i.e., the forecasts from the smoothed trend model) for the 
years 2004 through 2010. As the figure shows, forecasts of the local linear trend 
model are always located on a straight line with constant level and slope. Again, 
the estimation error variance for the predicted trend, and therefore its uncertainty, 
becomes larger and larger as the forecasts are located further into the future. 
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Figure 3.6.15: Filtered trend, and seven year forecasts for Finnish fatalities, including their 
90% confidence limits. 

 
 
As a last example, the log of the UK drivers KSI series was re-analysed (see 
Sections 3.6.3, 3.6.4, and 3.6.5) with a local level and deterministic dummy 
seasonal model, including the log of the petrol price and the introduction of the 
seat belt law as independent variables. In contrast with the analysis discussed in 
Section 3.6.5, however, the last six observations in the dependent and 
independent variables for July through December 1984 were treated as missing. 
The results of this analysis are very similar to those discussed in Section 3.6.5. 
  
Next, based on the results of the latter analysis forecasts were computed for the 
six missing months July through December 1984. In the calculation of these 
forecasts the observations for the petrol price and for the seatbelt law intervention 
were taken into account, but not the numbers of drivers KSI.  
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Figure 3.6.16: Filtered signal, and six months forecasts for the log of UK drivers KSI, 
including their 90% confidence limits. 

 
The results are shown in Figure 3.6.16, which only contains the last four years in 
the series. Amongst others, the figure displays the filtered signal of the analysis 
(where the signal is the sum of the filtered state components) as well as the 
observation forecasts for the months July through December 1984 and the actual 
observations for the latter six months. Again, the 90% confidence limits become 
larger and larger as the forecasts are located further into the future. The figure 
also shows that the actual observations fall within the 90% confidence limits of the 
estimated forecasts, which is a good sign. 
 
Finally, it is noted that there are a number of diagnostics that can be used to 
establish the goodness of fit of the predicted values to the observations. The mean 
squared error and the mean absolute percentage error of the forecasts obtained 
with the deterministic level and seasonal model are 0.0080695 and 0.010684, 
respectively; those obtained with the stochastic level and deterministic seasonal 
model are 0.0062978 and 0.00946457, respectively. 
 

3.6.7 Conclusion on the state space technique 

The examples from this section show that the state space analysis technique is 
appropriate for the purpose of descriptive analysis as well as explanatory analysis 
and forecasting in the framework of EU road safety research. As the other 
techniques described in this chapter, state space analysis assumes independent, 
homoscedastic, and normally distributed residuals. In state space modelling, 
stationarity of the data is not required; trend and seasonal are explicitly modelled. 
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State space analysis can easily handle missing data, which is very practical in 
road safety research. Furthermore, with a particular parameter setting state space 
analysis transforms into classical linear regression, which is a useful property with 
respect to explaining the technique and state space analysis results. 
 
As was shown in this section, in fully deterministic, classical linear regression 
models the reliability of the t-tests for the regression coefficients is not guaranteed 
due to the fact that they do not take into account the time dependencies of the 
residuals. This can lead to incorrect conclusions about the significance of those 
regression coefficients. State space models do take into account the time 
dependencies, thus improving the reliability of the computed confidence and 
prediction intervals. 
 
In this section, only univariate state space models, i.e. models with one dependent 
variable, have been discussed. The state space technique enables the modelling 
of multivariate time series problems. For example, it can be valuable to analyse 
the three important road safety components, i.e. exposure, accidents, and 
accident severity, in one model. In state space analysis this is possible; the 
components can be modelled simultaneously. Examples of multivariate state 
space models in the area of road safety can be found in Durbin and Koopman 
(2001), Commandeur and Koopman (in press), Bijleveld et al. (2005), De Blois et 
al. (in press), and Goldenbeld et al. (in press). 
 
 



 

 

3.7 Equivalence between ARIMA and state space models 

Jacques Commandeur (SWOV) and Ruth Bergel (INRETS) 

 
1.1.1 Introduction 
 
At first sight it may seem that the ARMA-type models and the state space models  
presented in Sections 3.4 and 3.6 are very different conceptually. When being 
fitted with ARMA models, time series that do not satisfy stationarity need to be first 
transformed into a stationary time series. In ARIMA models, a filter of differences 
is used as preliminary transformation of the original dataset: the trend and 
seasonal components are first eliminated by differencing before the actual analysis 
is performed. In state space methods, on the other hand, these two components 
are explicitly modelled. 
 
However, as pointed out in Harvey (1989) and Durbin and Koopman (2001) ARMA 
and ARIMA models on the one hand and state space models on the other hand 
also have much in common. In this section we will focus on the similarities 
between the two approaches. 
It is worth noting that, from a theoretical point of view, any ARMA representation of 
a stationary process has an equivalent state space representation. Nevertheless, 
due to the fact that stationary observations are usually not found in the road safety 
field, we will focus on the equivalencies between ARIMA models and state space 
models, and discuss them for two particular types of models described in Sections 
3.4 and 3.6. For more equivalencies between ARIMA and structural time series 
models we refer to Appendix 1 in Harvey (1989).   
 
1.1.2 The case of the local level model 
 
As mentioned in Durbin and Koopman (2001), the local level model is equivalent 
to an ARIMA(0,1,1) model without constant:  
 

tt By ηθ )1( +=∆ , 

 
where B is the backshift operator defined by Bηt = ηt-1, ∆ is the first-difference 
operator defined by ∆yt = yt - yt-1, θ is the unknown parameter, and ηt is a random 

process. Further, let 2
εσ  and 2

ξσ  denote the disturbance variances of the irregular 

and level components of a local level model, respectively (see Section 3.6.1), and 

let 22 / εξ σσ=q . Then the equivalence between the parameters of the 

ARIMA(0,1,1) model and the local level model is given by 
 

( )




 +−+= 2)4(

2

1 2
qqqθ  ,      (3.7.1) 

 
and 
 

 θσσ εη /22 −= ,        (3.7.2) 
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where 2
ησ  is the error variance of the ARIMA(0,1,1) model. 

 
Applying these formulas to the results obtained in the analyses of the log of the 
annual number of Norwegian road traffic fatalities series discussed in Sections 

3.4.3 and 3.6.1, for example, and since 00326838.02 =εσ  and 0047026.02 =ξσ  in 

that case, we find that 
 
 41.4388167800326838.0/0047026.0 ==q , 

 
and 
 
 

( ) 050.320707132438816784.1))438816784.1)(4(438816784.1(
2

1 2 −=




 +−+=θ . 

 
Within rounding errors this value is equal to the parameter estimate θ = 
-0.32069194 obtained by applying the ARIMA(0,1,1) model without constant to the 
same data in SPSS (see Section 3.4.3). Also, 
 

0.010193207071305.0/00326838.0/22 =−−=−= θσσ εη ,   

 
which value is - again within rounding errors - equal to the residual variance 

01050984.02 =ησ  obtained by applying the ARIMA(0,1,1) model without constant to 

the data in SPSS. Moreover, as a consequence, the forecasts obtained with an 
ARIMA(0,1,1) model are equal to those obtained with the local level model. 
 
1.1.3 The case of the local linear trend with seasonal model 
 
Letting s denote the periodicity of the seasonal, the local linear trend with seasonal 
model is equivalent to an ARIMA(0,1,1)(0,1,1)s model (also known as the “airline 
model”65) 
 

 tssts BBy ηθθ )1)(1( ++=∆∆ , 

 

when 1−=sθ  and  the disturbance variances for the slope and seasonal 

components of the local linear trend with seasonal model satisfy 022 == ωζ σσ , 

respectively. In that case, formulas (3.7.1) and (3.7.2) again apply. For example, 
the variances for the observation and level disturbances of the local linear trend 
plus seasonal model with deterministic slope and seasonal applied to the log of 

                                            
65

 The  so-called “airline model” was fitted on the monthly number of international airline 
passengers in thousands, for 1949-1960, series in Box & Jenkins, 1976). 
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the UK drivers KSI series are found to be equal to 00346757.02 =εσ  and 

0010011.02 =ξσ , respectively (see Section 3.6.3). The value of q therefore equals 

 
 670.2887036100346757.0/001011.0 ==q , 

 
and substitution of this value in (3.7.1) yields 
 

 
( )

39.0.58798766

2670.28870361))670.28870361)(4(670.28870361(
2

1 2

−=





 +−+=θ

 

 
Applying the airline model without constant to the same time series in SPSS yields 
 

ttt BBBBy ηηθθ )89666905.01)(58796298.01()1)(1( 12121212 −−=++=∆∆ , 

 
and the value of the latter parameter θ is indeed remarkably close to the one 
obtained with (3.7.1), even though parameter θ12 is -0.9 instead of -1. Moreover, 
 

0.0058975879876639.0/00346757.0/22 =−−=−= θσσ εη ,   

 

which value is quite similar to the residual variance 006434.02 =ησ  obtained by 

applying the ARIMA(0,1,1)(0,1,1)12 model without constant to the series in SPSS.  
 
1.1.4  Conclusion and discussion 
 
In this section, two examples of equivalencies between ARIMA models and state 
space models, already described in Sections 3.4 and 3.6, were discussed. The  
necessary relationships between the model parameters were checked on the 
basis of their estimations provided by STAMP (for the state space models) and 
SPSS (for the ARIMA models).   
 
It should be noted that, as these equivalencies only hold between well-defined  
specifications, other close specifications may in practice be retained. With the first 
example, it was demonstrated that the log of the annual number of Norwegian 
road traffic fatalities could equally be modelled with a local level model or with an 
ARIMA(0,1,1) model without constant; nevertheless, in practice, an ARIMA(0,1,1) 
with constant was retained in Section 3.4.3. With the second example, it was 
demonstrated that the log of the monthly number of UK drivers KSI could equally 
be modelled with a local linear trend with seasonal model or with an 
ARIMA(0,1,1)(0,1,1)12 model without constant; nevertheless, in practice, an 
ARIMA(2,0,0)(0,1,1)12 model was retained in Section 3.4.4.   
 
It is also worth mentioning that not all ARIMA models have an equivalent in the 
subclass of state space methods which are collectively known as structural time 
series models. However, all ARIMA models can be put in state space form (see 
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Durbin and Koopman, 2001), thus making all the techniques that have been 
developed for state space models (like diffuse initialisation and the handling of 
missing values) available for ARIMA models also. Conversely, if required 
autoregressive components can be added to the structural time series models 
discussed in Section 3.6. 
 



 

 

3.8 Conclusion time series analysis 

Chris de Blois and Jaques Commandeur (SWOV) 

 
Main concerns of EU road safety research are to improve insight in the 
development of road safety in the past and its underlying factors and to make 
forecasts of road safety in the future. Therefore, through the years much data on 
exposure, accident frequency and injury severity, as well as several characteristics 
of road users, vehicles and their use, roads, and accident management have been 
collected and as such various time series have been created. 
 
Road safety data is voluminous and varied in the sense that several types of data 
and several dimensions are involved. The frequency of measurement of the road 
safety data varies: road safety data is mostly measured annually or monthly and 
sometimes weekly or even daily. Furthermore, the data comprises both national 
totals and disaggregated data for regions, for sections of the population (e.g. age 
classes, males, females, etc.), for vehicle types, or for road types among others. 
Between countries, but also between periods for the same country and between 
different types of data, there may exist large differences with respect to the 
availability, the periodicity, and reliability of (disaggregated) data.  
 
The above-mentioned characteristics of the data and the different needs for 
analysing the several time series and their interrelations - i.e. monitoring, 
explaining, and forecasting - make road safety analyses complex and not 
straightforward. Furthermore, it appears that the time dependence structure of 
road safety developments often does not allow for the application of cross-
sectional statistical techniques. As such, the application of dedicated state-of-the-
art time series analysis techniques is advocated.  
 

3.8.1 Summary of methods for time series analysis 

 
In this chapter, several techniques used for the analysis of time series are 
reviewed. Below their main characteristics and their use for time series analysis in 
general or for road safety analysis in particular will be summarised. 
 
Classical linear regression is a standard technique, which is frequently used for 
the analysis of time series because of its straightforwardness and efficiency. 
However, this technique does not properly consider the time dependencies 
between consecutive observations, nor does it consider alternatives for some 
other assumptions. Therefore, the residuals obtained with this technique do 
usually not satisfy the most important model assumptions, f.i. the assumption of 
independence. The latter problem may lead to statistical test results which are 
overoptimistic or too pessimistic about the relations between variables and also to 
poor forecasts, among others.  
 
Generalised linear models can be used to overcome part of the restrictions of 
classical linear regression. This technique is more flexible than classical linear 
regression in the sense that it allows for all error distributions within the 
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exponential family of distributions. Among others, this family includes the normal 
distribution, which is the one assumed in classical linear regression, the Poisson 
distribution and the negative binomial distribution. Another extension in 
comparison with classical linear regression is that what is known as a link function 
can be defined to impose restrictions to the model output, which can be useful, for 
example, when the log-transformation is used to enforce positive forecasts. 
 
By using nonlinear models even more restrictions of classical linear regression can 
be overcome. The biggest advantage of this technique over the previously 
mentioned is the broad range of functions that can be fit. Many processes, as in 
road safety, are inherently nonlinear. This flexibility of nonlinear regression is also 
a caveat, since similarly good fits can be obtained with very different functional 
forms, whereas presumably only one of them represents the real underlying 
process in the best manner. These different models can be adequate for 
interpolation purposes, but may produce very different predictions when used to 
extrapolate, i.e. to predict values outside the scope of the estimation dataset 
(forecasting).  
Common advantage of the parametric linear and nonlinear regression models is 
the efficient use of data. Good estimates of the unknown parameters in the model 
can be produced with relatively small data sets. Another shared advantage is a 
fairly well-developed theory for computing confidence, prediction and calibration 
intervals. 
 
However, for time series analysis the most important drawback of the classical 
linear, generalised linear and nonlinear regression models is that they do not 
naturally take into account the time dependencies between the consecutive 
observations of a time series. To adequately deal with these time dependencies, 
dedicated time series analysis techniques, such as ARMA (Auto-Regressive 
Moving Average) - type analysis, its special case DRAG (Demand for Road use, 
Accidents and their Gravity), and state space analysis, could be employed. 
 
ARMA models (in the case of stationary data)  and ARIMA models (in the most 
general case of non-stationarity data, which is the current case in road safety) 
enable to describe the dynamics of a process time and to extrapolate it in the 
future, without any call to additional variables and with the only assumption that 
the process dynamics will stay unchanged at the forecast’s horizon. .Explanatory 
and intervention variables can also be included in ARMA and ARIMA models, and 
the additional corresponding regression coefficients can be estimated and 
ineterpreted.  
 
For the analysis of road safety data, a disadvantage of ARIMA modelling may be 
its concept: the trend and the seasonal are removed  before the modelling itself is 
performed  on the stationary part of the process.. The emphasis is on describing 
the dynamics of this latter process, by means of estimating a small number of 
relevant coefficients parameters. This is sufficient for many applications.  
 
The DRAG model is an application of a special case of the ARMA models, the AR 
(AutoRegressive) model with explanatory variables, specially designed for road 
safety analysis. The DRAG model has (at least) three levels: exposure, accident 
risk, and accident severity. The trend and the seasonal component are not 
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removed by filtering but are modelled by the introduction of numerous explanatory 
variables, whether related to exposure, economic factors, transitory factors, 
behavioural factors or road safety measures. The use of a particular non-linear 
transformation allows a flexible form of the link between the dependent variable 
and the explanatory variables.  
  
The DRAG model has a powerful theoretical framework, but needs voluminous 
databases and therefore currently cannot appropriately be applied to EU road 
safety data.  
 
In state space models, also known as structural time series models or unobserved 
components models, an observed time series is typically decomposed into a 
number of components. The  level, the slope and the seasonal are assumed to be 
random components – effectively meaning that they may gradually change over 
time, which may be an important advantage for long time series - , and are 
estimated for obtaining an adequate description of an observed time series. 
Explanatory and intervention variables also help finding explanations for the 
observed development in the series. 
Contrary to what is the case in ARIMA  models, in state space modelling the trend 
and the seasonal are not removed but explicitly modelled. The focus here is on 
observing the development over time of the - usually unobserved - components, 
and mainly the development of the trend. Contrary to other decomposition 
techniques, the randomness of the trend is investigated, and described through its 
level and slope.  
 
It should however be considered that the core methods used by the state space 
models and those used for the ARMA-type models have a lot in common if not are 
identical. As described in Section 3.7, many models have an 'identical twin' in the 
other approach, but with other parametrisations. This means that in practice, the 
identification process may end up with formally different but statistically 
indistinguishable models.  
 
Concluding, EU road safety research requires the monitoring, explaining, and 
forecasting of road safety on the basis of often restrictedly available repeated 
measurements in time, with a high level of time dependency and possibly different 
frequencies of measurement. ARMA-type and state space models can be used for 
this purpose, for descriptive analysis as well as explanatory analysis and 
forecasting. It should be noted however that in cases f.i. violations of other 
assumptions, in particular a hierachical structure, the error distribution or a non-
linear model function, may force the researcher to use balance the gravity of the 
violations, and chose other methods than desribed here (for instance non-linear 
time series methods).  
 

3.8.2 Recommendations 

For the descriptive, explanatory, or forecasting analysis of time series from road 
safety research, using dedicated time series analysis techniques such as 
ARMAtype and state space modelling is recommended. 
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To obtain a 'quick and dirty' insight in the data and the possible interrelations, 
classical linear regression but also generalised linear models and nonlinear 
regression can be used. However, the user of all these techniques should 
continuously be aware of the techniques' limitations and therefore never forget to 
test the model assumptions. As such, linear and nonlinear regression models can 
be used as a swift, first step in the analysis of road safety time series data, which 
should be followed by the application of more dedicated techniques as ARMA-type 
or state space analysis to obtain more valuable and reliable results. 
 
In the manual (D7.5), these recommendations are followed by supplying manuals 
for classical linear regression (with an emphasis on the test of the model 
assumptions), ARMA-type, and state space analysis. 
 



 

 

Chapter 4 - Conclusion  
 
Heike Martensen and Emmanuelle Dupont (IBSR) 

 

4.1 Analyzing complex data structures 

The present document gave guidelines for analyzing complex data structures, as 
they commonly occur in traffic safety research. It departed from standard 
regression methods that were assumed to be known by the reader and focused on 
the assumptions that have to be met for these traditional methods to lead to valid 
conclusions. We presented a number of techniques that allow researchers 
conducting valid analyses even if the assumptions of the standard methods are 
violated. In particular, the document focused on the independence assumption, 
which will be recapitulated below. 
 
In a classical linear regression model, an observed or dependent or endogenous 
variable yi is predicted by one or more explanatory or independent or exogenous 

variables 1x , 2x ... Such a relation is modelled by Equation 4.1, where e is the error 

term, also called the disturbance term and i=1…n, with n the number of persons. 
 

 exbxbby ++++= ...22110  (4.1) 

 
It has been shown that this simple regression model contains a number of 
restrictions, of which the main ones are  
4. The dependent variable (y) has to follow the normal distribution.  
5. The dependent variable (y) can be expressed as a linear function of the 

independent ones (b0+b1x1+b2x2…) 
6. The variance in the dependent variable that cannot be explained by this linear 

function (i.e. the error or disturbance term e) is independently distributed 
across all observations. 

 
In practice, these assumptions are more often violated than not and we have 
demonstrated ways to deal with such violations: The Generalised Linear Model 
described in Sections 2.3.1 and 3.2.2 allows modelling observations that do not 
follow the normal distribution (e.g. discrete responses). In nonlinear models 
(Section 3.2.3), relations between dependent and independent variables are 
analysed that do not need to have the linear form (they can follow the exponential 
function, for example).  
 
The present document is mainly focused on the third assumption, however, the 
assumption of independence of the error term66. It has been demonstrated that 
many datasets in traffic safety research tend to violate this independence 

                                            
66

 This assumption is tested with the help of the model’s residual, an estimation of the error term of 
Equation 4.1, computed once a sample of observations of the observed variable is available. It is 
worth mentioning that, in practice, the hypothesis of independence of the residuals is often referred 
to in place of the one of independence of the error term. 
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assumption and that the consequences of such violations can be particularly 
nasty. More specifically, they can lead to either under- or overestimation of the 
standard errors of the parameter estimates, which will in turn distort the estimated 
probability of having observed a particular effect on a purely coincidental basis. 
Both consequences, (1) accepting as significant a result that is actually not so, and 
(2) rejecting a result as due to chance that is in fact not due to chance, can occur 
in sometimes unpredictable ways, as has been demonstrated in the introduction 
(1.2.1 and 1.2.2).  

4.2 Multilevel and time series modelling 

Dependencies among the error terms occur often when data have a hierarchical 
(or nested) structure or are structured in time. Hierarchically structured data (or 
nested data) show random variation at more than one level of observation. Each 
data point is characterised by the membership to a particular group at each level 
of the hierarchy (e.g., passengers can be characterised by the car they were 
travelling in, by the road site at which the car was observed, by the area in which 
the road site is situated, etc.). Members of the same group tend to be more similar 
to each other than members of different groups. If this similarity is not represented 
in the analysis model, the errors (i.e. the part that is not explained by the model) 
for the members of a particular group also tend to be more similar to each other 
than to those from other groups. To avoid this, it is necessary to represent the 
hierarchical data structure in the analysis model. In Chapter 2, multilevel modelling 
is introduced as way to properly represent these structures and to deal with the 
arising dependencies. 
 
Similarly, for data that develop over time (times series), data points can be 
characterised by time structures on different scales: decades, years, months, 
days. Between consecutive observations there may be a strong relation, and there 
can also be repeating patterns, for instance seasonal effects. The form of the 
relationship depends on many factors. For example monthly data are often most 
similar to data from the respective month a year earlier or later, while data from 
adjacent months can be very dissimilar. In almost any case, however, data from 
consecutive points in time are not independent. If these structures are not properly 
represented by the model, the errors will show the same dependencies as the data 
and therefore endanger the conclusion of the analysis. In Chapter 3, a number of 
time series analysis techniques have been introduced that allow for a detailed 
representation of these structures and therefore overcome the problems 
mentioned above. 
 
It should be noted that probably the most important part of the model specification 
and assumptions in traffic safety analysis is the validity of the actual model 
equation. Misspecifications in the model equation (e.g., a linear model instead of a 
non-linear one, the choice of independent variables) can have consequences 
much more important than the violation of any of the further assumptions. Omitting 
the important explanatory variables may lead to attributing effects to the wrong 
variables, by absence of the truly influential variable(s). The validity of models 
however is dependent on the subject at hand and a general discussion on such 
matters is outside the scope of this document. This document systematically 
covers what can technically be done to have a valid model, while questions that 
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concern the content of the models are addressed by giving examples of model 
building. The application of each technique has been demonstrated on the basis of 
an empirical example from traffic research. Sometimes, different types of analysis 
have been illustrated for a single data set.  
 
While the specific multilevel and time-series methods presented in Chapters 2 and 
3 are summarized and evaluated in the local conclusions -- Sections 2.9 and 3.8. -
- the examples will subsequently be briefly summarized in their order of their first 
appearance. The analyses performed on each dataset will be shortly described. 
The reader should remain aware however, that these are just examples of 
analyses. To safely draw conclusions from the results, more theoretical 
background and more information on the procedures underlying data collection 
would be necessary. The immediate goal of this description is to demonstrate how 
one should go about analysing data of a particular type, and how the results would 
be interpreted. The results presented here cannot in any way, however, serve as 
definite answer to particular road-safety questions.  
 

4.3 Summary of empirical examples 

In the introduction to multilevel modelling (Section 1.2.1), data from a Belgium 
roadside survey on seatbelt use were analysed in a single-level and a multilevel 
logistic regression analysis. These data were collected at randomly selected road 
sites in Belgium: For each passing car, it was determined whether the driver and 
(if present) the front passenger were using a seatbelt. The multilevel model was 
shown to be more appropriate, because the results showed a significant variation 
between road-sites in the probability of wearing a seatbelt. The speed limit could 
explain some of this variation (drivers on roads with higher speed limit have a 
higher probability of wearing a seatbelt), but not all of it. There was of course also 
significant variation among the inhabitants themselves, some of which could be 
explained by gender: Women tend to wear seat-belts more often than men.  
 
In the introduction to time series (Section 1.2.2) the yearly number of Norwegian 
fatalities between 1970 and 2003 (or more specifically, their logarithm) were 
modelled in different versions of state space models. For the simplest version, 
which is in fact identical to a classical linear regression, the residuals were not 
independent. This problem was handled by allowing the intercept (also called 
level) to vary over time (stochastic intercept). The intercept on a time point t was 
not constant, but depended on the value of the intercept on the previous time point 
(t - 1). In that way the residuals are independent and we found a regression 
coefficient of -0.019860, which means that the number of Norwegian fatalities 
decreases each year with about 2%. The same dataset was also fitted with a pure 
ARIMA model (Section 3.4.3), in which case the assumption of independence of 
the error term, tested on the model’s residuals, was accepted.  The equivalence of 
the ARIMA model without constant term and the regression model with stochastic 
intercept described in the introduction, the so-called local level state space model 
(Section 3.6.1), was demonstrated on this particular dataset. 
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The dataset from a speeding survey in Belgium was used to demonstrate the use 
of basic two and three level linear models (Sections 2.2.1 and 2.2.2 respectively). 
It consists of a sample of drivers passing by a number of randomly selected road 
sites at which cameras were situated. Each driver’s speed is measured as a 
continuous variable in km/h along with the car’s length when passing by the road 
site. The relation between the length of a car and its speed, and the way it is 
affected by factors like the traffic count is demonstrated in order to illustrate the 
multilevel analysis of the relation between two continuous variables. Comparing a 
two and a three level model revealed that the data clearly had two levels: that of 
the single car and that of the road-site, while evidence for a third level (regions) 
was negligible, suggesting that in Belgium there is no substantial variation in 
speed between the different regions. 
 
In a Belgian roadside survey on drink driving, all drivers passing within an hour 
were stopped at road-sites that were selected randomly with respect to location 
and point in time. Together with a number of potential explanatory variables, it was 
established whether the driver’s BAC (breath alcohol concentration) was below 
0.05 mg per litre (the legal limit), between 0.05 and 0.08 mg, or above. One way to 
analyse these data is to dichotomize them by joining the two higher categories and 
simply differentiating between blood-alcohol concentrations under or above the 
legal limit. These data so aggregated can be analysed by means of a logistic 
regression analysis, as illustrated in Section 2.3.2. In Section 2.3.3, it is 
demonstrated that one can also analyse the original three response categories 
using a multinomial regression model. Both an unordered category-model and an 
ordered one were estimated. The results however, provided no reason to question 
the ordered nature of the response categories, a case in which the ordered model 
is to be preferred given its parsimonious quality. At the test-site level the time of 
testing was the most important predictor as drink driving on weekend nights by far 
exceeds that at all other time points by far. At the individual level gender and age 
were the most notable predictors with men between 40 and 54 having the highest 
risk of drink driving.  
 
In a Greek study on the effects of speed infringements and alcohol controls, the 
accident and fatality number for each county were collected over a period of 5 
years. The yearly data were analysed in multilevel poisson-family regression 
models, including poisson, extra-poisson and negative binomial models (Section 
2.3.4, with accidents of counties nested into regions at a higher level). It turned out 
that both enforcement measures were highly correlated (i.e. counties that 
executed many alcohol controls also issued many speeding infringements), and 
that they together lead to a significant decrease in fatalities. Moreover, it was 
shown that there was significant regional variation in the number of accidents and 
in the related effect of the enforcement measures. In particular, it was shown that 
the enforcement measures were the most effective in those regions that had the 
highest accident rate in the first place.  
 
The same data set was analysed in a multivariate multilevel model (Section 2.5) 
allowing investigating the effects of enforcement measures on two road safety 
outcomes (fatality and accident numbers) simultaneously. It was shown that the 
two outcomes are correlated, and part of their covariance is situated at the 
regional level. It was also demonstrated that enforcement had a stronger overall 
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effect on the number of fatalities than on the number of accidents as such, 
suggesting that the accidents became less severe. Moreover, the significant 
regional variation of the effect of enforcement on accidents was confirmed, whilst 
the corresponding variation of the effect on accidents was non significant. It can be 
said that enforcement has an important overall effect on fatal accidents, which 
result from more risky behaviours. This effect is uniform in all regions, because 
drivers perceived an increased nationwide presence of the Police and improved 
their overall behaviour accordingly; however, the decrease of non-fatal accidents 
(which result from less risky behaviours) may be more or less important in different 
regions, according to the local enforcement practices. 
 
A dataset of monthly fatalities and severe injuries in Greece were analyzed in 
relation to enforcement and vehicle ownership, by means of generalized linear 
models (poisson, extra-poisson, negative binomial, Section 3.2.2.). Vehicle 
ownership was used as an offset term, in order to model the rates of fatalities and 
serious injuries per number of vehicles, rather than the fatalities and serious 
injuries counts themselves. An intuitive negative coefficient between the number of 
alcohol controls and the number of persons killed and seriously injured in road 
accidents was identified. This shows that the intensification of enforcement in 
Greece in the examined period brought an important road safety benefit, in terms 
of reduction of monthly fatalities and serious injuries, also accounting for the 
related exposure.  
 
Using the relationship of driver characteristics and their acceptance of new 
technologies in traffic based on data from SARTRE 3, the chapter on structural 
equation models (2.6) shows the basic form of such models in the multilevel case, 
dealing mainly with assumptions on data. The chapter also discusses the 
necessary theoretical concepts of these models.  
 
In the chapter on linear regression models, the decrease in road accident fatalities 
in Austria is modelled leading to significant results. However the focus of this 
chapter is not on these results but on the underlying assumptions, which are 
analyzed in detail. In the examples shown, especially the most important 
assumption of randomly distributed errors was clearly violated, implying that the 
results of the statistical tests regarding the regression could not be trusted.  
 
Aggregate data on road accidents, vehicle fleet and population of 17 European 
countries for the period 1970-2002 were used in a non-linear time series model 
(Section 3.2.3). Smeed's original formula on the macroscopic relationship between 
accidents, vehicles and population was examined and further developed in two 
additional forms: an auto-regressive and a log-transformed. The analysis of the 
estimated parameters allowed for a general assessment of the prevailing road 
safety patterns in the EU. In particular, the least safe countries among the 
countries examined today appear to be Greece and Portugal, while the United 
Kingdom and the Netherlands are two of the safest countries in Europe. These 
results are in accordance to the general trends evidenced by the literature. 
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The monthly number of killed and seriously injured drivers registered in the UK 
(UK-KSi drivers) for the period January 1969-December 1984 was fitted with an 
ARIMA model, in which the petrol price and an intervention variable for taking 
account for the introduction of the seat-belt law (see Harvey, Durbin, 1986)., were 
introduced and turned out to be significant  The assumption of independence of 
the error term tested on the models residuals was accepted, and the model’s 
performance increased about 5% with the introduction of the additional variables.  
The main objective of the analysis was the assessment of this road safety 
measure in the UK, and it was demonstrated that the law caused a reduction of 
15% of the number of KSI drivers from February 1983 onwards. 
. 
The same data was used as an example for a deterministic seasonal model in the 
State Space Section. It was not possible to find a seasonal model that met the 
requirements of independence, homoscedasticy and normality of the residuals. 
Explanatory variables were added, namely seatbelt law (intervention variable) and 
petrol price. The appropriate model was a deterministic seasonal model with a 
deterministic level and no slope. The results confirmed those obtained with ARIMA 
and showed that the seatbelt law resulted in a 21.1% reduction of the number KSI 
in the UK. Moreover a 1% raise in the petrol price was associated with a 0.28% 
reduction of the number KSI. 
 
An ARIMA-type analysis, similar to that on the UK drivers was conducted on the 
monthly total number of French fatalities collected between 1975 and 2001: it was 
shown that next to various seasonal and economic variables, the number of 
fatalities is also affected by certain media events. In particular, the presidential 
amnesty that is usually given to traffic offenders during the French elections 
appeared to be associated to an increase in fatalities. At the same time, the effect 
of a fatal accident that received much attention in the media (a young woman, 
Anne Cellier, who was killed by a drunk driver) was taken into account. The results 
suggested that fatalities increased by 6.4% per month on average during the 10 
months preceding the first presidential amnesty in 1988 - and by 3.8% respectively 
during the 7 months preceding the second one in 1995. In absolute numbers, 
more than 500 deaths could thus have been attributed to the presidential amnesty 
in 1988. To the contrary, the attention that the media devoted to the Cellier case 
seems to have saved lives: The results suggested that fatalities decreased by 
6.1% per month on average during the 7 months following this tragic accident.  
 
The same analysis was extended to the monthly number of injury accidents and 
fatalities on French A-level roads and motorways, between 1975 and 2001. Similar 
results were obtained, and, as risk exposure is precisely measured on these two 
networks, significant results related to risk factors, namely the traffic volume and 
specific weather variables measuring temperature, rain and frost, could also be 
established. 
 
Similar to the Norwegian fatalities modeled in the introduction (1.2.2) and first part 
of the state space chapter (3.6), the annual number of Finnish fatalities was 
modeled with a state space model. In contrast with the model for the Norwegian 
fatalities, the Finnish fatalities were best modelled with a constant intercept (or 
deterministic level) and a stochastic slope. This had been determined by fitting the 
data with both stochastic slope and level. The small variance of the level indicated 
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that the level could better be deterministic. Model comparison indicated that 
indeed the state space model with the deterministic level and stochastic slope 
fitted the data the best. The stochastic slope varied between 0.05 and -0.10, which 
means that the number of Finnish fatalities changed between 5% and -10% a 
year. 
 
All empirical examples given in this document and some of the technical aspects 
that they were used to demonstrate are summarized in Tables 4.1 and 4.2. Table 
4.1 presents the multilevel modelling examples (chapter 2) and Table 4.2, the 
time-series ones (chapter 3). 
 

Statistical method Example Response variable 

Basic two-and three level 
model 

Speeding survey in Belgium Normal 

Discrete responses Drink-driving survey in Belgium Binary 
Discrete responses Drink-driving survey in Belgium Categorical 
Discrete responses Effect of enforcement or accidents in Greece Counts 
Multivariate model Effect of enforcement on accidents and fatalities 

in Greece 
Counts 

Repeated Measurements Driving skills in young drivers (simulated) Normal 
Factor analysis Attitudes on driving style and on technical 

devices. 
Normal 

Table 4.1: Summary of empirical examples for multilevel analyses 

 

Statistical method Example Response variable 

Linear regression Austrian fatalities Normal 
GLM Monthly variation of the effect of enforcement on 

road accidents in Greece 
Counts 

Non Linear Macroscopic relation between accidents, 
population and vehicle fleet in the EU 

Normal 

ARMA-type models Norwagian fatalities 
Drivers killed and seriously injured in the UK 
French fatalities 

Normal 

State space analysis Norwegian fatalities 
Drivers killed and seriously injured in the UK 
Finland fatalities 

Normal 

   

Table 4.2: Summary of empirical examples for time series analyses. 

 
As the trend in traffic-safety research is towards large databases containing data 
from several countries and consecutive years, many datasets have the structure of 
panel data, in which hierarchical and time-series structures co-occur. For example, 
accident-counts can be characterised by the regions and the countries they were 
taken in and by the points in time - such as years or months - at which the 
accidents happened. As an example, the aggregate yearly Greek fatality data 
show a multilevel structure and in Section 2.3.4 it has been shown that the effect 
of enforcement measures varies across regions. However, these data also form a 
time-series, especially when they are disaggregated over months. Therefore, they 
are also analysed as a time-series in a Generalized Linear Model in Section 3.2.2. 
In the area of spatial modelling (see Section 2.3.4) there are now first approaches 
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to modelling the hierarchical structure and the time-structure simultaneously 
(Aguero-Valverde & Jovanis, 2006). We are, however, not aware of existing 
models at the time of writing that allow the inclusion of stochastic components for 
hierarchical as well as time-structures. Multilevel modelling and time series 
analysis are both very active areas of research and development. It is probably 
possible already to combine stochastic components for space and time if one uses 
flexible software. It will, however,, probably take some time before these 
combinations become available in standard software packages (see the manual 
D7.5 for an overview of multilevel (2.1) and time series analysis (3.1) in various 
types of software). 
 
As these examples illustrate, often there is not one correct method to analyse a 
particular set of data, with all others being incorrect. Panel data, for instance, are 
often modelled with time-series analyses – aggregating over possible hierarchical 
structures or with multilevel models – aggregating over several points in time. 
Analysing the data in different ways is often a good starting point. In each case 
one should be aware of the assumptions that do not hold in the particular model of 
analysis. The final choice for one model cannot be prescribed by a general recipe. 
One has to carefully weigh the advantages and disadvantages of either procedure 
and, depending on the research question and the exact characteristics of the data 
set (e.g. the amount of variation between higher-level units and between time 
points), a choice has to be made.   
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4.4 Outlook 

 
The methods presented in this document will be applied in analyses on 
European road safety data, in particular accidents data, exposure data, and 
safety performance indicators. The data and the statistical methods will serve 
answering questions concerning either macroscopic or microscopic data.  
 
Macroscopic data concern the CARE (Community Road Accident) data-base. In 
this database registering accidents from all EU-member since 1990, there is a 
clear hierarchical structure (accidents can be characterised by the regions and 
the countries they took place in) and also a time-series structures as the 
accidents can be characterised by the point in time (e.g., the year, the month) at 
which they happened. This data-base offers a wealth of information on each 
accident and can therefore be aggregated in very different ways, tailored to the 
particular road safety aspect that needs to be addressed (e.g., county, region, 
road-type, accident type, vehicle type, participant type, etc.). The research 
question can be very broad (e.g. did the fatalities in a particular country 
decrease at the same rate as those in other countries?) or very specific (e.g., 
did a particular junction become safer after reconstruction?). Multilevel analyses 
allow for the introduction of exposure data and data about safety performance 
indicators, even if those are not specified at the same level of disaggregation as 
the accident data themselves. In this way, multilevel analyses allow a global 
and detailed approach simultaneously. Time series analyses allow describing 
the development over time, relating the accident-occurrences to explanatory 
factors such as exposure measures or safety-performance indicators (e.g., 
speeding, seatbelt-use, alcohol, etc), and forecasting the development into the 
near future. 
 
Microscopic analyses (addressing questions like, did the type of baby-seat 
affect the risk of young children being killed in an accident?) require in-depth 
accident data and allow detailed analyses of factors that contribute to the 
severity of injuries. This type of data involves a high level of detail and is 
inherently structured in a hierarchical way describing the accident process 
(persons are nested into vehicles; vehicles are nested into accidents, etc.) 
Moreover, accidents can be clustered according to geographical or 
administrative units. In-depth accident data therefore readily call for detailed 
multilevel analysis.  
 

4.5 In sum 

 
Multilevel modelling and time series analyses form two powerful tools that can 
help researchers analysing complex data structures that violate the 
assumptions posed by traditional analyses. A number of empirical examples 
demonstrated that many (if not most) data sets in traffic safety research are 
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hierarchically structured and/or form a time-series. Multilevel modelling and time 
series analysis allow the proper representation of the hierarchical structure of 
data and their development over time. This representation is crucial to answer 
questions about these structures themselves, and forms the basis for a proper 
investigation of possible other factors, allowing experts in road safety to identify 
different kinds of risk factors and to propose effective and objective policy 
decisions. 
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